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A knot in S 3 whose complement contains an essential** torus is 

called a satellite knot. In this paper we discuss algebraic invariants 

of satellite knots, giving short proofs of some known results as well 

as new results. 

To each essential torus in the complement of an oriented satellite 

knot S , one may associate two oriented knots C and E (the compan- 

ion and embellishment) and an integer w (the winding number). These 

are defined precisely below. In the late forties, Seifert [S] showed 

how to compute the Alexander polynomial of S in terms of w and the 

polynomials of C and E . Implicit in his work is a description of 

the Alexander module of S . Shinohara [SI,$2] recovered Seifert's 

results and computed the signature of S using an illuminating descrip- 

tion of the infinite cyclic cover M S of S (recalled in ~I below as 

built up out of the covers of C and E . This description of M S is 

in essence also due to Seifert ([S] pp. 25, 28). Using it, Kearton 

[K] stated (without proof) various properties of the Blanchfield palring 

of S , and deduced a formula for the p-signatures of S (obtained 

independently by Litherland [L] from a 4-dimensional viewpoint). 

In §2 we give a complete description of the Blanchfield pairing of 

S . It depends only on w and the Blanchfield pairings of C and E . 

(In contrast S cannot be recovered from w , C and E .) In theory 

one may then compute all the abelian invariants of S from w and the 

associated invariants of C and E , as the Blanchfield pairing of a 

knot determines its Seifert form [T2]. This seems difficult in practice 

however, and so it is appropriate to give more direct computations 

using the description of M S This is done in §3 for the quadratic 

form of S , which recovers Shinohara's computation of the signature 

and gives a formula for the rational Witt invariants of S . 
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Notation 

Fix an oriented satellite knot S and an essential torus T in 

the complement of S Let V denote the solid torus bounded by T 

Note that V contains S The core of V , called the companion of 

S (associated with T ), will be denoted by C . Define the winding 

number w of S by the homology relation S ~ wC in V . Orient C 

so that w ~ 0 (there is a choice to be made when w = 0 ). Finally 

set E = f(S) , where f : V ÷ S 3 is an orientation and longitude pre- 

serving embedding onto an unknotted solid torus U in S 3 We shall 

call E the embellishment of S , as S is obtained by embellishing 

C with E . See Figure 1 for an example. Observe that S cannot be 

recovered from C , E , and w . One must also know how E lies in U . 

i. The Infinite Cyclic Cover 

For any oriented knot K in S 3 , let N K be an open tubular 

: S 3 N K the exterior of K . Denote the neighborhood of K and X K 

infinite cyclic cover of X K by M K , with t K the canonical covering 

translation on M K 

The description of M S given below is due to Seifert [S] for w = 

0 , and to Shinohara [S2] for w > 0 . We write nX for the disjoint 

union of n ~ ~ copies of a space X . 

Theorem i. There are splittings 

M S = M u N and M E = P u Q 

(i) 

Q = ~Q 

(2) 
~(S 1 x B 2) 

(3) 

invariant under t S and t E , respectively, such that 

M , N , P and Q are 3-manifolds with M n N = SN and P n 

M = P , N = ~X C (if w = 0 ) or wM c (if w > 0 ), and Q = 

(if w = 0 ) or w(~ x B 2) (if w > 0 ). 

If w > 0 then t S cyclically permutes the components of N . 
w 

The restriction of t S to any one is t c . 

(4) There is a map h : M s ~ M E satisfying (a) ht s = tEh , 

(b) h maps M homeomorphically onto P , carrying 8N to DQ , and 

(c) h(N) = Q , h* : H2(Q,$Q) + H2(N,$N) is an isomorphism with rational 

coefficients, and h, : HIN ÷ HIQ is an isomorphism for w = 0 (with 

integer coefficients). 
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Proof: For any knot K let PK : MK + XK = $3 - NK denote the 

covering projection. Choose N S c V c S 3 and N E = f(Ns) where f : 

V + U c S 3 is the embedding used Go define E . Set M = psl(s3-intV) , 

N = psI(V-Ns ) , P = pEl(S3-intU) , and Q = pEI(U-NE ) Then (i) is 

evident since PS and PE are local homeomorphisms. 

Observe that there is a Seifert surface F S for S intersecting 

S 3 - intV in w parallel copies of a Seifert surface F C for C . 

Let F E be the Seifert surface for E obtained from f(F S n V) by 

adjoining w parallel discs in S 3 - U . Using F S , F E and F c to 

construct M s , M E and M c in the usual way, (2) and (3) follow readily. 

For (4), first extend f to a map f : S 3 ÷ S 3 with f-iu = V and 

f-iF E = F S Now let h be the lift of fix S : X S ~ X E . Properties 

(a), (b) and (c) are easily verified. 

A surgery presentation for M S can be given which displays the 

structure in Theorem i. For example, apply the method of Rolfsen [R] 

for drawing cyclic covers to C and E separately, while keeping track 

of X C . This is illustrated in Figure 2 for the knot of Figure i. 

Remark. A similar description can be given for the finite cyclic 

covers. Denoting the r-fold cyclic cover of the exterior of a knot K 

by K r , and the associated cover of S 3 branched along K by K r , 

one has 

S r = (E r - (w , r) (S 1 x B 2 ) u (w , r)C r/(w'r) 

where (w,r) = gcd(w,r) The proof is analogous to the proof of Theo- 

rem i. It follows by a Mayer-Vietoris argument that 

HIS r = HIE r @ (w, r) HICr/ (w, r) 

2. The Blanchfield Pairing 

Set A = Z[t,t -I] and A 0 = ~(t) , the quotient field of A For 

any oriented knot K , write A K for the Alexander module of K ( = HIM K 

as a A-module with t = (tK) , ) and B K for the Blanchfield pairing on 

A K ( = linking pairing A K × A K + A0/A ) . It is well known that A K is 

finitely presented with deficiency zero. Thus A K has a square presen- 

tation matrix with entries in A . Any such matrix AK(t) is called an 

Alexander matrix of K . The associated matrix BK(t) for B K (with 

entries in A0/A ) is called the associated Blanchfield matrix. 
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Theorem 2. If AE(t) and Ac(t) are Alexander matrices for E 

and C with associated Blanchfield matrices BE(t) and Bc(t) , then 

As(t) : AE(t) • Ac(tW) 

is an Alexander matrix for S with 

B s (t) : B E(t) @ B c(t w) 

the associated Blanchfield matrix. 

Here @ denotes block sum. Since the Alexander polynomial 

of a knot K is just detAK(t) , we have 

Corollary (Seifert [S]). As(t) = AE(t)Ac(t w) 

Remarks. (i) If w = 0 , then the theorem simply says 

AK(t) 

As(t) = AE(t) and Bs(t) : BE(t) 

For, Ac(t0) = AC(1) is invertible (as AC(1) : I) and so the extra 

generators may be discarded. 

(2) The result As(t) : AE(t) @ Ac(tW) was obtained independently 

by C. Weber [W], and is in fact implicit in the work of Seifert ([S], 

p.32). 

(3) Theorem 2 was used in [LM] to show that algebraic knots (links 

of isolated singularities of complex curves) are linearly dependent in 

Levine's algebraic knot concordance group G This contrasts with 

the fact that torus knots (which are all algebraic) are linearly inde- 

pendent in G [L]. 

Lemma. HIM S = HIM E • wHIM C and (ts) . = (tE) , • t where 

t(x I, .... x w) = ((tc),X w , x I .... ,Xw_ I) 

Here wG denotes the direct sum of w copies of a group G . 

Proof of the Lemma: Adopt the notation of Theorem i. The map h 

of (4) induces maps between the Mayer-Vietoris sequences of the triads 

(Ms;M,N) and (ME;P,Q) , giving 

HI~N i~j HI M @ HI N 

p+ q+ r+ 

HI~Q + HIP • HIQ 

÷ HIM S ~ 0 

s+ 

÷ HIM E ~ 0 . 
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By (4b), p and q are isomorphisms. 

If w = 0 , then r is an isomorphism by (4c), and so s is also 

an isomorphism. The action of (ts) . follows from (4a). 

If w > 0 , then j = 0 and HIQ = 0 by (2). Thus HIM S = 

HiM/Am(i) @ HIN = HIM E @ wHIM c . The action of (ts) . follows from 

(3) and (4a). 

Proof of Theorem 2: By the lemma 

A S = A E @ A 

where A is the A-module wHiM c with t acting as in the lemma. Let 

Xl,...,x m and yl,...,y n be the generators for A E and A c associ- 

ated with the Alexander matrices AE(t) and Ac(t) = (lij (t)) , respec- 

tively. 

If w = 0 , then A = 0 , and so A s is presented by 

As(t) = AE(t) 

with repsect to the generators Xl,...,x m . 

If w > 0 , consider the generators Yi = (Yi ' 0, .... 0 (i = 1 ..... n) 

for A . Evidently 

n 

Z 1 (tW)y = 0 
i= 1 13 l 

for j = l,...,n . It is easy to verify that any relation in A is a 

of these, and so A is presented by Ac(tW) with respect consequence 

to the Y. Thus 
1 

A S(t) = A E(t) • A C(t w) 

presents A s with respect to the generators Xl,...,x m , YI,...,Yn . 

It remains to compute Bs(t) with respect to the generators above. 

Recall that for any knot K , B K can be computed as follows (see ~7 in 

[G]). Represent x and y , elements of A K , by cycles c and d 

in dual tK-invariant triangulations of M K Since A K is torsion, 

there is a 2-chain D with ~D = Id for some 1 in A Then 

BK(x,y) : <c,D>/I 
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where <c,D> = Z(c • t~D) t k , k ranging through all integers. 

Now if x = x i and y = xj , it is evident that c and d can 

be chosen to lie in M (cf. the proof of the lemma above). Since HIM 

is A-torsion, D can also be chosen in M . Thus the computations of 

B S and B E agree (via the homeomorphism h : M ÷ P of Theorem 1 (4)). 

That is 

Bs(Xi,X j) = BE(Xi,X j) 

for all i and j between 1 and m . In particular 

(1) 

B s (t) = B E (t) 

for w = 0 

For w > 0 , there is more to compute. Since each Y. can be 
3 

represented by a cycle in the first copy of M c , 

Bs(Xi,Yj) = 0 (2) 

for i = 1,...,m and j = 1,...,n . Similarly (or since B S is 

Hermitian) 

Bs(Yj,x i) = 0 (3) 

Finally, represent Yi and Yj by cycles c and d in M C , with 

l(t~)d = l(tc)d = ~D for some 2-chain D in M C and l(t) in i 

Then 

Bs(Yi,Yj) = Z(c • t~D) tk/l(t w) 

= E(c • t~D)tkw/l(t w) (4) 

since c • t~D = c • t~/WD if k is a multiple of w , and 0 otherwise. 

But this is just Bc(Yi,Yj) with t replaced by t w . Thus, combining 

(1)-(4) gives 

B S(t) = B E(t) @ B C(t w) 

for w > 0 . D 
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3. The Quadratic Form 

Let K be a knot. Trotter [TI] has defined a quadratic form QK 

for K by symmetrizing the Seifert form of K . QK is well defined 

when viewed as an element of the Witt group W(~) of non-singular 

rational quadratic forms. 

Theorem 3. QS = QE if w is even, and QS = QE + QC if w is 

odd (in W(~) ). 

Remark. Since QK is determined by the Blanchfield pairing of 

K (as are all abelian invariants of K [T2]), Theorem 3 should be in 

principal a consequence of Theorem 2. It seems difficult, however, to 

obtain an explicit expression for QK from the Blanchfield pairing. 

Nevertheless, if w = 0 then Theorem 2 immediately yields QK = QE ' 

giving Theorem 3 in this case. This case in fact is due to Shinohara 

[S2] . 

The proof of the theorem for w > 0 uses the following analogue 

of the lemma in §2. (The statement with w = 0 also holds, but is not 

needed in view of the preceeding remark.) 

Lemma. If w > 0 , then H I(M S ,~M s) : HI(ME,SM E) @ wHI(M C,~M C) 

= * @ t where t(xl,...,x w) = (with rational coefficients) and t~ t E 

(t~x w , X 1 ..... Xw_ I) 

Proof: Adopt the notation of Theorem i. The map h of (4) induces 

maps between the exact sequences of the triples (Ms,M,~M S) and 

(ME,P,3M E) Using (2) one has the diagram 

H I(M S,M) H I(M S , 3M S) H 1 (M,3M S) 6 H 2 M) ÷ ÷ ~ (M S , 

+ p+ q+ 

0 + HI(ME,~M E) ÷ HI(p,SME ) ÷ H2(ME,P) 

By (4b) p is an isomorphism. Assuming rational coefficients, q is 

also an isomorphism, and so H 1 ,~M S) = H 1 (M S (Ms,M) @ Ker6 = HI(N,~N) 

H I ,~ME) wH I @ H I (M E = (Mc,~Mc) (ME,~M E) The action of t~ follows from 

(3) and (4a). D 

Proof of Theorem 3. Assume w > 0 , by the remark above. Milnor 

[M] has shown that for any knot K , QK is represented by the form on 

HI(MK,~MK) (with rational coefficients) given by 

QK(x,y) = (t~x)y - x(t~y) 
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It follows from the lemma that 

QS : QE + Q 

where Q is the quadratic form on H = wHI(Mc,~M C) defined by 

Q(x,y) = (tx)y - x(ty) 

It suffices to show that 

f 
Q = ~0 w even 

[ QC w odd 

in W(~) 

For i = l,...,w , let H i denote the i th copy of HI(Mc,gM C) 

in H , and let x. in H. denote the element corresponding to X in 
1 1 

H 1 ~M C) Note that xiYj = 61~xY i = (M C, . , and tx xi+ 1 (if i < w) 
J 

or (tcX) 1 (if i = w) Set 

K = • H. and L = @ H. 
i even 1 i<w i 

If w zs even, then Q vanishes on K , and so is a split form. 

That is, Q = 0 in W(~) 

If w is odd, then it is straightforward to verify that QIL is 

non-singular (since the cup product on H is) and hyperbolic ( QIL 

vanishes on K ) . Thus Q = QIL ± in W(~) But there is an isomor- 

phism HI(Mc,~Mc) ÷ L ± associating to x in HI(Mc,~M C) the element 

X = Z x i + ~ tx i in L ± . (It is surjective since 
i odd i even 

dim(HI(Mc,~Mc)) = dim(L ± ) .) It is easy to verify that Q(X,Y) = Qc(x,y) 

and so QS = QE + QC in W(~) 

Corollary (Shinohara [SI]) . ~S = ~E if w is even, and aS = ~E + 

~C if w is odd. 
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