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4-DIMENSIONAL ORIENTED BORDISM
*
Paul Melvin
In 1952 Rohlin [4] (see appendix) outlined a proof of the following re=

sult:

THEOREM. Every closed oriented smooth 4-manifold M of signature zero

is the boundary of a compact oriented smooth 5-manifold.

Two years later Thom [6] gave a proof using stabie homotopy theory as part
of his general proéram for computing the oriented hordism groups. Although his
methods are of fundamental importance, the proof is unnecessarily cémplicated
in this particular case.

In & lecture at IHES in 1976, John Morgan proposed a more geometric proof
of the theorem. (A sketch is given in Remark 1.} Morgan's proof followed
Rohlin's outline, but used a fact not known to_Rohlin§ a simply connected co-~
bordism of dimension 2% has a handlebody structure which reflects its homol-
ogy structure [5].

We present a new proof of the theorem, alsoc following Rohlin's outline.
Qur proof partially incorporates Morgan's (step 2 below) but avoids the handle-
body thecrem by using the Whitney immersion theorem and a transversaiity argu-
ment (steps 1‘and 3). This is perhaps closer to what Rohlin had in mind.

The author wishes to thank John Hughes for his valuable suggestions during
the preparation of this paper.

PROOF OF THE THEOREM. We shall work in the smooth category.

Observe that M is bordant to a simply connected manifold, obtained for
example by surgery on a set of normal generators of the fundamental group of
M [2]. 8o we may assume that M is simply connected.

STEP 1. Find a( daeg)

mbe :
%ubmanlfold M1 of 37 which is bordant to M.
By a theorem of Whitney [7] M immerses in 57 with singular set con-

sisting of double circles at which the sheets of M meet transversely. Each
double circle € may be eliminated at the cost of a surgery on M, as follows.

Since M is orientable, C is the image of two circlies C1 and C2 in M

(rather than one circle by a double cover). As M is simply connected, C1

bounds a disc D \missing the rest of the singular set, so in fact D is
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embedded in ST. D has a tubular neighborhood DxB5 in 57 which intersects

M in tubulax neighborhoods D x (Bzx{]) of D and 8D x (0 xBB} of C2. Now re-—

move 8D x {0 x§33) from M and replace it with Dx (0 x 383). See Pigure 1.

[N O
A, D

Figufe i

7
This leaves a simply connected 4-manifold bordant to M and immersed in S

3
with fewer double curves. The bordism is across the 2-handle Dx (0 xB }.

. 7
Continuing in this way we obtain M bordant to M and embedded in S .

1 .
STEP 2. Iet N be a tubular neighborhocd of M“ﬁ in 57, and W=S7— int {N).

Find a submanifeld Mz of W which is-nuill homologous in W and is diffeo—

morphic to M, # alP? (for some integer n).~

We shall denote by [Q] the class in H4 (W} represented by a closed

4-manifold ¢ ezﬁbedded' in #W. ‘The null-homologous condition above means that
{leﬂ 0.
The geometric key to this step is the following observation of Morgan.
LEMMA. Let p:E+B be the trivial 'S?‘-bund},e gver a d-hall B. Then the

image of any partial section s:88-E bounds a submanifold K of E which is

diffeomorphic to kc[:PZ-— {open 4-~bali) (for some integer k}.

PROOF. Using a trivialization, identify p:E+ B with the projection map
p]:B4 ® 32+ B4.
Let h:S3+ 82 be the Hopf map. Observe that the image of the partial

section 83 = asé - B4x .552 given by x» {x,h{x)) bounds a Hopf disc bundie
3

H = {{ix,h({x)) : t & [0,1] , ¢ 57}

in E'o4 * 82.
Now let Kk be the Hopf degree of the map pzs:SB* Sz, where

pz:B4x-S2 > 52 is the projection map. We may assume k>0. (If k<0 then
the argument is analogous, and if k=0 then s extends to a glchal section
e:8? » BY x5 and so we may take K= eh.) et B, (i=1,... k) be disjoint
4-balls in 84. Choose trivializations Ti:B4x 82 - p;" (Bi) covering diffeo—

o 4 . :
morphisms ti:B +Bi' Then s extends to a partial section

N .
if n>0 then nM denotes the coanected sum of n copies of M., If n<g¢
then nM = (—n)i-—M), where =M is M with the opposite crientation.
Finally OM = 5°. ‘
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t:B4 - { U int(Bi)} e 84 ® 82
i
with pzT;1t{ti|S3) =h for all i. Fach 3-sphere h(aai} bounds a Hopf i
bundle H, = T, (H} in B « 5%, set
K = ’

im{t} U (U Hi) .
i

PROCOF OF STEP 2.
of the bundle

piN > M1
is zero {3,811.4]. It follows that there is a partial section
s:M1 - int (B) -+ 3N
where B is a 4-ball in M {3,812.5]. The lemma provides a submanifold

1

K= kap® - {open 4=-ball} of p—?(B) N 3N with boundary s(3B). Thus

A straightforward computation shows that the Buler class

The Euler class in HA3(M) is thé P-dual
of the class in H_1(M) = 0 represented
by the intersection of M with a push off

Geometric way to see this:
The normal bundle N has a
section over the complement
in M of a circle C representing
the P-dual to the Euler class,
and thus over any embedded
disk D bounded by C in M

L = im{s} U K (which is 1-connected) so just
2 let B be a tub. nbd. of Din M
is a submanifild of &N =3W diffeomo;phic to M1 # kEP”. See Figure 2, .
Ml
i 3N
Figure 2
If [Li= 0 in H4(W) then we may take M2= L. So assume {[L] #0. Con-

sider the isomorphism d:ﬂé(w) - Hz(MT)

]
H (W
4( ) E HZ(MI)
3 ¢ + Thom isomorphism
7
HS(S W) + ES(N,BN)
. excision

Represent d{{L}) by an embedded surface F in Mi“ B,
with a S-eyede bounded by L in 57.)
chain

as the intersection of M%

defined by the commutative diagram

.

(One may think of F

To get Mz,
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we shall modify L near s(F).

Let D be a 4-ball in M1 -8 which intersects F in a trivial 2~disc.

~int{D), Thea F =FN MO is a surface with boundary, properly

Set MO =M Q

1

embadded in MO {Figure 3).

Figure 3

As FU is homotopy equivalent to a l-complex, it has a tubular neighbor-

hood Fox 82 in MO' and N 2rest;icts to a trivial bundle over F,x Bz.

Pick a trivialization (Fox B yxB (we sgppress the map} so that ,

B{R, ¥y} = {X,¥.n} {n =the north pole of B) for all (%,¥) in Fex B,
Defineg a partial section

t:F0 x Bz + aN

by t{x,y) = (x,y.£(y)}, where f:B2 -+ 52 wraps 82 ‘around 82 {i.e.

f(aBz} «n, £(0) = -n, and f|int(82) is an embedding). By the lemma, there
is a submanifold J = JCP° - (open 4-ball) of p 1D} M aN with boundary
t(3D). Set

2 2
M?. = (Lms(FOxB u By v h(F{)xB yu T

MZ is a submanifold of W diffecomorphic to Mi # (j+k)m92.

It remains to show that (M) =0 in H, (M. Put N = p’1 (M,) and
C==p_1(D). Iet ¥ be the union of the straight line segments in each 83
fiber joining s(x,y) to t(x,y), for ({(x.y) in FO sz.

¥ can be extended across C to a S-cycle X in N whose boundary repre-
sents [LI-[M,] in H,(W)}. Furthermore ¥ intersects M, in F, and so
d([MZ]} = d4a{[L}) - d({Ll—[le) = {F}-[F] = 0 in H2(M1)° Thus [MZ] = 0 in
H4(W}.

as ¥ is perhaps hard to visualize, we provide an alternative algebraic

argument that [MZ] = 0., Consider the isomorphism c:Hé(W ue - HZ{MO,BMO}
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defined by the commutative diagram

H4(W U g - HZ(MG,BMU) .
a4 4 Thom isomorphism
4
H_ {8 ,WuUC) * H_o(N_ a8}
5 - 50 ]
excision

Cne readily verifies that ¥ represents the element of HS(NO,BNO) corxespong-
ing to [L] - [Mzz in H4(W U B), Singe ¥ and MO intersect in FO'
c({[L] - [Mz}) = [FOI. it follows that d{[L] - [MZE} = [F], by the commuta~

tivity of the following diagram

[+
H, W) * Hy (%)
= ¥ b=
H, (W UC) Z B, (4, 2M,) - H, (M, D)

excision
Thus [M2} ={0 by the same argument as above,

STEP 3. Show that M2 bounds a 5-manifold V.

This will prove the thecrem. For then cst =0, But GMZ = GM1 +n (by

step 2) and ch1 = gM=0 (by step 1}, so n=0., Thus Mz iz bordant to

M, and so M bounds.

To prove that MZ bounds, first construct a map

FiW » @F

-1

(for large n) with £ $ @in! and f—1{(CPn } o= M Por example, define £

on an open tubular neighborhood U of M2 in W to bz the classifying map
U»TP = x of the normal bundle of M2 in aW. {Here x is a point in ¢PB,
and so mPn~ % is the canonical complex line bundle over mPn—1.) Extend £
to W by mapping W- U to X.

The only obstruction to extending £ to a map

E:W -+ GPn
; . 3 n : n N 1,
lies in H (w,aw;nz(mg Y} Since ﬁz{EP } = & is generated by a &P inter-

H

secting EPn“ transversely in one point, this obstruction is Poincard dual to

[MZ] € H4(W). Since {M2]= 0, F exists.

-1
Now homotop F{rel W) transverse to EPn and set

The proof is complete.
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REMARK 1. Morgan's proof follows the same three step outline, but the
proofs of steps 1 and 3 are different. Here is a sketch.

To achieve step 1, first embed M i'n‘S8 by the Whitney embedding theorem.
Using a normal vector field, push M out to the boundary of a tubular neigh-
borhood N. Set stsmint(N). Since M may be taken simply connected (as
in‘step 1 above), H_{W,3W) vanishes except in dimensions 3, 5 and 8. Build
W as a handlebody on &F with handles of index 3,5 and 8, M misses the
attaching 2-spheres of the 3-handles by deneral position, but may meet the at=
taching 4-spheres of the 5-handles in circles. Surgery on M (as in the proof
of step 1 above) produces M1 missing these as well. Thus MI lies in the
boundary 57 of an 8~handle.

Step 3 is similar to step 1. The only difficulty is in pushing M2 off of
the attaching 2-spheres of the 3-handles. But there is no algebraic obstruction
to doing this since M2 is null homologous in W, and so the Whitney trick
applies. Finally we have M {bordant to M

3 2
dles) lying in 56. A standard transversality argument shows that M3 bounds.

after pushing past the 3-han-

REMARK 2. fThere is also an immersion theoretic proef of the thecrem,
worked out by Kirby and Freedman [1}.

We conclude with a problem.

PROBLEM. (D. Ruberman) Modify somé variant of Rohlin's proof to give a

topological computation of the 4~dimensicnal oriented spin bordism group.

ARPPENDIX

For the convenience of the reader, here is an English translation of the
French translation by L. Guillou and V. Sergiercu of Section 2 of Rohlin's
article [4]:

THEOREM. M4 pounds if and only if 0(M4) w0 . . .

{M4 is an oriented, closed smooth 4-manifold of signature o(M4).] This fol-
lows from:

LEMMA A. For every M4 there exists an integer s such that Méﬁ-sEPz.

[~ denotes "is bhordant to"}]
4 4 4 4
LEMMA B. If M ~N-, then o(M'} = o{N'}.
LEMMA C. c(scm?z) = 5.
PROOF OF A. One shows easily that M4~.M? < EJ. On M? one can £ingd a
normal vector field with isolated singularities of index 1. We seek
4 4 2 4

Mg”‘mg + n@pP”, M2 < iﬁ, having a nonzero normal vector field. To achieve

this, Form the connected sum about each singularity with a ¢PZ. Let 57 be
the complement of a tubular neighborhood of Mg in 87, and U5 be the gen-

erator of H5(L7,3L7} = HS(S?,ng # H (Mg) determined by the orientation of

Mg. Among the cycles representing U one can find a manifold whose boundary
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is bordant to Mg + mEPz for some integer m. Thus M4~ Mj~ Mg + m€P2 -
(m+n)EP2 -~ —(m+n)EPz.
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