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4-DIMENSIONAL ORIENTED BORDISM

Paul Melvin

In 1952 Rohlin [4] (see appendix) outlined a proof of the following re-

sult:

THSOREM. Every closed oriented smooth 4-manifold M of signature zero

Jig.._fcfte boundary of a compact oriented smooth 5-manifold.

Two years later Thorn [6] gave a proof using stable homotopy theory as part

of his general program for computing the oriented bordism groups. Although his

methods are of fundamental importance, the proof is unnecessarily complicated

in this particular case.

In a lecture at rHES in 1976, John Morgan proposed a more geometric proof

of the theorem. (A sketch is given in Remark 1.) Morgan's proof followed

Rohlin's outline, but used a fact not known to Rohlin: a simply connected co-

bordism of dimension >_6 has a handlebody structure which reflects its homol-

ogy structure [5].

We present a new proof of the theorem, also following Rohiin's outline.

Our proof partially incorporates Morgan's (step 2 below} but avoids the handle-

body theorem by using the Whitney immersion theorem and a transversality argu-

ment (steps 1 and 3). This is perhaps closer to what Rohlin had in mind.

The author wishes to thank John Hughes for his valuable suggestions during

the preparation of this paper.

PROOF OF THE THEOREM. We shall work in the smooth category.

Observe that M is bordant to a simply connected manifold, obtained for

example by surgery on a set of normal generators of the fundamental group of

M [2]. So we may assume that M is simply connected.

^™L_L- Find a submanifold M^ of_ s"' which is bordant to H.

By a theorem of Whitney {7] M immerses in s"̂  with singular set con-

sisting of double circles at which the sheets of M meet transversely. Each

double circle C may be eliminated at the cost of a surgery on M, as follows.

Since M is orientable, C is the image of two circles C and C in M

(rather than one circle by a double cover). As M is simply connected, C

bounds a disc D missing the rest of the singular set, so in fact D is
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7 5 7
embedded in S . D has a tubular neighborhood D x B in S which intersects

2 3

M in tubular neighborhoods D x (B x 0) of D and 3D x (0 x B ) of C . Now re-

move aD X (0 x B ) from M and replace it with D x (0 x 3B ). See Figure 1,

/

Figure 1

This leaves a simply connected 4~raanifold bordant to M and immersed in S

with fewer double curves. The bordism is across the 2-handle Dx (0 xB }.
7

Continuing in this way we obtain M, bordant to M and embedded in S .
7 7

STEP 2. Let N be a tubular neighborhood of M in_ S , and: W = S - int{N).

Find a submanifold M of 3W which is null homologous in W n̂d_ ̂ i s_ ,.d 1 £ £ eo-

[Tiorph_ic_ tô  M # ncp2 (for some integer n}.*

We shall denote by [Q] the class in H (W) represented by a closed

4-manifoid Q embedded in 3W. The null-homologous condition above means that

[M^]^ 0.
The geometric key to this step is the following observation of Morgan.

2
LEMMA. Lfft p:E + B be the trivial S -bundle over a 4-ball B. Then the

image of any partial section s:3B->E bounds a submanifold K of_ E which is
2

diffeomorphic to kCEP - (open 4-ball) (for sQ''ie,,,i.'iteger k).

PROOF. Using a trivialization, identify p:E+ B with the projection map
4 2 4

p :B X S -<• B .

3 2
Let h:S + S be the Hopf map. Observe that the image of the partial

3 4 4 2
section S = 3B ^ B x S given by x->-(x,h(x)) bounds a Hopf disc bundle

H = {{tx,h(x)) : t £ 10,1] , X e S^}

in B X S .
3 2

Now let k be the Hopf degree of the map p-s:S -* S , where
4 2 2

p :B X S •+ S is the projection map. We may assume k > 0. (If k<0 then
the argument is analogous, and if k = 0 then s extends to a global section

4 4 2 4
t:B ->• B X s and so we may take K= t (B ).) Let B. (i^i,... ,k) be disjoint

4 4 2 '̂1
4-balls in B . Choose trivializations T. :B x S •*• pr'(B.) covering diffeo-

4 X t 1
morphisms t.:B + B.. Then s extends to a partial section

If n > 0 then nM denotes the connected sum of n copies of M. If n < 0
then nM = (-n)(-M), where -M is M with the opposite orientation.
Finally OM = s'̂ .
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B^ x S ^t!B - { u int(B.)}
i

with p T7^t{t.|S ) = h for all i. Each 3-sphete tOB.) bounds a Hopf
4 2 • •'•

bundle H. = T.(H) in B x s . Set

K = im(t) U ( U H.} .
i

PROOF OF STEP 2. A straightforward computation shows that the Euler class

of the bundle

p:N •* M

is zero [3,§11.4j. It follows that there is a partial section

s:M ~ int{B) * 3N

where B is a 4-ball in M t3,S12.5]. The lemma provides a submanifold

K= kHP^ "• (open 4-bali} of p"^ (B) n 3N with boundary s O B ) . Thus

L = im(s} u K

2
is a submanifild of 3N = 3W diffeomorphic to M # k(EP . See Figure 2.

iia(s)

If [Lj= 0 in H4 (W) then we may take M = L. So assume {L] ̂ ^0. Con-

sider the isomorphism d:H (W) + H (M ) defined by the commutative diagram

H^(W) « 2 ^ ^ '

+ Thom isomorphism3 f

H^{S ,W) -̂  H (N,3N)
excision

Represent d{[Ll) by an embedded surface F in M ~ B. (One may think of F
7

as the intersection of M with a 5-cycle bounded by L in S .) To get M ,

Paul Melvin
The Euler class in H^3(M) is the P-dual of the class in H_1(M) = 0 represented by the intersection of M with a push off
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Geometric way to see this: The normal bundle N has a section over the complement in M of a circle C representing the P-dual to the Euler class, and thus over any embedded disk D bounded by C in M (which is 1-connected) so just let B be a tub. nbd. of D in M
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we shall modify L near s(F).

Let D be a 4-ball in M, - B which intersects F in a trivial 2~disc.
1

Then F = F n M is a surface with boundary, properlySet Mg =M^ -int(D).

M (Figure 3)embedded in

Figure 3

As F is homotopy equivalent to a 1~compiex, it has a tubular neighbor-
ed 2

hood F X B in M^, and N restricts to a trivial bundle over ^Q^ ^ •
0 0 2 3

Pick a trivialization (F^x B )xB (we suppress the map) so that
0 3 2

s(x,y) = (x,y,n) (n =the north pole of B ) for all (x,y) in F^x B .

Define a partial section

3Nt:F^ X B

7 2
f:B ^ S

B around S (i.e.by t(x,y) = (x,y,f(y)), where wraps

fOB^) = n, f(0) =

is a submanifold J

t(3D). Set

1, and f|int(B ) is an embedding). By the lemma, there

jCCP̂  - (open 4-ball} of p~^ (D) n 3N with boundary

2 2
M = (L ~ S (Fg X B U D) ) U t (FQ X B ) U J

M is a submanifold of 3W diffeomorphic to M # (j-t-kjIP .
2 ' _1

It remains to show that [M^] = 0 in H^(W). Put N^= p (M^) and

C = p~^(D). Let X be the union of the straight line segments in each B
2

fiber joining s(x,y) to t(x,y}, for (x,y) m P^ x B .

X can be extended across C to a 5--cycle X in bi whose boundary repre-

sents (L]~[M ] in H (W). Furthermore X intersects M^ in F, and so

Thus [M^ld d L l - l M ^ ] } = [ F 1 - [ F ] = 0 i n H 2 ( M ^ ) .dim^]) = d([L])

H^(W}.

As X is perhaps hard to visualize, we provide an alternative algebraic

argument that [M ] = 0. Consider the isomorphism c:H^(W U C ) -'• ^2^%'^%^
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defined by the commutative diagram

H^(W U C) •* U^m^,m^)

a t f Thom isomorphism

excision

One readily verifies that X represents the element of H (N ,BN ) correspond-

ing to [L] - [M̂ J in H (W u E). Since X and M̂^ intersect in F^,

c([L] - [M^]) = [Pgl. Xt follows that d{[L] - [M^]) = [Pj, by the commuta-

tivity of the following diagram

H^(W) * H^ (M^)

H (W U C) •* H^CMQ^SMQ) •* H2{M^,D) .
c excision

Thus [M ] =0 by the same argument as above.

STEP 3. Show that M bounds a 5-manifold V.
, , , _ ™ ,,,,,i.-,,ir.v.ui.v.ui.-.j,,,-.,m.-,-..T— jf — — — — ~ —

This will prove the theorem. For then oM =0. But aM ~ oM.+n (by

step 2) and oM, = aM= 0 (by step 1), so n= 0. Thus M is bordant to

M, and so M bounds.

To prove that M bounds, first construct a map

f:W ^ SP"

n—1 —1 n—i
(for large n) with f ff) 2P an̂ ^ f ((EP ) = M . For example, define f

on an open tubular neighborhood U of M- in aw to be the classifying map

U + cDp"- X of the normal bundle of M in aw. (Here x is a point in (EP ,
n n—1

and so (EP - x is the canonical complex line bundle over (EP .) Extend f

to aw by mapping 3W- U to x.

The only obstruction to extending f to a map
F:W ->- (EP"

lies in H (W, aWjn (CEP") ) . Since -sr {(J^'P") - % is generated by a (EP inter-

secting IP transversely in one point, this obstruction is Poincare' dual to

[M ] e H (W). Since [M J = 0, F exists.
n-1Now horaotop F(rel 3W) transverse to IP and set

V = F"^ (CEP'^'S .

The proof is complete.
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REMARK 1. Morgan's ptooE follows the same three step outline, but the

proofs of steps t and 3 are different. Here is a sketch.

To achieve step 1, first embed M in S by the Whitney embedding theorem.

Using a normal vector field, push M out to the boundary of a tubular neigh-

borhood N. Set W=S^~int(N). Since M maybe taken simply conneoted (as

in step 1 above}, H^(W,aw) vanishes except in dimensions 3, 5 and 8. Build

W as a handlebody on 3W with handles of index 3,5 and 8. M misses the

attaching 2-spheres of the 3~handles by general position, but may meet the at-

taching 4-spheres of the 5--bandles in circles. Surgery on M (as in the proof

of step 1 above) produces M missing these as well. Mius M^ lies in the

boundary S of an 8~handle.

Step 3 is similar to step 1. The only difficulty is in pushing M^ off of

the attaching 2-spheres of the 3-handles. But there is no algebraic obstruction

to doing this since M is null homologous in W, and so the Whitney trick

applies. Finally we have M_ (bordant to M after pushing past the 5-han-

dies) lying in S . A standard transversality argument shows that M^ bounds.

REMARK 2. There is also an immersion theoretic proof of the theorem,

worked out by Kirby and Freedman [1].

We conclude with a problem.

PROBLEM. (D. I^berman) Modify some variant of Rohlin's proof to give a

topological computation of the 4-dimensional oriented spin bordism group.

APPENDIX

For the convenience of the reader, here is an English translation of the

French translation by h. Guillou and V. Sergiercu of Section 2 of Rohlin's

article [4]:
4 4

THEOREM. M bounds if and only if o(M ) - 0 . . .

[M is an oriented, closed smooth 4-manifold of signature o(M }.] This fol-

lows from:
4 4 2

LEimA h. For every M there exists an integer s such that M ~ sCCP .
[~ denotes "is bordant to"]

4 4 4 4
LEMMA B. _If M ~ N , then o (M ) = a (N ).

2
LEMMA C. atsSP ) = s.

4 4 7 4
PROOF OF A. One shows easily that M ~ M C ]R . On M^ one can find a

normal vector field with isolated singularities of index ±1. We seek
M^ ~ M + nlP , M c m , having a nonzero normal vector field. To achieve
2 1 2 2 7

this, form the connected sum about each singularity with a SP . Let L be
4 7 5

the complement of a tubular neighborhood of M_ in S , and U be the gen-

erator of H (L'̂ ,at.̂ ) = H (s'',M*) s E(A determined by the orientation of
4 5

M^. Among the cycles representing U one can find a manifold whose boundary
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4 2 4 4 4 2
i s b o r d a n t t o M + mtDP f o r some inte^ger m. Thus M - M ~ M_ + ro<EP -

2 2 1 ^
(m+n)g:P {m+njCEP .
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