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THE study of manifolds with continuous symmetry groups has always been a fruitful avenue 
of research, both for its inherent beauty and for its contribution to the general study of 
manifolds. In dimension 3, for example, the St-manifolds studied by Seifert have turned out 
to be basic building blocks in the structure theorems of Jaco, Shalen, Johannson and 

Thurston. One might reasonably hope for a similar phenomenon in dimension 4. 
This paper gives a diffeomorphism classification of all closed oriented 4-manifolds which 

support an effective action of some compact non-abelian Lie group (Theorem 3.7). They fall 
into the following classes: 

(1) S4 or +CP’ 
(2) connected sums of copies of S’ x S3 and S’ x P3 
(3) (SU(Z)/H)-bundles over S’ (H a finite subgroup of SU(2)) 
(4) S*-bundles over surfaces 
(5) certain quotients of S2-bundles over surfaces by involutions. 

The restriction to non-abelian Lie groups avoids the difficult problem of classifying 4- 
manifolds with S’ or T ‘-actions [3,4,9-l 11. (It is well known that any 4-manifold with an 
effective T “-action, n 2 3, is T 4 or St x L, where L is a lens space.) This paper thus reduces 
the general classification problem for closed, orientable 4-manifolds with a compact Lie 
group G of symmetries to the cases G = S’ or T2. 

In $1 we show that one need only consider actions of SU (2) or SO (3), and the well known 
subgroup structure of these two groups is recalled. A complete equivariant classification of 
SU (2) and SO(3)-actions on 4-manifolds (including the non-orientable case) is given in 9 2. 
The codimension 1 case is taken largely from the second author’s thesis [ 123. The final section 
gives the topological classification in the orientable case. This leaves open the non-orientable 
case, where the situation seems quite interesting and more intricate (cf. [13] for the 
codimension 1 case). We plan to take this up in a sequel to this paper. 

We shall work in the smooth category. B” will denote the n-ball, s” the n-sphere, and P” the 
real projective n-space. The reader is referred to Bredon’s book [l] for the basic definitions 
and theorems of transformation groups. 

5 1. SUBGROUPS 

LEMMA 1.1. If a connected 4-manifold M supports an eflective action of a compact non- 
abelian Lie group G, then it supports an effective action of W(2) or SO(3). 

Proof: It suffices to show that G contains SU(2) or SO(3) as a subgroup. By the hypothesis 

l Partially supported by NSF Grant MCS82-05450 
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on G, dim(G) r 10 [2, p. 2391. By the classification of compact connected Lie groups [l, 
p. 303, the connected component of the identity in G is isomorphic to (A x S)/H where A is 
abelian, S ( # 1 since G is non-abelian) is simply-connected and semisimple, and H is a 
subgroup of the center of A x S. In particular each simple factor of S is either one of the 
simply-connected Lie groups Sp(n), SU(n + l), or Spin(n + 2) (n 1 l), or one of the five 
exceptional groups, The exceptional groups cannot occur, however, as they have dimension 
1 14 while dim(S) 6 dim(G) s 10. Since Sp(1) = SU(2) = Spin(3), it follows that SU(2) 
c S. Now the center Z of SU (2) is cyclic of order 2, with SU (2)/Z = SO(3). Thus SU (2) or 
SO(3) is a subgroup of (A x S)/H c G. III 

To study the actions of a Lie group one must know a lot about its closed subgroups. For 
SO(3) and SU(2) these are well understood. 

First consider the rotation group SO(3). To fix notation, let C, denote the (unique) cyclic 
subgroup of SO(3) of order n 2 1 whose elements fix the z-axis. Extending C, by x2, where 
x E SO (3) is rotation by n/2 radians about the x-axis, yields a dihedral subgroup D2,, of order 
2n. Note that Ci = 1 and D2 is conjugate to Cz. Let Tlz, 0z4, and Z6c be the subgroups 
containing D4 which are isomorphic respectively to the symmetry groups of the tetrahedron, 
octahedron, and icosahedron. Finally let SO (2) and 0 (2) be the subgroups containing C, and 
isomorphic respectively to the circle group and the orthogonal group of the plane. It is known 
that each closed subgroup of SO(3) is conjugate to exactly one of the subgroups 

C, (n 2 l), Dz” (i h 2), &z, 024, 160, SOP), O(2), or SO(3) 

(see [ 163). 
The closed subgroups of SU(2) are described as follows: Let p:SU(2) -+ SO(3) be the 

universal (2-fold) covering homomorphism. For each closed subgroup H of SO(3), set 

H* = p-IH. 

Then the closed subgroups of SU (2) are exactly the subgroups H * together with the odd cyclic 
subgroups. As with SO(3), isomorphic subgroups are conjugate. Note that the subgroups 
SO(2)* and O(2)* are isomorphic respectively to SO(2) and O(2). There is a unique cyclic 
subgroup of SO(2)* of any order n, denoted also by C,. In particular C2” = C,* c SU(2). 

The study of effective actions of a specific compact Lie group G on connected n-manifolds 
usually begins with a list of the possible principal isotropy types (H) [I, p. 1791. H must satisfy 
the two conditions 

(1) dim(G/H) s n (n-dim(G/H) is called the codimension of the action) 
(2) the intersection of all the conjugates of H is trivial (to guarantee effectiveness). 

For SO(3)-actions on 4-manifolds any proper closed subgroup satisfies these conditions, 
while for SU (2)-actions only the odd cyclic ones do. (The other subgroups of SU (2) contain 
the center of SU(2) and so condition (2) is violated). This yields 

LEMMA 1.2. Effective actions of SU (2) on connected 4-manifolds are all of codimension 1 
with principal isotropy C,, n odd. Those of SO (3) are of codimension 1 or 2. The principal isotropy 
isjinite in thejrst case, and SO(2) or O(2) in the second. q 

52. EQUIVARIANT CLASSIFICATION 

In this section we give an equivariant classification of effective actions of SU (2) and SO (3) 
on closed connected (not necessarily orientable) 4-manifolds. The codimension 1 classifi- 
cation, originally given by the second author [ 12,131, is based on the work of Mostert [6] and 
Neumann [73. The codimension 2 classification builds on the diffeomorphism classification 
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of S’-bundles over surfaces given in [j]. It was obtained previously in the orientable case by 

Orlik [S]. 
We begin by defining the prototypes for codimension 1 actions of a compact connected 

Lie group G, found by Mostert. 
Let H be a closed subgroup of G and n be an element of the normalizer N(H) of H in G. 

Denote by 

r,: G/H + G/H 

the automorphism of the left G-space G/H given by right multiplication by n, that is r,(gH) 

= gHn = gnH. Following the notation of [13] let 

(G/H) x I 
sG(H)n = (gH,O) - (gnH, 1) 

denote the mapping torus of r., equipped with the natural left G-action (g [g’H, t] = [gg'H, t], 
where [gH, t] is the equivalence class of (gH, t)). 

If K is a closed subgroup of G containing H, then (H, K) is called an admissible pair if K/H 
is diffeomorphic to a sphere. For admissible pairs (H, Ki) (i = 0, 1) set 

I AH, Ko, KI) = 
(G/K,) ” ((G/W x 4 u (G/K,) 

gKo - (gH, (3, W, 1) - gK, 

with the natural left G-action (as above). I ,JH, Ko, K 1) is the union of the mapping cylinders 
Zi of the natural projections G/H + G/Ki along their common boundary G/H. The Zi are 
disc bundles over G/Ki, since the (H, Ki) are admissible, and so I,(H, Ko, K,) is a manifold. 
As a notational convenience set 

I#, Ko, Kd, = I,W, Ko, nKln-‘) 

for any n in N(H). This may be viewed as the union of the Zi with boundaries identified by I,. 
Mostert [6] showed that every closed connected manifold with an effective codimension 1 

G-action is equivariantly diffeomorphic to some S,(H), or Z,(H, Ko. K,), (see also [7], [l, 
p. 2061). Following Cl33 we shall call these Mostert manifolds. Neumann [7] observed that 
S, (H), and S, (H),, are equivariantly diffeomorphic if and only if r. and n’ are in the same 
component of the group 

I-(H) = N (H)/H. 

Similarly Z,(H, Ko, K,), are classified (for fixed H, K. and K,) by the components of the 
double coset space 

I-‘(H, Ko, K,) = No\N(H)IN, 

where Ni = N(H) n N (Ki) (i = 0, 1). An appropriate analysis of the closed subgroups of G 
would thus yield a classification of the effective codimension 1 G-actions on manifolds. 

For G = SU(2) and SO (3) acting on 4-manifolds, this analysis has been carried out in [12]. 
We tabulate the results below. 

Table 1 gives one representative H from each potential principal isotropy type of 
codimension 1 G-action (Lemma 1.2) and the corresponding normalizer N(H). 

It follows from this table that T(H) = N(H)/H is connected except when H = C. (n 1 2, 
G = SU(2) or SO(3)), D4 or T12. (This is evident for H = D2,, (n 1 3) since the rotation x2 (see 
$1) lies in D2,,, and in the remaining cases N(H) is either connected or equal to H.) Table 2 
gives a set n(H) of elements of N (H), one from each component of T(H). Here (and in the next 
two tables) x, y and z are respectively rotations by rr/2 radians about the x, y and z axes (or 
lifts to SU(2)). S3 is the symmetric group on 3 letters. 
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Table 1. Principal isotropy types (H) 

G H NW 

W(2) 1 SU(2) 
C. (odd n 2 3) O(2)’ 

SO(3) 1 SO(3) 
C. (n L 2) O(2) 
Dl 0 
Dzn (n L 3) 0;;) 
T 12 024 
0 24 024 
160 160 

Table 2. Normal representatives n(H) 

C. (n 2 2) O(2) 
D* S3 
T I.? 22 

all remaining cases 

1, x1 
1, x7 Y* 2, XY, YX 

1, Y 
1 

Table 3 gives all possible admissible pairs (H, K) (up to pairwise conjugacy) with H taken 
from Table 1. 

Table 3. Admissible pairs (H, X) 

G H K 

W(2) 1 SU(2) 
C. (odd n 1 1) CzI 

so (2). 

SO (3) C. (n L 1) C 
DlI (n # 1) 
SO (2) 

c2 x0(2)x_’ t 
4. (n h 2) h. 

O(2) 

G 2 0 24 

t This case (conjugate to (D2, O(2))) was 
omitted in [ 121. 

Observe that N(SO(2)) = O(2), whence N(S0(2)*) = O(2)*. It follows from Tables 1 and 
3 that T(H, &, K,) is connected unless H = &. Table 4 gives a set n(H, Ko, K,) of elements 
of N(H), one from each component of T(H, Ko, K,). 

Table 4. Normal representatives n(H, KC,, K,) 

H Ko K, r(H, Ko. K,) n(H, Ko. K,) 

& Da 4 &\OdD, 1, x 
.oca 1, x 

064 O(2) 1, x 
all remaining cases 1 



-I-MANIFOLDS WITH LARGE SYMMETRY GROUPS 75 

The discussion above yields the following codimension 1 classification theorem: 

THEOREM 2.1. Ler Al be a closed, connected 4-manifold with an eflective codimension 1 G- 
action, G = SU (2) or SO(3). Then A4 is equivariantly diffeomorphic to exactly one of the 
Mostert manifolds S,(H), (where H is chosen from Table 1 and nE n(H) from Table 2) or 
I,(H, KO, K,), (where (H, Ki) are chosen from Table 3 and ncn(H, KO, K,) from Table 4). 

0 

We turn now to codimension 2 actions. Let M be a closed connected 4-manifold with an 
effective codimension 2 SO (3)-action. Let F denote the orbit space, H the principal isotropy, 
and X the complement in M of an open tubular neighborhood of the non-principal orbits of 
the action. It is well known that F is a compact connected surface [l, p. 1863 (this can be seen 
directly from what follows) and that X fibers over its orbit space E c F with fiber G/H and 
structure group N(H)/H [l, p. 1821. 

By Lemma 1.2, H = SO(2) or O(2) with principal orbits Sz or P2, respectively. The 
possible non-principal orbits may be determined using the slice theorem. These are tabulated 
below, along with a corresponding isotropy subgroup and slice representation (which must be 
non-trivial [l, p. 181]), and the orbit space of an open tubular neighborhood of the orbit. 

Table 5. Non-principal orbits 

Orbit Isotropy 
Slice 

representation 
LoCal 

orbit space 

PZ O(2) O(2) + O(2) with 
image generated by 

a reflection 

a rotation of 
order 2 

fixed point SO (3) standard inclusion 
SO(3) - O(4) 

The points marked P and the point marked x correspond to P2 orbits. Those marked Fare 
fixed points. The remaining orbits are principal S2 orbits. 

If H = O(2), then all orbits are principal. Thus F is closed and M = X = F x P2 (since 

N(O(2)) = O(2)). 
If H = SO(2) (assumed henceforth), then F may have boundary. Let f and p denote the 

number of components of d F consisting of fixed points and P2 orbits, respectively, and write q 
for the number of isolated P2 orbits. A typical orbit space is shown in Fig. 1 with f = 1, p = 2, 
q = 3. 

Now X is the total space of an S2-bundle t[ over E z F - (q open discs) with structure 
group h2 (= 0(2)/SO(2)). The boundary dX ofX is the union off + p + q S2-bundles over S’. 

Fig. 1. 
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Each one corresponding to an isolated Pz orbit must be the twisted bundle S’ 2 S* (by the 
slice theorem). Denote the number of twisted bundles corresponding to circles of fixed points 
by f’. Similarly define p’. Then 

r=f’+p’+q 

is the number of non-orientable components of 8X. Observe that r is even. (To see this, let C 
be a properly embedded l-manifold in E with a minimal number of components which is 
Poincare dual to the first Stiefel-Whitney class wri. Then r is the number of components of 
dE which C touches, cf. the structure lemma in [S].) Finally define 

s=0,1,2or cc 

as follows: if C is empty (wit = 0) or ZC is nonempty, set s = 0. If w, < = w,E, the first 
tangential Stiefel-Whitney class of E, set s = co. Otherwise, set s = 1 or 2 according to 
whether C is orientation reversing or preserving. It follows from [S, Theorem 21 that X is 
determined up to S0(3)-equivariant diffeomorphism by r and s. 

It is now straightforward to show that 

F, s, (Af’X (P, P’) and q 

form a complete set of invariants for the SO(3)-action on M. They satisfy 

(1) F is a compact surface 
(2) J f ‘, p, p’ and q are non-negative integers withf’ 5 ft p’ 5 p, f+ p = rk(H,, 8F), and r 

=f’+p’+q even. 
(3) If r > 0 then s = 0. Otherwise s may be 0, 1,2 or co, according to the following table 

F Genus (f) s 

orientable 0 co 

z-0 2, aJ 

non-orientable 1 0, a 

2 0, 1, a 

>2 0, 1, 2, a 

Conversely, one may construct an S0(3)-manifold 

F(s, (f,f’), (P, P’), q) 

with any prescribed values of F, s, ft f ‘, p, p’ and q satisfying (l)-(3). This yields 

THEOREM 2.2. L.et M be a closed connected Cmanifold with an eflective codimension 2 
SO (3)-action. Then M is equivariantly diffeomorphic to a trivial P*-bundle over a closed surface 

(with SO(3) acting by rotation in thefiber), or CO one of the SO(3)-manifolds F (s, (f,f’), (p, p’), q) 

defined above. 0 

The following orientability criterion will be used in the next section, where we give the 
topological classification in the orientable case. 

LEMMA 2.3. (1) F(s, (ff’), (p, p’), q) is orientable if and only ifs = co (and so f ‘, p’ and 
q = 0). 

(2) Let H be ajnite subgroup of a compact connected Lie group G. Then S,(H), is always 
orientable, and I,(H, KO, K,), is orientable if and only if K0 and K1 are infinite. 

Proof. (1) is straightforward from the definition. 
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To prove (2), observe that G is orientable and right multiplication r9 by any element g of G 

is orientation preserving. Since H is finite, it follows that G/H is orientable and the 
automorphism r, of G/H is orientation preserving. Thus S,(H), is orientable. 

Now recall that I,(H, K,,, K,), is a union of the two mapping cylinders Zi(i = 0,l) of the 
natural projections G/H + G/Ki. If Ki is infinite, then G/Ki has codimension 2 2 in Zi and so 
Zi is orientable (since G/H = dZi is). If Ki is finite, then Zi is an I-bundle with orientable base 
GIKi and connected boundary GfH, and so Zi is nonorientable. Thus I,(H, K,,, K,), is 
orientable if and only if the Ki are both infinite. cl 

For simplicity, we will denote the oriented SO(3)-manifold F (co, (II 0), (p, 0), 0) by 

F(f) 

in the sequel (p = rk(H,dF) -f). 
Combining Lemma 2.3 with the classification theorems 2.1 and 2.2, we have 

THEOREM 2.4. Let M be a closed, connected oriented 4-manifold with an eflective G-action, 
G = SO(3) or SU (2). Then M is equivariantly diffeomorphic to exactly one of the following G- 
manifolds: 

(1) S,(H),, with H taken from Table 1 and nEn(H) from Table 2. 
(2) I,(H, KO, K,), with H, K,, and Kt taken from the following table 

G H KO K, 

SU(2) 1 so (2)* SU(2) 
SU(2) SrJ(2) 

C. (odd n 2 1) SO(Z)* SO(Z)* 

SO(3) C2 SO (2) O(2) 
& O(2) O(2) 
c. (n h 1) SO(2) so (2) 
4.k h 1) O(2) O(2) 

where O(2)’ E x0(2)x-‘. 
(3) F(f), with F a compact surface and 0 =< f 5 rk(H,aF) (G = SO(3)). 

$3. TOPOLOGICAL CLASSIFICATION 

The classification is given in Theorem 3.7. We first establish notation and give some 
preliminary results. 

Let F be a compact surface. Write 

M(F) 

for the (unique) oriented spin 4-manifold which fibers over F with fiber S’. In particular, 
M(F) = F x S2 if F is orientable. If F is closed then there is one other oriented Cmanifold 

N(F) 

underlying an S2-bundle over F. Ii is obtained from M(F) by twisting along an S2 fiber (i.e. 
cutting along the boundary S’ x S2 of a tubular neighborhood B2 x S2 of the fiber and then 
reidentifying by the diffeomorphism of S’ x S2 coming from the non-trivial element of 
x1 SO (3)). N(F) is not a spin manifold. 
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The following result is immediate from the homotopy sequence of a fibration. 

LEMMA 3.1. (1) nIM(F) = lrlF = nIN(F). Thus for closed surfaces F, the manifolds 
M(F) (respectioely N(F)) are classified up to difjeomorphism by F. 

(2) nzM(F) and n,N(F) are both non-zero. 0 

If F has boundary, define 

P(F) 

to be the manifold obtained from M(F) by identifying antipodal points on each fiber of 
aM(F). In particular, P(F) is diffeomorphic to the S0(3)-manifold F(0) (see $2). 

LEMMA 3.2. (1) If F # BZ then x,P(F) is infinite with non-trivial torsion. 
(2) The manifolds P(F) (for bounded surfaces F) are classljied up to difiomorphism by F. 
(3) n,P(F) # 0. 

Remark 3.3. P(B’) = M (P’). Indeed, there is a bundle projection P(B’) + Pz induced by 
the projection M (B*) ---) S* to a fiber. One easily checks that P(B*) is spin. 

Proof of 3.2. A Mayer-Vietoris argument shows that 

where p(F) is the number ofcomponents of 8F. If F # B* then HIF is infinite, and so x1 P(F) 
is infinite. To see that xl P(F) has torsion, observe that there is a map P(F) -* P2 (constructed 
as in the remark above) which is a homeomorphism on any P* fiber P (the quotient of an S* 

fiber in aM(F)) in P(F). Thus nIP = E2 c x,P(F). This proves (1). 
Set r(F) = rk (H, F). By the computation above, r(F) and p(F) are topological invariants of 

P(F ). To prove (2), we may assume that F # B*, as r(F ) = 0 if and only if F = B*. We then 
have r(F) 2 p(F) - 1 2 0. Let r and p be nonnegative integers satisfying 

r&p-120. 

If r - (p - 1) is odd or zero, then there is a unique F with r(F) = r and p(F) = p, and so P(F) is 
determined by F. If r - (p - 1) = 2n (n > 0), then there are exactly two surfaces Fi (i = 0, 1) 
with r(FJ = r and p(FJ = p. In particular 

F0=nT2#pB2 

F1 = nK2# pB* 

where T * and K* are respectively the torus and the Klein bottle, and nM denotes the 
connected sum of n copies of M. We must show that P(F,) # P(F,). 

Observe that any 3-fold cyclic cover Ei of Fi induces a cover P(Ei) of P (Fi). The collection 
Ci of covering spaces of P (Fi) which arise in this way correspond exactly to homomorphisms 

h:H,P(Fi)* ZJ 

with tOr(H,P(FJ) c ker(h). Thus Ci is an invariant of P(Fi). One easily shows that Fr has 
a 3-fold cyclic cover with 3p-2 boundary components, while F0 does not. It follows that 

CO # C1. Thus P(F,) # P(F,). This proves (2). 
To prove (3), observe that there is a 2-fold cover M (DF) -* P(F), where 

DF= Fy -F 

is the double of F, as indicated in Fig. 2. The covering transformation in M (DF) is the 
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Fig. 2. 

composition of reflection through 8F with the antipodal map in the fibers. By Lemma 3.1(2), 
wU(DF) # 0, and so qP(F) # 0. cl 

Now let H be a finite subgroup of N(2). Set 

S,_,(H) = S’ x (SU(2)/H). 

For certain H, namely C, (n > 2), Q = 0: and T = T f2, there also exist non-trivial 
(SU(Z)/H)-bundles over S’ with structure group N(H)/H (see $2). Denote these by S,(H) for 
certain k > 0, defined as the manifolds underlying the Mostert manifolds specified below: 

Sl (C”) = 
ssLq2, (C”L~ (odd n > 2) 

SSot3)(Cn12L~ (even n > 2) 

SI (Q) = S,C,~,, (4)x 

S2 (Q) = S,,,,,V?d,, 

(see $2). 
S,(T) = S,,,,(7-121, 

Remark 3.4. Observe that S, (Q) may be defined using y or z in place of x, since x, y and z 
are conjugate in N(D,). Similarly yx may replace xy in defining S2 (Q). Furthermore, S, (Q) 
and S2 (Q) are the only two non-trivial (SU (2)/Q)-bundles over S’ (up to diffeomorphism) 
[14]. Similarly S1 (C,) is the unique twisted bundle over S’ with fiber the Lens space L(n, 1) 

cw. 

LEMMA 3.5. (1) The manifolds S,(H) are classified up to difeomorphism by k and H. 

(2) 7c2SL(H) = 0. 

Proof. The homotopy sequence of the fibration SU(2)/H + S,,(H) + S’ yields a short 
exact sequence 

1 + H c q&(H) + h + 1. 

Since His finite, it is the unique subgroup of al&(H) with quotient Z. Thus H is an invariant 
of S,(H). To show that k is invariant one may compute H,Sk(H) in the relevant cases. For 
example, S,(C,) # S1 (C,) since HISo = H @ Z, and HIS, (C,) = E @ ZWcdt2,.) are not 
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isomorphic (n > 2). Similarly the S,(Q) are distinguished by HIS,(Q) (which is Z @ Z2 @ Z, 

fork =O, hfork = Land Z@B,fork = 2)andtheS,(T)byH,&(T)(whichis Z@h,for 

k = 0 and Z for k = 1). 

To prove (2) note that the short exact sequence above corresponds to the covering space 

R x (SU(2)/H) 4 S,(H). Since the cover has trivial x2, so does S,(H). cl 
Finally let 

C(r, p) = r(S’ x S3)# p(S’ x P3) 

where kM denotes the connected sum of k copies of M. 

LEZ~NA 3.6. (1) C(r, p) is classified up to dzjfeomorphism by r and p, 

(2) n,C(r, P) = 0. 

Proof. We have H,C (r, p) = H’+p @ h$, proving (1). A transversality argument gives (2). 

cl 
The following topological classification is the principal result of this paper. 

THEOREM 3.1. Let M be a closed, connected oriented 4-manifold. Then M supports an 
eflective action of a compact non-abelian Lie group G if and only if it is digeomorphic to a 
manifold in one of the following classes: 

(1) S4 or * d=P’ 

(2) C(r, P) (r + P > 1) 
(3) S,(H) 
(4) M(F) (closed F) 
(5) N(F) (F = S* or P*) 
(6) P(F) (bounded F # B*) 

The manifolds in class (1) are distinguished by their signatures aM, those in (2) by r and p, those 
in (3) by k and H, and chose in (4)-(6) by F. The classes (l)-(6) are disjoint. 

Proof. First suppose that M supports an effective G-action. By Lemma 1.1 we may 
assume that G = SU(2) or SO(3). It follows that M is equivariantly diffeomorphic to 
a G-manifold in one of the three families S,(H),, I, (H, K,, K z) or F(f) listed in Theorem 2.4. 

Case 1. M = S,(H),. Then by definition (and Remark 3.4) M is diffeomorphic to S, (H*), 
for appropriate k (where H = H* if G = SU(2)). 

Case 2. M = Z,(H, K,,, K,), with H, K,, and K, as tabled in Theorem 2.4. Then a case by 

case analysis shows that M is diffeomorphic to S4, + CP*, M(F) or N(F) (F = S* or P*). 
Indeed, it is evident from the structure of Z,(H, K,,, Kz) as the union of two mapping cylinders 
that I,,o,(l, SU(2), SU(2)) = S4 and I,,(,, (1, SO(2)*, SU(2)) = &- 6:P2 (with orientation 
dependent upon the orientation of the orbit space). With a little more work one may show 

that Z,,,,,(C,, SO(2), O(2)‘) = + CP* and I soc,,(D4, O(2), O(2)‘) = S4: the former is the SO(3)- 

action induced from the natural SU(3)-action on CP*, and the latter is induced from the 

S0(3)-action by conjugation on Rs = symmetric traceless 3 x 3 matrices [l, pp. 42-44-J. The 

remaining cases are handled using the following fibration result (essentially from [12]): 

LEMMA 3.8. Zf there is a closed subgroup K of G containing K0 and Kz, then I, (H, Ko, Kz) 
fibers over G/K withfiber Z,(H, K,,, Kz). 
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Proof of the lemma. There is an isomorphism 

defined by mapping [g, [ZcH, t] J to [g&H, t]. Now apply Theorem 112.4 in [l]. cl 

Applying this lemma to the case G = SU(2), H = C,, K, = K, = K = SO(2)*, we have 

Z,(H, K,, K,) = S2, and so Z,,(r, (C,, SO(2)*, SO@)*) is an S*-bundle over SU(2)/SO(2)* 

S’. Similarly ZSO(,)(Cn, SO(2), SO(2)) = M(S’) or N(SZ) (K = SO(2)), and 

I:,,,, (&, O(2), O(2)) = M (P2) or N (P2) (K = 0 (2) ). 
Observe that the manifolds N(S’) and N(P’) do arise. For example Z,,,,,(l, SO(2)*, 

SO(2)7 = N(P) = CP2 # - CP2, since it is by definition the union of two copies of the 

mapping cylinder of the Hopf map S’ + S2. (Similarly I,,,:,(& SO(2)*, SO(2)*) = N(S2) 

and Z,,t,,(C,, SW), SO@)) = M(S2).) Also Z,o,(D2, O(2), O(2)) = N(P2), since it is not a 
spin manifold (as seen by considering the self-intersection ofthe lift of the zero-section to the 

2-fold cover Z,,o,(l, SO(2), SO(2)),cf. $11 in [13] where it is shown that Z,,,,(D,,, O(2), O(2)) 

= M (P2) or N (P2) depending upon the parity of n). 

Case 3. M = F(f). If f= 0, then by definition M = M(F) if dF = I#I and M = P(F) if 

dF # 4. If f > 0, then a standard argument, cutting along the lifts of arcs in the orbit space 

joining pairs of fixed points ( = 3-spheres in M) as shown in Fig. 3, shows that M = C(r, p), 
where p = rk (HodF) -f and r = rk (H,F) - p (cf. [S]). The cases when r + p = 1 correspond 

to S’ x S3 = S,(l) (p = 0) and S’ x P3 = S,,(C,) (p = 1). 

Fig. 3. 

We have thus shown that M is diffeomorphic to one of the manifolds on the stated list. 

Conversely, if M is on the list, then it is evident from the actions discussed above that M 

supports an effective action of SU(2) or SO(3). 

The classification of the manifolds within classes (2)-(6) was accomplished in 

Lemmas 3.1,3.2,3.5 and 3.6. It remains to show that the classes (l)-(6) do not overlap. This 

can be done by computing (in the appropriate cases) the signature aM, the second Stiefel- 

Whitney class u2M, and properties of the fundamental group n,M (including the first Betti 

number b,M) and the second homotopy group 7r2 M (see lemmas). The results are given in 

Table 5. 

This completes the proof of the theorem. cl 

In summary, Table 6 lists all effective SU(2) and S0(3)-actions on the 4-manifolds 

classified above. (Note that P(B2) = M(P2) (Remark 3.3) and C(l,O) = S,(l) and C(0, 1) 

= S,(C,).) In this table, n can assume any integer value 2 1. 
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Table 5. 

CP’ 
-CP’ 
S’ 

C(r.p) (r+p > 1) 
S,(H) 
M(F) (closed F) 

N(F) (F = S’ or P2) 
P(F) (bounded 

F # B*) 

0 1 
0 -1 
0 0 0 
0 0 >l 
0 0 1 

#O Finite or 0 
torsion free 

#O Finite 20 
#O Infinite with 

torsion 

Table 6. 

f CPZ 

S 

W.P) (r+p > 0) 

WG.+,) 
S,(H) (H properly containing the 

center 2 of SL1(2)) 
S1(C*,+ I) 
SI(C2”+I) 
S,(Q) 
S,(Q) 
S,(T) 
WS’) 

W2) 
WP’) 

NV? 
M(F) (closed F # S’, P’) 
P(F) (bounded F # B*) 

~,,(2,~~.~0~~~*.su~2~~ 

~SO(3,G. .m2),W)') 

~SU(2,U. s~ca.s~m) 

I,(,,@,. O(2). WY) 

B2(1) 

F(f) WH,F) = r+p, rk(H,dF) > p, f= rk(H,dF)-p) 
Also Sso(2,(1) (if r = 1, p = 0) and 
Sso(3jU) (ifr = 0, P = 1) 

ssu(2)G"+I) 

Sso,,,WIZ) 
ssu(2)G"+lL' 

SS0(3)K"+Ar 

Ss0(3#'4Loryor2 

SsodDJxyocyx 

Sso(3AT,z), 

;m~cc"samSw)) 

Isu(z,(Cz"-,.S0(2)*,S0(2)*) 

~so(3,VL O(2). O(2)) 

B2(0) 

pm 

~so(3~UL2. W, O(2)) 

F(O) 

F(O) 
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