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1. Introduction

The primary objective of this paper is to propose a theory of invariants
of finite typefor arbitrary compact oriented 3-manifolds. We shall also
give many examples of such invariants, including some “new” 3-manifold
invariants, and investigate the algebraic and combinatorial structure of the
set of all finite type invariants.

At the most naive level, invariants of finite type should be thought of as
the polynomialsamong all invariants. As such, they should be computable
(at least in theory) in polynomial time in the complexity of the objects being
studied. In recent years, a number of different theories of finite type invari-
ants have evolved in a variety of topological settings, with their origins in
fields as diverse as singularity theory and perturbative Chern-Simons theory.
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Perhaps the best known of these is the theory for knots in the 3-sphere, which
was initiated by V. Vassiliev [Va] and M. Gusarov [Gu], and developed by
many other authors (in particular see [BL] [Ba] and [Ko]). Importing some
of the key notions from this theory, T. Ohtsuki [O2] developed an anal-
ogous theory for homology 3-spheres which has been further studied by
S. Garoufalidis, M. Greenwood, N. Habegger, A. Kricker, T. Le, J. Levine,
X.S. Lin, H. Murakami, J. Murakami, L. Rozansky, B. Spence, E. Witten,
and others (see references). An extension to rational homology 3-spheres
was proposed by Garoufalidis and Ohtsuki [GO1] (see 810 for a discussion
of an apparent flaw in this theory). Attempts to extend beyond the set of ra-
tional homology spheres, however, have failed. Indeed several authors have
provednon-existencéheorems for such extensions [GO1] [H1]. Moreover
the most celebrated extensions of specific finite type invariants for rational
homology spheres, namely C. Lescop’s extension of the Casson-Walker
invariant and the “universal’ finite type invariant of Le-Murakami-Ohtsuki,
vanish identically for manifold$vl with first betti numberb, (M) greater
than three [Ls] [LMO] [H2]. Our work seems to overcome these difficulties.

The theory proposed here extends Ohtsuki’s theory for integral homol-
ogy spheres, and is highly non-trivial for 3-manifolds of arbitrarily large
betti number. Indeed much of the complexity of Ohtsuki’s theory embeds
in our theory for manifolds of high betti number. It is shown here that the
coefficients of the Conway polynomial of a manifold with first betti number
one, as well as coefficients of the Witten-Reshetikhin-Turaev quantum in-
variants for a general 3-manifold, are of finite type. This provides evidence
that the theory is a rich one.

There were several principles that guided us in formulating our theory:

1) (polynomial naturg An invariant of finite type should be a polynomial
in some natural sense, preferably defined — as in Vassiliev's original view-
point for knots — as a function with vanishing derivative of some order on
a stratified spac&. The “chambers” oX (components of the non-singular
part) should correspond to 3-manifolds, and the “walls” between chambers
correspond to certain singularities, perhaps singular 3-manifolds, represent-
ing elementary transitions from one 3-manifold to another. Some interesting
work from this viewpoint has been done by N. Shirokova [Sh].

2) (finitenes}y The set of all finite type invariants should have an alge-
braic structure, graded by degree, which when properly interpreted is finite
dimensional in each degree.

3) (non-triviality) There should exist many independent invariants in all
degrees, including at least the more robust algebraic topological invariants
coming from (co)homology theory.

4) (combinatoric} There should be a combinatorial model for the set of
all finite type invariants, as there is for knots and links [Ko] and homology
spheres [GO1] [Le].

We begin with a heuristic definition of finite type invariants in which their
polynomial nature is evident. This requires the notion of a “combinatorial
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tangent bundle” for the set of 3-manifolds. This point of view will also
make it clear how our definition differs from some previous attempts.

For motivation, first reconsider Ohtsuki's notion of finite type invari-
ants for homology 3-spheres from this point of view. The basic idea is
that the homology spheres which are to be viewed as “closes?,tsay,
are those which are obtained fro8% by +1 surgery on a knot ir’,
denotedsﬁ. To this end, construct a cubical compléXS®) whose ver-
tices are (oriented homeomorphism classes of) oriented homology spheres
> and whose edges represent “elemental cobordisms” betdeand
Yk (the result of surgery oK in X), i.e. ¥ x | with a 2-handle at-
tached along at+1 (or —1) framed knotK in X. The edges emanat-
ing from X are the “tangent vectors” & to the set of all homology
spheres. They are parametrized h§-framed knotK in X. Forn > 1,
the n-dimensional cubes are parametrized hy¥-framed n-component
links L in X which have zero linking numbers. Note thxt is con-
nected. If¢ is an invariant of homology spheres then the (combinatorial)
derivative of¢ at X, in the direction ofK, is dx¢p = ¢(Zk) — d(2).

If two such framed knotgK,, K} are disjoint and have linking num-

ber zero inX, then one defines the second derivativeXatdx,dx,¢p =
D(Zk,uk,) — P(Zk,) — d(Zk,) + ¢(X), etc.. Given this notion of the tan-
gent space and given this combinatorial derivative, Ohtsuki’s finite type
invariants of degre@ (for homology 3-spheres) are precisely e de-

gree polynomials. For example, a degree zero invariant must have vanishing
first derivative, that isp(X) = ¢(Xk) for eachx and K, and so is con-
stant.

Now in extending this definition to all closed 3-manifolds the crucial
question is what should be the “tangent vectors3toe. what are the al-
lowable “infinitessimal deformations”? In brief, previous attempts allowed
0-surgery on a knot iM as a deformation, and we do not. Clearly allowing
more tangent vectors imposes more conditions and increases the chances
that the theory becomes vacuous. For our theory, an admissible “infinites-
simal deformation” ofM is My whereK is a+1 framednull-homologous
knot in M. This corresponds to a cubical compléxvhich is disconnected,
where a single path component has as vertices all those 3-manifolds which
can be obtained (one from another) by a sequence of such “deformations”.
In particular all such 3-manifolds have isomorphic homology groups. The
component containing® is X(S%) as above. Once having stipulated this set
of deformations, we define polynomial invariantof degree at most to
be one whosén + 1)-st order mixed partial derivatives vanish. The mixed
partial is defined only in restricted cases as above. We shall not make this
precise. The reader can extract it from our precise definition of finite type
which follows below. But, in summary, there is a natural sense in which our
finite type invariants are polynomials, and there is a spaediose vertices
(chambers) are 3-manifolds and whose edges (walls between chambers)
are elementary cobordisms (“singular 3-manifolds”), as in the approach of
Vassiliev.
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We shall now give our definition for 3-manifolds, which can be seen to be
formally identical to that of Ohtsuki for homology 3-spheres, and then dis-
cuss the elements of the definition which distinguish it from other attempts.
In Sect. 9 we give several significant generalizations of our definition.

Let 8 be a set of equivalence classes of 3-manifgléls o) with some
additional “structure’s, modulo “structure-preserving” homeomorphisms.
Examples of the structures which may be considered are: orientation, spin
structure, a marking odM (i.e. a homeomorphism froriM to a fixed
abstract surface), an elementlaf(M; Z,), a marking ofH1(M) (i.e. an
isomorphism fromH; (M) to a fixed abstract abelian group). In fact all of
these theories are discussed herein, but a unified definition is given below.
The type of structure and the sétmay not be chosen entirely arbitrarily;
there is a mild restriction discussed below.

Let M be the free abelian group on the getWe define a decreasing
filtration of subgroupsm = My D> M1 D Mr D --- below, and with
respect to this filtration and some fixed Noetherian Wnge stipulate:

Definition 1.1. A functiong : 8 — A is finite type of degreé if its linear
extension toM vanishes onM, 1, but not identically onM,. Let (QEA, or
often mereh®,, denote theA-module of all finite type invariants of degree
at mostt, i.e.Hom(M /M1, A), and let@ denote the union of alb,.

The filtration we use is defined as follows.

Definition 1.2. The framed link. = {L4, ..., L.} in M is admissible if

a) eachL; is null-homologous iV
b) the pairwise linking numbers &f (measured irM) are zero
¢) the framings aret1 with respect to the longitude guaranteed by (a).

Such a link inS® has been called unit-framed, algebraically split by some
other authors. Clearly any sublink of an admissible link is itself admissible.

If L is aframed link inM thenM_ will denote the result of Dehn surgery
on M alongL [Ro]. If L is an admissible link itM then[M, L] will denote
the element ofM represented by the (formal) alternating sum of manifolds
Ms over all sublinksSof L (includingS= ¢ andS= L),

[M.L]=) (-D)°Ms
S<L

Here the number of components of a lifkdr L, for example) is denoted
by the corresponding lower case letteo( ¢). If L is empty therfM, L] is
the class oM itself.
It is also sometimes convenient to use the notafibny for [M, L]
wheres is the operator which sends a framed link to the alternating sum of

its sublinks,
SL = Z(—l)SS
S<L
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Note thats is an involution on the free abelian groupgenerated by framed
links [CML1].

Definition 1.3. Let M, be the span of the sé of all [M, L], whereM is
an element o8 andL is an admissible link of components itM. As will
be seen below, this defines a filtration

M=MgD My DMD ---

with intersectionM, = (= M. The quotientsi(;/ M1 will be denoted
by G,, and sog = Go® G1 D G2 P ... is the associated graded group.

One can think of$, as the set of unit tangent vectors 4o of M, as
the tangent bundle of, and inductively, of§,,, as the set of unit tangent
vectors tos, and.M, 1 its tangent bundle.

The reader should note that the definitions above are incompleté. If
is a manifold with structure and Sis an admissible link irVl then we
must specify how the structure is “propagated” to a structures on Mg
in order that the symbdIM, L] be defined. This functor must be invariant
under structure-preserving homeomorphisms of the (ddirS). When the
structure is an orientation or a marking @& then this propagation is
obvious, but when the structure is a spin structure or a markiridy dfien
more must be said (later). This problem restricts the type of structures which
may be considered under this definition. It is now evident that th& seist
have the following closure property: (M, o) € 4 then, for any admissible
link Sin M, (Mg, o5) € 4. With these mild restrictions, Definitions 1.1—
1.3 suffice to define a theory of finite type invariants for many categories
of 3-manifolds. For simplicity of exposition we shall henceforth restrict
attention tacompact orientabl@-manifoldsand tostructures which include
an orientation

The following combinatorial identity holds and shows immediately that
Mos1 C M.

Lemma 1.4. If L UK is an admissible link itM and K is a knot, therL is
admissible inMy and[M, L U K] = [M, L] — [Mg, L]. More generally,
if K is alink then[Mg, L] = [M, L U8K] (where the latter is defined
linearly for arguments int).

Proof. [Mk, L] = MsLuk = Msusk) = [M, L USK], sinces? =id. O

Definition 1.1, when restricted to the subgroup.tf spanned by the
set of oriented homology 3-spheres is precisely that of Ohtsuki. It differs
from the definition of Garoufalidis-Ohtsuki on the span of the set of rational
homology 3-spheres ([GOL1, Definition 1.2]; see §10).

In general the key difference in our proposed extension lies in the
definition of an admissible link. Note that If is admissible inM then
Hi(Mp) = Hy(M). Moreover if one considers the cobordidtfrom M
to M., given by attaching 2-handles ¥ x [0, 1] along the components
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of L, thenHy(M) = Hy(W) = Hy(Mp). We say thatMy and M; are
Hi-bordantif there exists an oriented cobordism between them which is
a product orH;. Thus one sees that each tevfg of [M, L] is H;-bordant to
M and consequently the partition #finto H;-bordism classes is respected
by the filtration. It follows that the study of invariants of finite type, in our
sense, largely reduces to the study of such on each Fixdabrdism class.
More precisely, for any fixed 3-manifolil let (M) denote the set of
all 3-manifolds H,-bordant toM, and M (M) denote its span imM. For
exampleMm (S®) is precisely the group studied by Ohtsuki. One sees that
$(M) satisfies the required closure property.
Now for each non-negative integérlet M, (M) be the subgroup o,
spanned by allM’, L] with M’ € 8(M). Then by the above remark and
Lemma 1.4, there is a decreasing filtration

M(M) = Mo(M) D M1 (M) D Ma(M) D -

and we can define a functiop : §(M) — A to be finite type of de-
greet if its extension toM,,1(M) is zero and its extension té(,(M) is
not identically zero. As above, sgt(M) = M;(M)/M,1(M), also de-
noted(M,/My1)(M), and®,(M) = Hom((:M/M,,1)(M), A). Then the
following are trivial consequences of the definitions.

Proposition 1.5. Suppose¥ is the set ofH;-bordism classes of elements
of 8. Choose a representati\g; for each class € J¢. Then for eachd > 0,

a)M:%M(Mi) b) =Me=§eMe(Mi)
0 Ge=PG(M) O =[]0(M)
£ b7

Proof. The partition of8 into H;-cobordism classes clearly induces a direct
sum decomposition on free abelian groups on the sets, establishing 1.5a.
Since every element in the suyiil, L] is Hy-cobordant taM, 1.5b follows
easily. Then 1.5c is an easy algebraic consequence of 1.5b. Finaly
Hom(M/ M+, A) = TgeHOM((M/ Me+1) (M), A) =TT O(Mj). O

The last isomorphism in Proposition 1.5 makes it clear that invariants
of finite type, in our sense, are constructed from invariants of finite type
on eachHi-bordism class. In fact the degree O finite type invariants are
precisely those which are constant Hi-bordism classes, i.e. the “locally
constant” functions or§. For example it is easy to see that the function
¢ : 8 — Z given by the first betti number is finite type of degree 0, being
constant on eac(M;). Similarly the function which assigr$i,(M)| to
M if Hy(M) is finite, and O otherwise, is of degree zero.

Our point of view is that we have “split” the classification problem for
3-manifolds into two parts. First, the problem of determininiylif and M,
lie in the sameH;-bordism class. Second, if they lie in the sakhebordism
class, can they be distinguished by invariants of finite type? Some recent
work of A. Gerges, K. Orr and the first author suggests that this may be
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a good strategy becausg -bordism is determined by the most understood
3-manifold invariants, namely the cohomology ring and the torsion linking
form.

Theorem 1.6. (Amir Gerges [Ge]; see [CGO] for dpupposeMy and M1
are closed, connected orient8eémanifolds. The following are equivalent.

a) My is Hi-bordant toM;.

b) M; is obtained fromMg by surgery on an admissible framed libkin
Mo. (In fact L may be chosen to be a boundary lifRGO, 83.17])

¢) There exisB-manifoldsMy = X1, Xz, ..., Xy = My such thatX;,; is
obtained by+1 surgery on a null-homologous knot )j.

d) Thereisanisomorphisg: H;(M1) — H1(Mg) which induces isomor-
phisms between th@/Z linking forms and between triple cup product
forms ®°HY(Mi; Zn) — H3(M;; Z,) for n = 0 and eachn = pf
(p prime) wherep' is the exponent of the-torsion subgroup oH; (M;).

e) There are isomorphismg : Hi(M;) — G (afixed abelian groupsuch
that (¢o)+([Mo]) = (¢1)+([M1]) in H3(G).

For example, note that 1.6e shows that for 3-manifolds Witisomor-
phic to 0,Z or Z?, there is only oneH;-bordism class. FoH; = Z3 the
non-negative integeiH3(Mg)/(H(Mg) U HY(Mg) U H1(Mp))| is a com-
plete invariant. FoH; = Z, (p prime) there are two equivalence classes,
represented bz (p, 1) andL (p, ) for any modp quadratic non-residug.

For details and more examples see [CGO].

Recall that the linking form can be computed directly from the linking
matrix associated to a surgery descriptiorivbind that such linking forms
have been completely classified [KK]. The triple cup product forms can be
calculated from the triple Milnor invarians(123) of 3-component sublinks
of a surgery presentation df ([Tu]; Lemma 4.2). Hence, sindé;-bordism
is related to classical computable invariants, it makes sense to separate the
classification problem along these lines. Although neednot speak about
invariants of finite type for specifiél;-bordism classes, Proposition 1.5d
makes it clear that it would be more honest to do so.

One now sees that the degree zero finite type invariants are precisely
those which are invariants of the isomorphism class of the trielinking
form, triple cup product forms).

Our first major result, proved in Sect. 2, is the finite generation of the
summands in the graded groggM) for any M; the analogous theorem
for spin manifolds is proved in 86. In ca®é is a homology sphere this
was proved by Ohtsuki [O2]. Henceforti will denote the (usual) theory
of compact oriented 3-manifolds (possibly with boundary), while other
theories will carry an adornment (such.&P" for spin manifolds).

Theorem 2.1 (finiteness theorem)For any compact oriente@-manifold
M and any non-negative integér the group4,(M) = (M;/My11)(M) IS
finitely generated. Therefor®/ (M) is a finitely generated\-module.
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These finiteness results are directly related to the complexity of calcu-
lation of invariants of finite type. Given any degregethere is a finite set
{X1,..., %} C M(M), consisting of the union of generating sets §or
for 0 < £ < n, such that any € ©,(M) is completely determined by its
values on{x;}, since anyx € (M/Mn1)(M) is a linear combination of
{xi}. The techniques of Sect. 2 suggest a reasonable “algorithm” to calculate
the coefficients.

In Sect. 3 we show that the coefficients of the “Conway Polynomial” of
a 3-manifoldM with b1(M) = 1 are non-trivial invariants of finite type,
implying thatG.,,(M) has rank at least 1. We also show that these invariants
generate a polynomial subalgebra@®fM).

In Sect. 4 we demonstrate that our theory is highly non-trivial, even
for manifolds with large first betti number, by exploiting tigx-valued
invariantsrg recently introduced by the authors [CM1]. These invariants
were extracted from the quantu8O(3)-invariantsr, (for odd primesp).

Here it is shown that they are of finite type and that they determine the
guantunSQO(3)-invariants. This result appears to be new, even for homology
spheres. In fact we show the stronger fact thas analytic, which, loosely
speaking, means that it is equal to the “Taylor series” constructed from its
approximating “polynomials’zd. In this regardr,, is similar to the Jones
and Conway polynomials for knots.

By considering sequences of these invariants we estailigimal non-
triviality of the filtration on M (M) for “most” 3-manifolds M. We also
provide strong evidence that Ohtsuki’s theory for homology spheres actually
embeds in in the theory for manifolds,-bordant toM.

The strongest results are foét;-bordism classes containing rabust
manifold (see 4.9). The list of robust manifolds includes all rational ho-
mology spheres and the 3-torlis= S' x S' x S', and is closed under
connected sum. Therefore for any abelian gréuphose rank is a multiple
of 3 there exists a robust 3-manifold with H; (M) = A.

Corollary 4.15. (part c)If M is robust, then eacfis«(M) has positive rank,
and sog(M) and @A(M) (with A = Z or Q) are of infinite rank.

The reader should note that/ My, @ Q = @f:o(g»i ® Q) and so
the non-triviality of g; for i < ¢ is directly related to the existence of
invariants of degreé (since®, with Q coefficients iHom(M /M1, Q)).

For example, this result is used to prove the existence of a finite type lift
of the Casson invariant to arbitrary 3-manifolds that can detect homology
sphere summands in 3-manifolds (Theorem 4.19).

For Hi-bordism classeg (M) which are not robust we can still show
that the filtration.M,(M) strictly descends as long as somgdoes not
vanish identically on§(M). If one assumes tha#l is normal defined by
the condition that,(M) # O for infinitely manyp, then stronger results can
be obtained. There exist normal manifolds with any prescribed homology;
in fact it is conceivable that all manifolds satisfy this condition.
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Corollary 4.15. (parts a, b)f t,(M) # 0 for some primep > 3, then:

a) For every positive integen, there existsm < oo such that each
(My/Myym)(M) has an element of order at least

b) Each(M,/Ms)(M) is of rank at leastp — 1, and thus of infinite rank
if M is normal.

Finally we state the result which explains in what sense the complexity
of Ohtsuki’s theory for homology spheres embeds in the general theory for
manifolds of high betti number. In particular we paraphrase the part of this
result which relates to Ohtsuki’s rational valued finite type invariants of
homology spheres.

Corollary 4.16. (parts b,c)

b) If 7p(M) # 0 for some primep, then the modp reduction of any of
Ohtsuki’s invariants is a linear combination of invariants of the form
i*(¢) for ¢ € O(M), where by definition*(¢)(X) = ¢(M#x) (and M
is assumed to be of “minimad-order” in its H;-bordism class

¢) If M is normal andx; and X, are homology spheres that can be distin-
guished by Ohtsuki’s invariants, then#X, and M#X, can be distin-
guished by the finite type invariant§.

In Sect. 5 we describe an epimorphism from a finitely generated group
of “Feynman diagrams” to the graded grog@M). This is used to evaluate
a few examples for small values 6fThe “standard” IHX and AS relations
lie in the kernel but we show that for sorivethe kernel of this epimorphism
is not completely captured by these relations as is the case for homology
spheres [GO2] [Le]. _

In Sect. 6 we show that our theory for spin manifot@¥" contains all
of @ as well as the Rochlin invariant, which is shown to be a degree three
Zqe-valued finite type invariant.

In Sect. 7 we briefly discuss several theories for 3-manifolds with non-
empty boundary.

In Sect. 8 we investigate the category of oriented 3-manifolds with
markedH;. We show that the coefficients of the “Conway polynomial” of
the manifold are of finite type. We claim, but postpone to a future paper,
that Reidemeister torsion for 3-manifolds withy = Z . is analytic, in
particular determined by finite type invariants.

In Sect. 9 we sketch generalizations of our theory, in particular, to
a family of theories related to the lower-central-series.

In Sect. 10 we note connections to the theories of [GO1] for rational
homology spheres. We show that the invariant of Lescop (including that of
Casson-Walker) is of finite type (see also §88). We also indicate a relationship
between our approach and a possible approach to a theory of finite type
invariants based on Heegard splittings and the mapping class group, whose
analogue for homology spheres was introduced and investigated in [GL3].
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2. Finiteness

In this section we prove the main finiteness result in the oriented cate-
gory. We also show that the group of finite type invariants forms a filtered
commutative algebra.

Theorem 2.1 (finiteness theorem)For any compact oriente8-manifold
M and any intege¥, the group§,(M) = (My/M,+1)(M) is finitely gen-
erated. Therefor@ (M) is a finitely generated\-module.

The proof is very similar to that of the corresponding result of Oht-
suki [O2], except that one must deal with admissible linksMnrather
thanS®. Philosophically, all of Ohtsuki’s local lemmas work except that the
ones whose proofs involve “blowing up or down” can only be applietito
framed circles. Hence the “braiding lemma” and the “framing lemma” do
not hold in full generality, and in particular, most of the properties of [GO1]
do not hold.

Proof of 2.1. Fix M and a non-negative integér Following [O2] we
write ~ for the equivalence relation om(,(M) induced by the projec-
tion to g,(M). Our basic tool is Ohtsuki’'s “fundamental lemma” ([O2],
Lemma 2.2) which generalizes to the present setting.

Lemma 2.2 (fundamental lemma).If L U K is an admissible link irV
then[M, L] ~ [Mk, L] whereM is surgery onK and the latterL is the
image ofL in M. (Note thatKk may have more than one component).

Proof. SinceL has¢ components[M, L] ~ [M, L U §K], because each
of the non-empty terms 6K = ) ¢_, (—1)*Sgives rise to an element of
Moi1. But[M, L USK] =[Mg, L] by Lemma 1.4. O

Recall that by definitionM,(M) is spanned by elements of the form
[M’, L], whereM’ is Hi-bordant toM andL’ is an admissiblé-component
link in M’. If we work modulo.M, .1 (M), however, we need only consider
the caseM’ = M. In other wordsg,(M) is generated by elements of the
form [M, L], whereM is any chosen “basepoint” in theé;-bordism class
andL has¢ components (cf. [02] Lemma 2.3).

Lemma 2.3 (basepointlemma)Supposd&/ andM’ are H;-bordantand.’
is an admissible link of components it’. Then there exists an admissible
link L in M with £ components such thai’, L'] ~ [M, L].

Proof. By Theorem 1.6b we may assun\ = M, , whereK is an ad-
missible link inM’. K may be varied by an isotopy ikl’ until L’ U K is
admissible inM’. It then follows from the fundamental lemma (2.2) that
[M", L] ~ [M, L'l =[M, L] whereL is the image oL’ in M. O

The next result, generalizing Lemma 2.5 of [02], shows how to arrange
that all framings bet-1.
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Lemma 2.4 (framing lemma). Supposed. is an £-component admissible
link in M with framing—21 on the componerk. LetL’ be the linkL with
the framing onK changed tot+1. Then[M, L] ~ —[M, L'].

Proof. Let K’ be a+1-framed parallel ofK with ¢k(K, K’) = 0. Set
J=L—K,soL’= JUK/’. Observe that the pait$/, J) and(Mxuk’, J)
are homeomorphic, since doingl and —1 surgery on parallels of the
core of a solid torudl yields a manifold diffeomorphic td@ fixing aT,
and so[M, J] = [Mkuk’, J]. Now by the fundamental lemm@M, L] ~
[MK/a L] = [MK/v J] - [MKUK/a ‘]] = [MK/v J] - [Mv J] = _[Mv L/] g

The “braiding lemma” of Ohtsuki also generalizes to the present context.
The key proviso is that the unknotted componkr(in the statement below)
is +1-framed. The analogous result of ([GO1, Fig. 1]) without this proviso,
is false. In the following, non-integral framings are allowed &nFor
convenience we now assume tivats closed. The modifications necessary
in the case of non-empty boundary are discussed in Sect. 7.

Lemma 2.5 (braiding lemma). Supposel U L is a framed link inS®
such thatL (with £ componentsis admissible inM = S, and such that
each component af has zero linking number with each component.of
In addition suppose that has an unknotted componelit and that the
components o U L which pierce a dislo spanned b have been divided
into m groups of strands, represented by “bands’Hig. 2.6ain such a way
that each component passes algebraically zero times through each band.
Number the bands, and for each increasing sequenece i; < --- <
ik <m,letL;,.. be the framed link obtained froin by replacingK with
acurvekK;,.., in D (with the same framing &s ) which encircles the bands
i1,...,Ix while passing in front of the other bands. Then

[M, L]~ ) [M, Ljl = (m—=2) ) [M, L].
i=1

ij=1
The casen = 3 is illustrated in Fig. 2.6.

Proof. Following [GL1] we give an “algebraic” proof. Assume that the
framing on K is +1; the other case then follows from the framing
lemma (2.4). Ley = [M, L] andx = [M, L], whereL is obtained by
“blowing down” K, that is removingK and putting a full left twist in
all the bands. Note thay € M, andx € M,_;. Furthermore, if we set
1=[M,L—-K]thenqg =1- x by Lemma 1.4. In a completely anal-
ogous way, we defing;,..; andxi,..;, with g,...;, = 1 — Xi,...i, (note that
g = Qu.m andx = Xi..m), and with this notation, the lemma states that
a~> gy —(M=2)> q.

Now the key to the proof is the elementary observation that a full left
twist in a collection of bands is a product of left twist in pairs of bands and
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in the individual bands. Explicitly

m m
X = l_[ Xij l_[ Xi27m

Lj=1 i
with lexicographic ordering in the first product. Here the product (left to
right) corresponds to the stacking (bottom to top) of the associated tangles,
and xi‘1 =1+0¢ +¢°+--- is a right handed twist in théth band.
Substituting they's for the x’s and expanding the right hand side, we obtain
1-g=1-) gj +(M—2)) g+ quadratic terms (which vanish fy),
and the result follows. O

Another useful local result which generalizes to our setting is Ohtsuki’s
“half-twist lemma” (stated incorrectly in Fig. 4.3 of [O2], but later corrected
in Fig. 5 of [GO2]).

Lemma 2.7 (half-twist lemma). Assume the hypotheses of the braiding
lemma (2.5) withm = 2, and suppose thaL’ is obtained fromL by
replacingK by a half-twisted unkna’, as shown irFFig. 2.8 Then

[Mv L/] ~ _[Ma L] + Z[Mv Ll] + Z[Ma L2]

(Recall thatL, and L, are obtained fronL by replacingK with unknots
encircling the first and second bands, respectively.)

Proof. Adopting the notation of the preceding proof, and lettigfg=
1 - X =[M,L’], we must shovg ~ —q+ 29; + 20,. By Lemma 1.4 we
computeq’ =1 —Xx"1x2 =1—(1+g+q°+---)(L— g3l —p)? ~
—0+ 201 + 20p. o

Recall, following Levine, that the ordered oriented linkandL’ in S
are said to besurgery equivalenif L = Lo~ Ly ~--- ~ Ly = L' where
L; ~ Li+1 means that there is a 2-digk in S® such thatdD; is disjoint
from and has zero linking number with each componert;aind such that
+1 surgery ordD; transformsL; to L4 [L1].
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JuL/
Fig. 2.8.

Lemma 2.9 (surgery lemma).Assume the hypotheses of the braiding
lemma(2.5). If JUL is surgery equivalent tdU L’ then[M, L] ~ [M, L'],
whereM = Sﬁ’ and the framings oh’ are taken equal to the corresponding
framings onL.

Proof. It suffices to assume the weaker condition that theretig dramed
knot K in S* — (J U L) having zero linking number with the components
of J U L such that the paifS}, J U L) is homeomorphic t¢S®, J U L').
Hence(S} . L) = (M, L) is homeomorphic t¢S3, L') = (M, L"), and
so by the fundamental lemnid, L] ~ [Mg, L] =[M, L']. O

We now continue with the proof of Theorem 2.1, using Levine’s surgery
equivalence classification farbitrary links in S* [L1]. Consider, as above,

M = S. (What follows is all fairly easy ifJ has zero linking numbers —
and in this case was done by Ohtsuki without Levine’s theorem — but this
is not always possible to assurfe.

Fix an orientation and an ordering for the componentsd,@nd choose
a family of base pathsi.e. disjoint paths from a chosen basepoinsin- J
to each of the components df (In general we shall refer to any oriented,
ordered, based link simply asdbased link)

Consider the family of based linksU L, whereL has¢ components.
For later notational convenience, assume that the ordering indekdr
runs from 1 tof + m (som is the number of components i with L
corresponding to,1 .., £. Of particular interest is the case when= T,
whereT is atrivial link lying in in a ball disjoint fromJ (and its base paths).
We shall define a “special” class of based links related toT.

Definition 2.10. A based linkJ U L in S is special if it is obtained
from J U T by replacing some number of disjoiBtstring trivial tan-

gles (B3 y U yj U w), by (one of2 possible) “Borromean tangle(s)”
(B3 y/' U ¥i U %) subject to the condition thaly yj, w} are arcs of3

distinct components aJ U T with at least one being a component Of

Such a replacement is called a Borromean replacement ofitypek). The
geometric number of such is denotgg.

Let [M, L] be an arbitrary generator of,(M). By the framing
lemma (2.4) we may assume that all componentt dfave framing+1.

1 although it is, for example, iH1 (M) has no 2-torsion
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IsotopeL in M so thatL C S is disjoint from the surgery tori and each
component ol has zero linking with each component bf

Now consider the linkl U L in S°. Order and orient the components the
components oE arbitrarily, and choose base paths which extend the basing
of J. ThusJ U L becomes &dasedink in the sense defined above. By [L1,
p.51] there is a sdu;j, aj} = n(JUL) of integers associated to this based
link. The w;; are the linking numbers and tt&g are “lifts” of Milnor’s
triple w-invariants. Compare theset@JU T). Clearly the linking numbers
agree. Moreoves;yc depends only on the 3-component based sublinks [L1,
p.54, paragraph 3]. A 3-component sublipk, J;, J} is independent of
L and hence the correspondirag for J U L and J U T agree. Thus,
in the following discussion we restrict to those |, k) corresponding to
a 3-component sublink containing at least one componemt of T (so
i < £ by our ordering conventions). These may be altered by Borromean
replacements. By the proof of Theorem C of [L1], there existpecial
link J U Lg such thatu(J U Lg) = u(J U L) where each Borromean
replacement involves at least one component fiarBy Theorem D of that
paper,J U Lg is surgery equivalent td U L. By the surgery lemma (2.9)
[M, L] ~ [M, Ls]. Therefore we have shown thgt(M) is spanned by
elements of the fornfS3, L] where J U L is special and all framings
are+1.

By the proof of Theorem C of [L1] the invariantg, of a special
link differ from those of J U T by precisely the algebraic number of
Borromean replacements of type j, k). Therefore two special links are
surgery equivalent if and only if thalgebraic number of tangle replace-
ments of type(i, |, k) is the same for each tripie< j < k. Consequently
we need only considesnespecial link for each possible value of the col-
lections {ayk | | < j < Kk} (with all indices between 1 and + m, and
i < ¢ as usual). The corresponding set[&, L] (using +1 framings)
forms a spanning set fag, (M), which is still infinite since theay, can
be arbitrary.

Choose such a set for which tlaetual numbern;y of replacements
of type (i, j, k) is equal to|a|, for eachi, j, k. Now apply the braiding
lemma (2.5), noting that the links on the right hand side are all special if the
one on the left is special, to show that one need only consider special links
for which there are at mostvo replacements involving each component
of L. This then yields dinite spanning set fog,(M), corresponding to
collections{aji | i <j <k} for which each of the indices, 1. ., ¢ appears
in at most two non-zerajy's. This completes the proof of Theorem 2c1.

Remark 2.11.With a little more work it can be seen that only links with
each non-zer@y equal to+1 are needed in the generating set: Consider
a special link representing one of the generatorsi kixj < kand consider

the number of replacementg, of type (i, j, k). This number is either 0, 1

or 2 (according to the construction above) and we are only interested in the
latter two cases.
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If nig = 1 thenay = *1. In casea = —1 andLy is not involved
in any other replacements then simply change the orientatidry ¢ get
ajx = +1. In casel is involved in one other replacement, apply the half-
twist lemma (2.7) to reduce to situations in which it is involved in only one
replacement or thej is changed te-1.

If njg = 2 thenay = £2, and changing the orientation dry if
necessary givesj = 2. Now apply 2.7 again to reduce to cases in which
ajx = 0 (for which we can substitute a simpler special link)ngg = 1.
Thus we obtain a spanning set with eaghequal to 0 or 1 andijx = ajj.

In summary, if we think ofL = {L,..., L, andJ = {Jq, ..., In},
then we have found a spanning set in one-to-one correspondence with the
subsetf the index set) = {(i, K |1<i< |j<k=<f+m, i=<¢t}in
which each of the indices, 1. ., ¢ appears at most twice.

We now prove that?, the group of all finite type invariants, a(M),
the group of all finite type invariants for manifolds in thik-bordism class
of M, have the structure of algebras. As usual, one must be careful to define
AL as thelinear extensiornto M of the usual product of functions of.
So for example iftM and N are manifoldsii’(M + N) = A(M)A'(M) +
ANV (N).

Proposition 2.12. If A € O, A" € Oqthenil’ € Op .

Proof. We shall show that

3 (M, LD = ) " A(M. ShA'(Ms, L — S))
S<L

which will complete the proof since i > p + q then eithers > p or
¢ —s> g. Rewrited'([Ms, L — S]) as) 1. s(—1)'"A'(Mt). Then the right
hand side above can be expressed as

S [ Yo =n v .

S<L R<S T>S

Rearranging the order of summation gives

> [EvHer M Y -1

R<T<L R<S<T

The inner sum vanishes unleBs= T, since it is an alternating sum of
binomial coefficients. FOR = T we get(—1)'A(M7)A'(Mt), and summing
overT < L givesaA'([M, L]) as desired. O

Thus if Ais a commutative ring the® is a filtered commutative ring
in which A occurs naturally as the subring of constant functions. The mul-
tiplication then make® a filtered commutativéd-algebra and9 (M), for
any M, a subalgebra.
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3. The Conway polynomial

In this section we will show tha§., = Mon/Monsa is infinite for each

n > 0 by exhibiting specific finite type invariants,, of degree . The
invariantC,,(M) will be defined to be the coefficient af” in the “Conway
polynomial” of M if bl(M) = 1, and zero otherwise. Since C. Lescop’s
invariant [Ls] isCy(M) — 12|TorH1(M)| for manifolds withb; = 1, this
shows that her invariant is finite type of degree 2 on Hhisbordism class.
Moreover we show that the s¢C,, Cy4, ...} is a basis of a polynomial
subalgebra of. (Note thatCy is excluded since it is identically equal to
1 on manifolds of first betti number one, wher€g¢= Cy is a polynomial
relation in@.)

A closed oriented 3- mamfoldi/l with 6:(M) = 1 has a unique Con-
way polynomialVy(z) = 1+ az? + a4z* + ... defined as follows. Let
M denote the infinite cyclic cover dfl. EV|dentIyH1(M) has twoZ[t, t 1]
module structures, differing by t=1. The Alexander polynomiabf M
is defined to be the order of (either of) these torsion modules divided by
|Tor(H1(M))|. It can also be identified with the Alexander polynomial of
a suitable knot. Indeet¥ can be constructed by O-framed surg&hy on
a null-homologous knoK in a rational homology spher® ([Ls, §5.1.1]),

and it is an easy exercise to see that the Alexander mddilE — K) of

K is isomorphic toH, (M) (where the module structure is determined by
a choice of orientation oK). Now recall that the Alexander polynomial of
K in X is defined to be the order of this torsion module dividedy(X)|,
and may be computed as @& — V') whereV is any (rational) Seifert
matrix for K in Z ([Ls, 82.3.12—13]). SinceH1(X)| = |Tor(H1(M))], this
coincides with the Alexander polynomial 8. Of course this polynomial
is only defined up to a unitt" in Q[t, t1], but it can be normalized by set-
ting Am(t) = Ax x(t) = dett2v —t=Y2vT) so thatAy(t™1) = An(t)
and Ay (1) = 1. This yields a uniquely defined Alexander polynomial,
a Laurent polynomial in%/? with rational coefficients, which can be shown
to be an honest polynomial it'/2 — t=1/2)2 ([Ls, §2.3.14—15]). Substitut-
ing z for t/2 — t=%/2 then yields theConway polynomiaWVy(z) of M, or
equivalentlyVi 5(2) of K in X, an element of)[z?].? Extending linearly
by settingVy = 0 if b3(M) # 1 yields a polynomial valued invariant
V:M— Q[Z].

We shall also need the fact that the Conway polynomial can be defined
for links in rational homology spheres (see e.g. [BoL]). In particulaK if
is a k-component null-homologousriented link in a rational homology
spherex, thenVi x(2) is of the formz<1(ag + a;z%> + ...). The crucial
fact needed here, due to Boyer and Lines, is #at= Vi yx satisfies the
familiar recursion formul&v/x+ — V- = —zVio (see [Ls, §2.3.16]).

The main result of this section is the following.

2 Vk s(s~1—9) coincides with the polynomial defined by Boyer and Lines [BoL].
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Theorem 3.1. Letn be a nonnegative integer arid be a closed, oriented
3-manifold. Consider th&-manifold invariantC,, : M — Q which assigns
to M the coefficient o£>" in the Conway polynomia¥y, if b;(M) = 1, and
zero otherwise. The@,, is finite type of degre2n.

Remark. If the domain ofC,, is restricted to integral homolog§* x S”'s
thenC,, is an integral invariant.

The theorem will follow easily from Theorem 3.2 below concerning
the divisibility of the alternating sum of Conway polynomials of links in
a rational homology sphere. A realization result, Proposition 3.6, is then
also needed to show th@b, has degree preciselyn2

SupposeK is a null-homologous oriented link in a rational homology
spherex, andL = {L4,..., L.} is an admissible framed link i&x (see
1.2). We say thak is admissible iNX, K) if K bounds a Seifert surface in
> — L, or equivalentlyL is disjoint fromK and¢k(K, L;) = O for alli. If
Sis a sublink of such ah thenXgsis again a rational homology sphere in
which the image oK remains a link. For brevity we continue to denote this
image byK whenever possible. We shall also use the abbrevidiig(S
for the Conway polynomial oK in X5 for any sublinkSof L,

VK(S) = VK,ZS B
andVg (sL) for ZS<L(—1)SVK(S).

Theorem 3.2. If K is a null-homologous oriented link in a rational homol-
ogy spherex and L is an admissible link of components X, K) then
Z dividesVk (5L).

The proof will be given later in this section.

Example 3.3.SupposeK is the trivial knot inX = S° (with either orienta-
tion) andL = K;UKjisthe+1-framed 2-componentlink shown in Fig. 3.4.
Then(XZk,, K) = (2k,, K) = (%, K) = (X2, unkno, whereagX, , K) is
the right-handed trefoil knot (most easily seen by “blowing-dowriKi]).
ThusVk (L) = 1 —1— 1+ (1+ 7% = 7%, which is divisible byz? as
predicted by Theorem 3.2.

K (;jr ‘Kz
9

Fig. 3.4.L = K1 UK>
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Fig.3.5.Lon =L U-..UL"

This example can be generalized by taking “parallel” copies to obtain
the +1-framed &-component link_,, shown in Fig. 3.5.

Proposition 3.6. Let K be an unknot int = S* (with either orientation
andL », be the+1-framed2n-component link shown in Fig. 3.5, where each
L' is a copy of the2-component link_ in Fig. 3.4. Setho, = [Zk, Lonl,
whereK is given the zero framingNote thatZy = S' x S sinceK is
unknotted. Then

a) Vk(8Lan) = 72"
b) Cx(A2n) = dkn (the Kronecker delta In particular Cyn(12q) = 1 and
sodeg Cyy) > 2n.

Proof. By definition Vi (6L, = Z&Lgn(_l)va(S)' EachSis a union

US of sublinksS of L' with s < 2 components. Since ti# lie in disjoint
balls, Vk (S) = Vi (Sh ... Vk(S"), and soVk (8L 2y) is a sum of products,
which can be rewritten as the product of sUmis ; > g _ i (=13 Vi (S) =
[T: Vk6LY = (Vk (<SL))n = 7*" by Example 3.3. This completes the
proof of &), and b) follows sinc¥,,, = Vk (6L2n). O

Remark 3.7.This proposition can also be proved by expandigngas a lin-

ear combination of manifolds, and then evaluati@g. This approach,
although longer, facilitates the computationppbductsof Conway coeffi-
cients and can be used to establish lower bounds for the ranks of the groups
G0 (St x S) (see 85).

We indicate how this is done. Writefor 0-surgery on the right-handed
trefoil T, and more generally” for O-surgery on a connected sum rof
copies of T. Then it is readily seen that, = (r — 1)", where the right
hand side is expanded using the binomial theorem and “1” is to be interpreted
asS' x & SinceV,; = (14 7%}, it follows thatCx(t!) is equal to the
binomial coefficient(}), and so

Cox(Aon) = Z(—l)n_j <T> <lj(>
=0

Observe that in this formuld can be a multi-indexka, . . ., ky), in which
caseCy = [[Cx and(}) =[] (Ii) If m = 1 then this reduces to the
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formula in 3.6b by a well known combinatorial identity. The case= n
with k = (1, ..., 1) gives the formula

n
N\ .
Ch(han) = Y (=D ()1
=1 J
In particular forn = 2 we see tha(Cy,, CS)(M) = (1,2). A simi-
lar calculation shows thatCs, C3)(A4) = (0,4) for A4 = [Zk, L4] €

M4(St x ), wherel 4 is the 4-component “circular link” obtained from
Lg by banding together pairs of components, as shown in Fig. 3.8.

i)
:
=)

T

Flg. 3.8. L4

Gz
¢
¢

It follows thatG4(S' x $%) has rank at least two, detected by the degree 4
linearly independent finite type invariar®g andC3. In 85 it will be shown
to have rank exactly two.

We now return to the proof of the main theorem (3.1).

Proof that 3.2 and 3.6= 3.1. Supposeb;(M) = 1 andL is a(2n + 1)-
component admissible link ikl. To show thatC,, is finite type of degreat
most2n it suffices to show tha€,,([M, L]) = 0, that is thatz®"*! divides
Vim,L (the latter is an abbreviation fo¥_g_, (—1)°V,). As mentioned
above,M = Xk for some rational homology sphekzand some O-framed
null-homologous knoK in X. By general position we may assurheC
¥ — K. The epimorphisnH (£ — K) = Hy(M) — Z is given by linking
number withK. Since each component &f is null-homologous inM, it
must have zero linking number witkk. ThusL is admissible in(Z, K).
Now Ms = Ygk = (X¥g)k SO VMS = VK,):S = Vk(9), by definition.
ThereforeVim 1) = > s (—D°Vk (S = Vk(sL) which is divisible by
72" by 3.2. HenceC,, is finite type of degree at mosh2and so in fact of
degree exactlyr2by 3.6. O

It follows immediately from Theorem 3.1 and the previous proposition
that G, is infinite for alln.

Corollary 3.9. The element,, (in 3.6) is of infinite order ing»,(S' x ).
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Proof. If Ao, or some non-zero multiple lay i, 1 thenCs,(12,) would
vanish by Theorem 3.1, contradicting Proposition 3.6. O

More generally, if the knoK of Fig. 3.5 is replaced by an arbitrary
null-homologous knoK* in a rational homology spher®, with the link L
living in a small ball, theWy« (L) = Vk(8L) - Vk+ 5 = z2"(1+...). Thus
we have

Corollary 3.10. For any 3-manifold M with b1(M) = 1 and anyn > 0O,
the group$.n(M) is of positive rank. Thug@,,(M), the group of rational
valued finite type invariants om (M) of degree at mosin, has rank greater
thann.

Proof. Any suchM equalsz+ for some 0-framed null-homologous knot
K* in a rational homology spherE. The construction of. above yields
a 2n-component link such tha¥v ., = Vk+(L) = z*"+ higher order
terms sdCon([M, L]) = 1. ThusC,, is of infinite order in®,,(M). The last
statement follows sinc@., = Go @ - - - ® Gon- O

In fact much larger bounds for the ranks of these groups can be deduced
from the algebraic independence of the Conway polynomial coefficients (as
functions on the set of knots i&°).

Corollary 3.11. Supposer;(M) = 1. Then the Conway invariants freely
generate a polynomial algebr®[C,, Cy4,...] in O(M).® Therefore the
rank of @,,(M) is at leastp(0) + - - - + p(n), wherep(k) is the number of
unordered partitions ok.

Proof. Assume to the contrary that there is a non-zero rational polynomial
p(X1, - -+ , Xm) suchthap(C,, ..., Cyy) isidentically zero oM (M). Since

p # 0, there exist integens for which p(ny, ..., ny) # 0. LetK be a knot

in S*whose Conway polynomial isn;z°+ - - - +n,z>"; itis well known

that such knots exist.

Now recall thatM can be described as 0-framed surgery on a suitable
null-homologous knot] in a rational homology spherg. Moreover all
such manifolds, for varyingl, are H;-bordant since any Seifert surface
for J can be “unknotted” byt+1-framed surgeries on small circles that
link the bands of the surface. In particular, the maniftlg obtained by
O-surgery orK in X (i.e. putK inside a small ball ir&) lies in M (M). But
p(Co, ..., Com)(Mg) = p(ny, ..., Ny) # 0, a contradiction.

Finally observe that for evel; the degreeRpart of P[Cy, Cy, ... ] lies
in Ox(M), by Proposition 2.12, and is of rankk). The stated bound on
rk(@,n(M)) follows. O

Remark.Itis not being claimed in 3.11 that the grading®BfC,, C4, ... ]is
preserved under its embeddingd{M). Showing this would require more

3 Coefficients are i@, but can be taken i if H1(M) is torsion free.
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work. However Remark 3.7 establishes this for the elements of degree 4 or
less, i.e. any non-trivial linear combination ©f andCs3 is of degree 4.

We now proceed with the proof of Theorem 3.2, which will be based on
the following result.

Theorem 3.12. Supposex, K and L are as in the hypothesis 8f2 with
¢ > 1. LetJ be a component df and letL’ = L — J. Then there exist
oriented linksK; in ¥ — L" and signss; = +1 such thatl’ is admissible in
(%, K;) for eachi, and

Vk(S = Vk(SU ) =2 &V (9

for every sublinkSof L.

To understand this theorem, the reader should think of the simplest
case when) bounds an embedded disk B which is punctured twice
by K and not at all byL’. Then the difference between performidgl
surgery onJ or not doing so is a local “crossing change” Kf If we
let Ko denote the usual “smoothing” df then Vi (SU J) — V(9 =
£0ZVk, (S wheregg is the framing onJ, and clearlyL’ remains admissible
in (X, Kp). Ingenerall might be knotted and might have a more complicated
interaction withK andL’. Thus the strategy of the proof is to show that
the general case reduces to this simple case, and that the effect on the
Conway polynomial of surgery od is to add or subtract terms of the
form ztimes the Conway polynomial of a smoothing. Itis crucial, however,
that these smoothingk; (as well as the signs;) be independent ofS.
By this we mean thakK; is disjoint from L so that for any sublinkS
of L we may use the symbd{; to denote the image of this single link
in Xs.

Proof that 3.12= 3.2. We induct or¢, assuming > 1 since the caseé= 0
is trivial. Choose a componegtof L and sel.” = L — J. ThenVk (§L) =
Y s (D3(Vk(9 = Vk(SU J)) = ) g (—D)° Y &V (S by 3.12.
Reversing the order of summation, using thandK; are independent @,
this givesz i, & Vi, (8L"), and by induction eacWy, (5L") is divisible
by z=1. HenceV (L) is divisible byz-. O

Proof of 3.12.Let ¢; denote the framing ad. A knotin X — (K U L") will
be calledsimpleif it bounds an embedded digkin X — L’ which intersects
K transversely in algebraically zero points. CleaHy L’ is admissible in
(%, K)if J'is simple.
First assume thafl is simple. Then surgery od puts a full (—e;)-
twist in all the strands oK passing throughD — this can be seen by
“blowing down” J [Ki]. What results is an oriented linlkK’ in ¥ — L’
with Vi (S = Vk(SU J) for all S < L’. This link can also be obtained
from K by a finite sequence of crossing changes, which we assume have
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been specified. LeK' be the link obtained by changing the firstrossings
of K, andK; be the link obtained fronkK' by smoothing theth crossing.
Then

VK(9 = Vk(SUJ) = ) (Viea(9 = Vki(9) = 2) Vi, (9

whereg; is the sign of theth crossing éfter it is changed). Note thdt’ is
admissible i, K;) since changing or smoothing a self-crossing of a link
does not change its linking numbers with other knots.
Now assume thafl is not simple. We claim that there exists a simple
knot J’" with d;(S = dy (S for all S < L’, where by definitiord,.(S =
Vi (S — Vk (SU %). The theorem would then follow from the simple case.
To establish the claim, we appeal to a well known fact about the behavior
of linking numbers under surgery (cf. [Ho2]).

Lemma 3.13. Let A, B be disjoint null-homologous knots in a rational
homology spher& and J be a knot inx — (AU B) with framinge; = +1.
Then

k3(A, B) = Ck(A, B) — e3lk(A, J)tk(J, B)

wherefk and ¢k; denote linking numbers iR and X ; respectively.

Proof. SetA = (¢k(A, B), A3 = £kj(A, B), a = ¢k(A,J) and 8 =
k(J, B). Let mg, £g be a meridian and longitude @& in X, and simi-
larly definemj, £;. ThenAis homologous i — (BU J) to Amg + am;.
But m; is homologous in the surgery torus+e ;¢ 3, and soA is homolo-
gous inX; — Btoamg — ejaly = (A — eyaff)Mg. Thusi; = A — g3ap.

O

Using this result, it is easy to compare the Seifert formKofwhich
determines its Conway polynomial) iBs and Xg,; as follows. Choose
a connected Seifert surfade € ¥ — L for K (it is often helpful to view
F as a disk with one-handles attached), and for each sulliokL’, let
Vs denote the corresponding Seifert form fdrin Xs. In other words
Vs(a, b) = tks(a, b™) for a, b € Hi(F), wherelks denotes linking number
in Xs. Now consider the symmetric bilinear form

AJ . Hl(F) X Hl(F) — 7

sending(a, b) to ¢k(a, J)¢k(J, b), wheretk is the linking number irk. We
will call this thelinking formof K associated td.* Then

VSJ‘] =V3—8JAJ.

Indeed the lemma applied to knodsand B representing andb™ in X, for
a, b € Hy(F), shows thatVg,j(a, b) = Vg(a, b) — g3tks(a, J)eks(J, b),
but linking numbers withl in ¥ and X5 coincide sincel bounds a surface
in X — S(or by repeated application of the lemma).

4 Note that this form is well defined, independent of a choice of orientatiod. on
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It follows that if J" is any oriented knot ir — (F U L") which has the
same framing and linking form a% (the latter holds for example ' has
the same linking number a% has with each one-handle &) and zero
linking numbers with the components bf, thend;(S) = dj (9 for all
S < L’. But it is obvious that there exists such a kdotwhich is simple,
chosen for example to lie in a neighborhood of the zero-handke. ahis
establishes the claim, and thus completes the proof of Theorem 3.12.

We conclude this section with a conjectured generalization of Theo-
rem 3.2 to links which can be used to study the “Conway polynomials” of
manifolds of higher first betti number (see §8).

Conjecture 3.14.If K is a null-homologous orientddcomponent link with
zero pairwise linking numbers in a rational homology sphe@ndL is an
admissible link o components inx, K) thenz?-2+¢ dividesVk ([, L]).

Remarks.The case = 0 was recently proved by Levine [L2]. The case
k = 1 is covered by Theorem 3.2, and the clése 2 follows from the
methods of 85 (the proof is sketched in Remark 8.3). Added in proof: The
full conjecture has now been established by Amy Lampazzi.

4. Finite type invariants from quantum invariants

In this section it is shown that the theory of finite type invariants is highly
non-trivial, even for 3-manifolds with large first betti numheFo accom-
plish this, we use thé& x-valued invariantch introduced by the authors
in [CM1], that are extracted from the quantiB®(3)-invariants. By study-
ing these invariants ag andd approach infinity, we establish thational
non-triviality of the theory and provide strong evidence that much of Oht-
suki's theory® (S%) of finite type invariants of homology 3-spheres embeds
in (M) for any M. In addition, it is shown that for arbitrarily high betti
number, the theory exhibits all of the complexity of finite type invariants
of homology spheres which “come frosh2)-weight systems” — namely
Ohtsuki’s rational valued invariants of homology spheres.

Recall theguantum invariants ¢ of 3-manifolds associated with a com-
pactgauge groupG and a positive integdevel p. They were first discov-
ered in a physical context by Witten [Wi], and developed mathematically
by Reshetikhin and Turaev f@ = SU(2) [RT], and by Kirby and Melvin
for G = SO(3) [KM]. Following the notation of [CM1] (rather than [KM])
we will use the abbreviatiom,, for the SO(3)-invariantz;%? (denotedr,,
in [KM]), which can be viewed either as a function @nor as alinear
function on .M. This invariant is defined for all odd levels and, when

5 By contrast the [LMO] invariant, which provides a universal finite type invariant for
homology 3-spheres [Le], gives quite restricted information for manifolds with first betti
numberb; > 0, and is in fact identically zero 1 > 3 [H2].
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normalized as in our discussion of the proof of Lemma 4.7 at the end of this
section, takes values in the cyclotomic fi&€d, = Q(q) whereq is a fixed
primitive p" root of unity. In fact, Hitoshi Murakami [M2] has shown that
for prime p, it takes values in the ring of integers, = Z[q] in Q, (see

also [MR]), and so in this case we hav&dinear map

Tp: M — Ap.

Furthermorer, is anZ-algebra homomorphism with respect to the con-
nected sum operation #M x M — M (the bilinear extension of the
corresponding operation of), i.e. tp(X#y) = Tp(X)Tp(Y).

Henceforth we assume thptis an odd prime. Then , (as an abelian
group) is free orhl for 0 < j < p — 2, whereh = q — 1, and so any
elementa € A, can be written uniquely a8 = ap + ath + - - - ap,zhp—z.
Consider the projection & V®P-1 . A, — 7 4, for0< j < p—2and
k > 1, which mapsitoa; (mod p*). Clearly anya € A is determined by
the sequence(a) for d > 0. Now define

d.
‘L’p.M—>Zpk

to be the composition§ = 7%o z;,. Then the following is obvious but stated
for emphasis.

Proposition 4.1. For any odd primep, the sequence of invarianﬁ$ for
d > O determines and is determined by the quan&@¢3)-invariant .

The main result of this section is:

Theorem 4.2. For any odd primep = 2n + 3 and any integed > 0, the
closed oriente@®-manifold invariantr,gj is a finite type invariant of degree at
most3d, in fact of degree at moSd — nb,(M) when restricted toW (M),
whereb,(M) = rk(H1(M; Zp)).

Before giving the proof, we discuss a number of applications.

It is known that the full quantum invariant, is not of finite type for
p > 3 [CM1, 84] (note thatrs = 1), but Theorem 4.2 shows that it
is nevertheless a limit of finite type invariants in the same sense that an
analytic function is the limit of its Taylor polynomials. The Conway and
Jones polynomials for knots are also of this nature. If one pursues the
analogy that finite type invariants are the “polynomials”, then such limits
of finite type invariants should be called “analytic” invariants.

We make this more precise. An invariathit M — A isweakly analytic
if (M) = 0.8 The reader can check that this is equivalent to the statement
that ¢ is dominatedby finite type invariants, in the sense that any classes

6 Thus the set@®f of A-valued weakly analytic invariants is the dual space
Hom(M /M, A), in analogy with the corresponding seﬁ?;A = Hom(M /M1, A) of
finite type invariants.



Finite type invariants of 3-manifolds 69

in M which can be distinguished lycan be distinguished by a finite type
invariant (namely one of the projectionig — M /M,).

We say thatp is analyticif there is an inverse systefiA} of abelian
groups and finite type invariangg : M — Ay such thatA c lim A¢ and
7k o ¢ = ¢y for all k. Heren, : A — A are the restrictions of the natural
projections.

Observe that finite type> analytic (takeAx = A and ¢y = ¢ for
all k) while the reverse implication fails; for example the projectigh—
M /M IS analytic but not of finite type (also see below). Similarly analytic
= weakly analytic (sinc& € M., = mp(X) = ¢(X) = 0 for allk, and so
¢(X) = 0) while the converse presumably fails (although we do not know
an example).

In this language, we have the following consequence of Theorem 4.2,
which seems to be new even for homology spheres.

Corollary 4.3. If p is an odd prime, ther, is analytic, and therefore
dominated by finite type invariants.

Proof. Let A = Ap, A = @p_lzpk, ¢ = Tp and¢k — @Jp;gtll;kk(pil)'
Then thegy are of finite type (by Theorem 4.2),, = &P~'Z C I(im A =
®P1Z ) (WhereZp is the p-adic integers) andy o ¢ = ¢ for all k. Thus
Tp IS analytic. O

As another consequence of Theorem 4.2, we have:

Corollary 4.4. If rk H1(M; Zp) = 0mod3for some odd prim@ = 2n+-3,
then the invariamrgb"/?’ is constant on the entirél;-bordism class oM.

Proof. Degree zero invariants are constant onlthebordism classes. O

This is interesting sincél;-bordism is fairly well understood in terms
of triple cup products and linking forms [CGOQ]. Therefore it should be
possible to calculate the precise topological meaning of these invariants.
For example among manifolds witty, = Z2, the invariantz j is completely
determined by its values on the family of manifolllg given by 0-surgery
on the links obtained from the Borromean rings by cabling one component
(1, k) times, fork > 0. (These manifolds represent all tivg-bordism
classes [CGOQ].) One has the strong feeling that there should be a single
integral invariant which determines thg for a fixed surgery equivalence
class and varying. Lescop’s invariant foiM is k? since it is given by the
coefficient ofz® in the Conway polynomial (85 [Ls]) (85 [Co]).

Note thatz} is not degree zero om (#S' x ), since it is zero for
#S' x S but non-zero for zero surgery on a Whitehead link [CM1], and
any two manifolds withH; = Z? are Hi-bordant.

We now head towards a proof of the main theorem (4.2), discussing
along the way its applications to the study of the structure of the filtered
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group M. The proof we give follows from a divisibility result far, which
extends the work of [CM1]. Our measure of divisibility is theorder

0p: M — Z U {o0}

defined byo,(X) = vnh(tp(X)), Wherevy is the h-adic valuation onA p.
Thusop(X) = mif tp(X) is written ascp,h™ + O(h™) with (cm, p) = 1
(see [CM1]). Equivalentlyp,(x) can be defined to be the minimudnfor
which z§(x) # 0, or the maximund for which h? dividest,(x) in A .

Observe thab () is infinite if and only ifrp(X) = 0, and so it is only
by means of elements @&hite p-order thatr, can be brought to bear on the
study of the filtration ofm.

Definition 4.5. An elemeni in M is normal if o, (X) is finite (i.e.7y(X)
is non-zero) for arbitrarily largep. Let & denote the set of all normal
elements, andt denote its complement, the set of all abnormal elements.

Evidently M., C . (In fact the inclusion is proper: the difference of
any two manifolds with equal quantum invariants clearly liestinbut if
carefully chosen can be shown not to lie#f,, [CM2].) It is not known,
however, whether there exist any abnormenifolds’

The collection of normal manifolds includes examples with any pre-
scribedH; (e.g. connected sums of rational homology spheres with copies
of St x S); it is conceivable that every 3-manifolds is normal, or at least
Hi-bordant to a normal manifold. For normal manifolelkit will be seen
that the filtration ofM (M) is very rich.

Remark 4.6.The reader is warned that, is highly non-linear. Indeed it
follows from properties of valuations and the multiplicativity gfthat

a) op(X+Yy) = minfop(X), 0p(Y)}

b) op(MX) = 0p(X) + Vh(M) = 0p(X) + (P — Hvp(m)
(wherevy, is the p-adic valuation or¥)

C) op(X#y) = 0p(X) + 0p(Y).

The modp first betti numbeib, = rkHy(—, Zp) similarly extends from
4 to M in a non-linear fashion by setting,(d  m;M;) = min(bp(M;)).
The main result of [CM1] gives a lower bound fagy in terms ofb , namely

30p(X) > Nbp(X)

for all x € M, wheren = (p — 3)/2. (See Theorem 4.3 in [CM1] where
this is proved for manifolds; the result extends to linear combinations of
manifolds by Remark 4.6 and the definition [of.) Here we refine this
result, taking into account wheselies in the filtration ofM.

7 i.e. manifolds withtp, = 0 for all but finitely manyp; manifolds withtp, = 0 for
infinitely many p are known to exist, for example 0-surgery on the trefoil [CM1, 85].
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Lemma 4.7 (p-order bound). If x € M, then3op(X) > nby(X) + ¢ for
any odd primep = 2n + 3.

The proof of this lemma, which is quite technical, is postponed until
the end of the section. Meanwhile we explore its many consequences. First
observe that Theorem 4.2 follows easily.

Proof of 42. If x = M;_ whereL is a link with £ > 3d — nby(x)
components, then,(x) > d by the lemma, and Sﬂg(x) = 0 by definition

of op. Thereforer;j is finite type of degree at mosti3- nb,(M) on M(M).
o

We now wish to use these results to investigate the structure of the
filtered groupM. For conceptual reasons, itis convenient first to reformulate
Lemma 4.7. This lemma relates tpeorder ofx € M to wherex lies in the
filtration. In particular, if we define thdepthof x to be

dX) = max{t| x € My}

(a non-negative integer ab), then the lemma can be viewed as giving an
upper bound fod(x) based on information garnered fram(x). This upper
bound, called theg-depthof x, is given by

dp(X) = 3op(X) — Nbp(X).

It should be thought of as a (quantum) measure of the depxh afd so
1/dp(x —y) is a measure of the difference betweeandy.

The basic properties of the-depth functiond, : M — Z U {oo} are
collected in the following lemma. The first property is just a restatement of
Lemma 4.7, and the last three follow from Remark 4.6 and the definition
and elementary properties of.

Lemma 4.8 (p-depth properties). For any odd primep andx, y € M,

a) dp(X) > d(x)

b) dp(x +y) = min{dp(x), dp(Y)}

) dp(mx) = dy(X) + 3(p — Dvp(m) (for any integem)

d) dp(x#y) = dp(X) + dp(y). O

Of particular interest are the elements.i for which the bound in
Lemma 4.8.a is sharp.

Definition 4.9. An elemenk of finite depth inM is robust ifd,(x) = d(x)
for all sufficiently large prime$ (and strongly robust if this equality holds
forall p > 3). In particular, a manifoldM is robust if and only itl,(M) = 0
for all large p.

Robust elements are clearly normal (4.5) but not conversely (see below).
They enjoy a number of other special properties, including the following.
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Proposition 4.10 (properties of robust elements).

a) If x andy are robust, thenx#y is robust withd(x#y) = d(x) + d(y).
b) If M and N are H;-bordant3-manifolds, therM is robust if and only if
N is robust. Thus one may speak of robust or nonrobust bordism classes.

Proof. For a) we havel(x#y) > d(x) +dp(y) = dp(X)+dp(y) == dp(X#y)
(by 4.8.4). Sinced,(x#y) > d(x#y) for large p (by 4.8a) this implies
d(x#y) = dp(x#y) = d(X)+d(y). For b) assum#l is robust, s@,(M) = 0.
Butdy,(M) > min(dp(M —N), d,(N)) (by 4.8b) andi,(M—N) > 1(since
M andN are H;-bordant) sadp(N) = 08 O

Example 4.11.A manifold M is robust if and only if 3,(M) = nby(M)

for all large p, and this forces the first betti numbier(M) to be a multiple
of 3 (sincen = (p — 3)/2 is not). In fact all rational homology spheres (the
caseb; = 0) are robust by a result of Murakami [M2], and it is well known
that the 3-torusT (with b; = 3) is robust (see e.g. [CM1, 8§5]). It follows
from 4.10athat for anp = 0 (mod 3 and any finite abelian groufy, there

is a robust 3-manifold wittH; = ZP x A, obtained by connected summing
b/3 copies ofT with a suitable rational homology sphere.

On the other hand, the connected sum of manifolds one of which is
non-robust is itself non-robust, as the reader may easily check. Thus for
exampleMy = #(S' x $) is not robust even though;(Mg) = 3. In
fact, for manifolds with betti number 3 and torsion free homology, it is
expected that the set of non-robust manifolds is preciselyHibordism
class of this manifold. The other bordism classes are represented by the
3-manifoldsMy (for k > 0) given by 0-surgery on the link obtained from
the Borromean rings by performing(a, k)-cable on one component, and
it has been confirmed that these are robust classes at le&stfdr(since
M; = T) andk = 2 [CM1, 8§5.4].

Example 4.12.An example of a (strongly) robust element of positive depth
is the difference
A=S—-P

whereP is the Poinca homology sphere. To see this, recall that S5
whereL is +1 surgery on the Borromean rings, andd@) > 3. But
Murakami has shown thap,(A) = —61(P)h+ O(h?), wherex is Casson’s
invariant, and s@p(A) = 1 for p > 3. Thusdy(A) = d(A) = 3 for all
p > 3. More generally, for eack > 0 the connected sum

A= A#---#A (K copies)
is (strongly) robust of depthk3hy Proposition 4.10a.

8 For a slightly different point of view, one can prove b) using the invariasat rgp(M),

wherep is chosen large enough so titt(M) = 0. Indeedr is constant by Corollary 4.4.
Hencer(N) = (M) # 0, and sawp(N) < op(M). Sincebp(M) = bp(N), it follows that
dp(N) < dp(M) =0and sadp(N) = 0.



Finite type invariants of 3-manifolds 73

We now return to the investigation of the filtration af. As an imme-
diate consequence of Lemma 4.8 we have the following estimates for the
orders of an element of finitp-depth in the filtered quotients offt.

Theorem 4.13 (order).Anyx € M of finite p-depth(i.e. 7p(X) # 0) has
order at leastp' in M/ M for all s > dp(x) +3(p—1)(r —1). In particular
X has infinite order inM / M.. Furthermore, ifx is robust of depthd, then
it has infinite order in the graded summaggd = Mq/Mg1.

Proof. Suppose thatnx = 0 in M /Ms. This means thainx € Ms and so
s < d(mx < dy(mx) = dy(x) + 3(p — 1)vp(m) by properties a) and c) in
Lemma 4.8. This leads to a contradiction unlesss divisible by p". The
last statement follows from the first by taking= 1 andp — oo. O

From this theorem, it is apparent that non-triviality results for the filtra-
tion on M (M) will follow from the existence of suitable elements of finite
p-depth. This existence is guaranteed, at leastMaof finite p-depth, by
the following

Theorem 4.14 (existence)or any 3-manifold M, there exist elements
in Mz (M) for each positivek such thatd,(xx) = dp(M) + 3k for every
prime p > 3. In particular thex, are (strongly robust if M is.

Proof. For M = S° the elements\ constructed in Example 4.12 will do,
and for generaM, setxy = M#A and apply Lemma 4.8d. O

One can now deduce a variety of non-triviality results for the filtered
group.M (M) under the mild (and perhaps vacuous) condition Mat- or
some manifoldH;-bordant toM — has finitep-depth for somep > 3. At
the least, one would hope that the filtration does not stabilize, or equivalently
that (My/ Ms)(M) £ 0 for all ¢ > 0. In fact it turns out that these groups
are all of positive rank (foM as above), and in fact of infinite rankM is
normal (i.e. of finitep-depth for arbitrarily largep); this establishes a kind
of rational non-triviality of the theory for normal manifolds.

One can also investigate hdastthe filtration descends, measured by
the sizes of the associated graded summagndsl) = (My/ My 1)(M),
and more generallgM, /My, m)(M) for a fixedm > 0. The best results are
obtained for robusM, in which case the associated graded grgui) is
of infinite rank; this is a stronger form of rational non-triviality establishing
the strict descent of the filtration over the rationals.

These results are summarized in the following

Corollary 4.15 (non-triviality). Let M be a3-manifold of finitep-depth
(i.e. 7p(M) # 0) for some primep > 3. Then:

a) For every positive integen, there existsm < oo such that each
(My/Myym)(M) has an element of order at least

b) Each(M,/M~)(M) is of rank at leastp — 1, and thus of infinite rank
if M is normal.
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c) If M is robust, then eacl§s(M) has positive rank, and s@(M) and
OA(M) (with A = Z or Q) are of infinite rank®

Proof. For a), choose andk with p > nand X > £. Then the elemenx
from Theorem 4.14 lies itMz (M) € M,(M) and is of p-depthd,(M) +
3k > dp(M) + £. By Theorem 4.13x, has order at leastin (M;/Ms)(M)
foranys > dp(M)+£+3(p—1)(r —1),soanym > d,(M)+3(p—1)(r—1)
will satisfy the required condition.

For b), it suffices to show that,, ..., X,;p—2 (provided by 4.14) are
linearly independent inM,/M+)(M), or equivalently that any nontrivial
integer linear combination = ) aXx (Summed ovef <k < ¢+ p—2)
doesnotlie in M., (M). Sincer, is analytic (4.3), it is enough to show that
Tp(C) = D aTp(Xk) IS @ non-zero element in the cyclotomic ring,.

It can be assumed that the coefficiemtbave no common factor. Choose
the first onea,, which is prime top. Now observe that eacky has p-order
k4 n, wheren = o,(M), and so can be written in the forlgh*n 4+
O(hk™1y with by prime to p. Sincep is divisible byhP=1in Ap, p(C)
can be written in the forma,b,h™™" + O(h™+"+1) Thust(c) hasp-order
m + n, sinceamby, is prime top, and so in particular is non-zero.

For c), note thaxy is robust (by 4.14) and so of infinite orderga,(M)
(by 4.13). Thugk(4a(M)) > 0, and sa&(M) = @4,(M) andOA(M) =
Hom(4(M), A) (sinceA = Z or Q) both have infinite rank. O

In the preceding proof, a key role is played by the connected suvh of
with elements inM (S®). There is a convenient way to formalize this which
sheds light on the relationship between the theory of finite type invariants for
homology spheres and the theory for manifolds whichtéydoordant toM.
Indeed, it will be shown below that for “mosM, this theory exhibits all of
the complexity of finite type invariants of homology spheres which come
from “sl(2)-weight systems”, namely Ohtsuki’s rational valued invariants
X0, A1, Ag, ... [O1].

For a fixed 3-manifoldM, consider the embedding

i M(S) = M(M)

givenbyi(X) = M#%. Clearlyi respects the filtration at,° and therefore
induces a map

et (M) Moo)(SP) = (M) Moo)(M)

and A-module maps
i*: OAM) = OAS)

9 To prove thark(¢(M)) is infinite, it is only necessary to assumg(M) is uniformly
bounded for infinitely many, but we do not know any examples of this which do not also
satisfy the stronger condition of robustness.

10 This means that does nodecreasadepth; however in some instandesiay increase
depth. For example favl = St x &2, the depth of (2A) = 2((St x ) — (St x P)#P) is
at least 4 (but no greater than 5 by Lemma 4.8), whilehas depth 3. Indeed it is shown in
85 thatM (St x S%) hasno (even) elements of depth 3.
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for each ringA. Explicitly i,[x] = [M#x] (where[x] denotes the coset
X+ Mo) andi*(¢)(X) = ¢(M#X).

Itis an interesting (and presumably difficult) problem to determine when
i, IS injective, and whem* is surjective. Injectivity ofi, would mean that
elements of finite depth in( (S%) are never mapped to elements of infinite
depthinmM (M). In particular if two homology spheres were distinguished by
some finite type invariant (say with valuesA) then some other finite type
invariant (possibly with different values) would distinguish their connected
sums withM. The surjectivity ofi* would show that the latter could be
chosen with values if\. Also, if surjectivity were known forA = Z and
all prime power cyclic groups, then the injectivity ipfwould follow.

Now observe that it,(M) 7 0, theni maps elements of finitp-depth
in M (S%) to elements of finitgp-depth (and therefore finite depth).id(M)
(by Lemma 4.8d), or put differently, if a pair of (linear combinations of)
homology spheres can be distinguishedcpyor somed then so can their
connected sums withl, using a possibly larger choice fdr It follows that
ker(i,) lies in the set?, of all classes IMM /Moo (S of infinite p-depth
that is

Qp = {[X]] dp(x) = o0},

and this can be used to show thaMfis normalthen kefi,) lies in the set
@ of all classes oinfinite Ohtsuki depth

Q = {[X]| Aj(x) =0forall j > 0}.

With a little more work, one can show (for suitat®) that im(i*) contains
the subspacé P of Z-valued homology sphere invariants generated by the
mod p reductions of the firstp — 1) /2 Ohtsuki invariants,

9P = sparfa; modp| j =0,...,n}

wheren = (p — 3)/2. These results, summarized below, provide evidence
for the injectivity ofi, and the surjectivity of*.

Corollary 4.16. Let M be a3-manifold of finitep-depth, and consider the
maps, andi* (as aboveinduced by taking connected sums wihThen:

a) keri,) € @, the set of classes of infiniedepth(defined above

b) im(@*) 2 @P providedM is of minimalp-depth in itsH,-bordism class.

c) If M is normal therker(i,) C @, the set of classes of infinite Ohtsuki
depth(defined abowve In particular, if £, and X, are homology spheres
that can be distinguished by theational valued Ohtsuki invariants,
then M#X,; and M#X, can be distinguished by the invariantg for

somep.tt

11 By contrast, the [LMO] invariant, which includes the Lescop invariant as its degree 1
term, cannot distinguish any#X%; from M#%, if b1(M) is positive.
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Proof. As remarked above a) is immediate from the additivitypedepth
(Lemma 4.8d), and c) follows sina > N@Q, (where the intersection is
over all p for which t,(M) # 0) whenM is normal. To see this, recall
that rg(x) = Ad(X) (mod p) for large p [O1]. Now if [X] € N@,, then
Tp(X) = O for arbitrarily largep (sinceM is normal) and so all the Ohtsuki
invariants ofx vanish. For the last statement in ¢), consider the difference
¥ — 2.

It remains to prove b). Lem = o,(M), the p-order of M. Then
0p(N) > m for every manifoldN € $(M), the bordism class dfl, since
by is constant ors(M)). It follows thatz,(N) can be expresseaghiquely
asa ponnomianp;g ¢j (N)h™*I with integer coefficients. Reducing mod
p gives a family of invariants

th: 8(M) — Z,

defined byt!(N) = ¢;(N) (mod p). Observe that! can be identified

with the invariantzy ' under the natural inclusio, — Zx (where

k= [(m+))/(p—1)] + 1) and so is of finite type by Theorem 4.2. One
specific case is foM = S* andm = 0, and then thé! are the just the mod
p reductions of Ohtsuki’s invariants; for 0 < j < n[O1]. Let us continue
to use; to denote these so as to avoid confusion. Then it suffices to show
that{A;} lie in the span ofi*t'} for0 < j <n.
We compute* (1) (x) = t"(M#x) = Y_P5t} (M)A (x). Sincep and
M are fixed, the constants = ti(M) satisfyi*(tX) = ij;g claj for
0 < k < n. Sinceop(M) = m, the lowest order coefficiertf is invertible
in Zy. It follows that this system of equations can be inverted, angh g
lie in the span ofi*t!}. O

The theory® (M) of finite type invariants on certaid;-bordism classes
4(M) also has connections with theory of Vassiliev invariants of knots. We
illustrate this foiM = S x S%. Consider the sek of isotopy classes of knots

in S and the mapc — $(St x ) which sends a kndt to the homology
St x S obtained by performing 0-surgery df. Composition with any
invariant of homologySt x $’s yields an (unoriented) knot invariant. In
fact we have:

Proposition 4.17. The mapy : X — $(St x ) given byO0-surgery
induces an algebra homomorphism

Y 0(Stx ) = V,

from finite type invariants for homolog§* x $'s to Vassiliev invariants of
degree at most (both with values in a fixed ring).

Proof. Crossing changes on a kniétmay be achieved by performingl
surgery on circles (trivial ir§%) which link K zero times. The collection of

£ + 1 “crossing change circles” forms an admissible link in the 0-surgered
manifold. O



Finite type invariants of 3-manifolds 7

It is an interesting question to characterize the imagg*of

Proposition 4.18. The image of/* contains all of the Vassiliev invariants
arising from the coefficients of the Conway polynomial. MoreoverZhe
invariantsw*(rg) distinguish the right and left-handed trefoil knots, and so
the image ofy* is not just the algebra generated by the Conway coefficients.

Proof. The first statement is obvious given the definition of the Conway
polynomial of a manifold as in Sect. 3. The second statement is a calculation
done in [KM]. O

We conclude with an application of the basic properties of robust elem-
ents to show how to construct “interesting” degree 3 lifts of the Casson-
Walker invarianti.

Theorem 4.19. Fix a “base manifold” in each robusH;-bordism class
of 3-manifolds of positive first betti number. Then there exists a finite type
invariant A : M — Q of degree3 which satisfies

a) A is a “lift” of the Casson-Walker invariant, that i&(Z) = A(X) for
any rational homology sphere, and

b) A detects homology sphere summands in all other robijsbordism
classes, that i& (M#X) = A(X) for each chosen base manifdld and
(integral) homology sphere.

Proof. Set XN: A on all H;-bordism classes of rational homology
spheres, and. = 0 on all non robust classes. Now consider a robust
class of positive first betti number, with chosen base maniféldt suf-
fices to construct a map : (M/My)(M) @ Q — Q satisfying b). To
do this, we choose a basis faM /M4 (M) @ Q = eai?’zo(g,i(M) ® Q)
containingM (which generate%,,) and M#A (which represents a non-
zero element ings by 4.13); hereA is the robust elemeng® — P in
M(S?) of depth 3 discussed in Example 4.12, and#A is also robust
of depth 3 by 4.10a. Now defimg(M#A) = —1, andx = 0 on all other
basis elements (includiniyl). ThenA(M#%) = A(M#(Z — S%)) for any
integral homology spherE. But = — S*is known to be of depth at least 3,
and in facts — S = A(%) - (P - S°) = —A(D)A in §3 [02]. Hence
L(M#T) = —A(D)A(M#A) = A(X) as desired. O

We now return to the key result:

Lemma 4.7 (p-order bound). If x € M, then3o,(X) > nbp(x) + ¢ for
any odd primep = 2n + 3.

Before giving the proof, it is useful to review the definition of the quan-
tum SQ(3) invariantz,. Recall from [KM] the p-bracket(L) = > [K]J_ «
of a framed linkL in S% a certain linear combination of colored Jones
polynomials which is invariant under “handle-slides” [Ki]. It is a priori an
integral Laurent polynomials in an indeterminanbut is to be viewed as
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an element of the cyclotomic rirg(q) (whereq is a primitive p* root of
unity) by identifyingt with g** where 4 is any modp inverse of 4. The
p-bracket can also be written in terms of Ohtsuki’s versioof the Jones

polynomial as
n

(L) =) (alc)pre

c=0

(see Proposition 1.5 in [CM1]). Her = (aq, ..., &) is a multi-index of
integers recording the framings of the componentk ,of = (cy, ..., ) IS
a multi-index cabling folL with associated cable®, obtained by replacing
each componerit; of L with ¢; zero-framed push-offs, and the sum is over
all cables with O< ¢; < n. The reader is referred to [CM1] for the precise
definition of ¢ and the coefficientgalc) = ]_[le(ai |i), which are all to be
viewed as elements of ..

Now to obtain a 3-manifold invariant, one must normalize pHaracket
to make it invariant under “blow-ups” [Ki]. This is achieved by dividing
by a factor which depends only on the linking matrix lof In fact there
is some flexibility in the choice of this factor according to what properties
one wishes the quantum invariant to have. The most common choice is

b’,b";be”’?, whereb, is the p-bracket of thea-framed unknot¢, and¢_

are the number of positive and negative eigenvalues of the linking matrix
of L, and¢y is its nullity (or equivalently the first betti number &f). This
leads to an invariant, which is multiplicative under connected sums and
involutive (with respect ta — t = t~1) under orientation reversal [KM].
However because of the square rbéﬁz this invariant does not in general

take values inA, but rather inA4p = Apli] wherei? = —1, and this
obscures some of its number theoretic properties. For the present purposes
it is more convenient to define thenormof L to be

IL| = bbb /hne

whereh = q — 1 = t* — 1 (in contrast with [CM1] wheré =t — 1). We
will need the fact that

IL| = (al0) if M is admissible. 1

This is an easy consequence of the definitions in [CML1].

Now set
(S = (L)/IL].

It is easily seen, using the well known fact thatis a unit timesh®",
that |[L| is an element ofA . In fact [L| is a divisor of (L) [M2] [MR]
(see also [CM1] where a stronger result is proved) and,dakes values
in Ap. Evidently 7, is multiplicative under connected sums, and with this
normalizationtp(S®) = 1 andz,(S x SY = h". Unfortunatelyz, is no

longer involutive; indee® x S'is amphicheiral, whilé" £ h" is not real.



Finite type invariants of 3-manifolds 79

(Note thatry andrj, differ by a unitinA4p. In particular they have the same
p-order, cf. the discussion in [CM1].)

Proof of Lemma 4.7.First observe that it suffices to prove the result for
generatorsMs;. (= [M, L]) whereL is an¢-component admissible link

in M. Indeed anyx € M, can be written as a surln;x; wherex; =

[M;, Lj] andL; has¢ components. Suppose that we proved the lemma for
the generators;, that is to say 8,(x;) — nby(x;) > £ for all i. Sinceo(X)

is the minimumd for which rg(x) # 0, somer;p(x)(xi) # 0, which implies

0p(X) < 0p(X) for somei. Henced,(X) > 3o0p(X;) — Nby(X) for somei.
But bp(X) < bp(x) for alli sodp(X) > 30p(X) — nbp(x) > £. It follows
thatd,(x) > d(x). So we may assume that= M;_.

Casel: Suppose thaM = S} for somediagonal framed link J (i.e.
all pairwise linking numbers vanish). Thénp(M) = j,, the number of
components in the sublink, of J consisting of allJ with framingsa
divisible by p. We must show that

30p(SjusL) = Nip+ L. )

By definitiono,(S 5, ) is the p-order of
T(Sius) = D (=D Tp(Syue)
S<L

= Z(—l)s Z (@yuslCius)Pausrcas/II U §

S<L c,cL_s=0

wherear andcy denote the restrictions of (multi-index) framingsand
cablingsc of J U L to a sublinkT of JU L. (Thus the inner sum is over all
cablingsc of J U L with c._s = 0, or effectively cablings ofl U S.) But

if c._s = 0, then(ayus|cyus) = (alc)/(aL_s|0) = (alc)/|L — S, by (1).
Substituting this into the last displayed expression gives

Y (=1° D (@odauseus/IIUL| ©)
S<L

c,cL_s=0

since clearlyjJ U S||L — S| = |J U L|. Now this sum can be rewritten as
a sum oveall cablingscof JU L,

Y (-p (Z(—l)k@)) @c)pauye/1J UL
c k=0

where #_ is the number of components lofwhose cabling index is positive
(thesupportof ¢, ) andm = ¢ — #c, . Indeed the number of timgg U L)
occurs in (3) is computed by fixinggand counting how mangs there are
which contain the support @ , and the number of suc8s with #c,_ + k
components is clearly}). Finally, noting that the inner sum of signed
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binomial coefficients vanishes unless= 0 (i.e.¢ = #c_, whencec, > 1)

we have
(S = Y (=D @0dauLe/II UL 4

cc>1

A lower bound for thep-order ofz,(S3 ;) can now be obtained easily
from the results of [CM1]. It is shown there (Propositions 3.6 and 3.7) that
op(alc) = n(j + jp+¢€) —Ic| — |clp, where|c| = ) ¢ is the total number
of cables ofc, and|c|, is the total number of cables of the sublidk (of
components of] with framings divisible byp). Also op(éuL)e) > 4icl/3
(Theorem 3.5, which follows from a result of Kricker and Spence [KS]),
ando,|J U L| = n(j + ¢) (Proposition 3.11). Hence any term in the
sum (4) has order at leastj, + |c|/3 — |c|,. This clearly achieves its
minimum value wher,, = n, ¢;_,, = 0 andc, = 1, and this value is then
Njp+ (Njp+£)/3—njp=(njp+£)/3. This proves (2).

Case 2: Consider an arbitraryMs . We must show &,(Ms. ) >
nb,(M) + ¢. By Corollary 2.3 of [M2], there exists &/ pZ-homology
sphereX such thatM#% can be obtained by surgery on a diagonal link, and
S0 3 p(Ms  #X) > nb(M)-+£ by the previous case. Bulg is additive under
connected sums, sinag is multiplicative, and the main theorem of [M2]
shows thato,(X) = 0. Thuso,(Ms) = op(Ms #%) and the lemma is
proved. O

5. Combinatorial structure of finite type invariants

In this section we describe an epimorphism from a finitely generated
group ofFeynman diagram@rivalent graphgrelations) to the graded group
g,(M). We then use this to evaluate a few examples for small valués of
We show that for man, the kernel of this epimorphism is larger than one
might naively predict based on the theory for homology spheres [GOZ2], that
is, there are relations in the group of graphs which are not captured by the
“standard” IHX and AS relations.

For eachm > 0, we describe a s&™ of admissible abstract graphs.
Feynman diagrams will be defined below as certain equivalence classes of
linear combinations of elements G™.

Definition 5.1. Anm-admissible grapi is a finitel-dimensional cell com-
plex whose edge set is partitioned into the colored eggesgi1 U - - - U $m
(where eachy; is nonempty with edges colored by the numieand the
white edges£, and whose trivalent vertices are equipped with a vertex
orientation (an ordering of its incident edges up to cyclic permutation),
subject to the following conditions:

a) Each vertex is of valenckor 3.
b) Each edge has distinct vertices.
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c) Each trivalent vertex is incident to at least one white edge, and to at
most one colored edge of any given color.

d) Each colored edge has at least one univalent vertex, and if it has two
such vertices (i.e. if it is isolated), then it is the only edge of that color.

The edges with at least one univalent vertex will be called external, while
those with none will be called internal. The graph is said to be closed if all
of its white edges are internal.

Definition 5.2. Let G™ be the set of alm-admissible graphs, an®™ be
the free abelian group o8™. The degree dof € G™ is the number of white
edges inT, that is, the cardinality ofc. Let D;" be free abelian group on
the degree elementss)" of G™. Note thatG}" is a finite set. Finally le}"
denote the subgroup &;" spanned by all closed graphs of degree

Choose a base manifaM in eachH;-bordism class and choose a framed
link descriptionM = S5 wherem (for manifold) denotes the number
of components of]. Rational surgery framings are allowed. We note in
passing thatl may be chosen to be fairly simple. For exampleHift M)
is torsion-free therd can be chosen to be O-framed and “special” (in the
sense of 2.10) in that it can be obtained from a trivial link by “Borromean
replacements” [CGO]. We define a mép below and observe that the proof
of 2.1 shows it is a surjection.

Theorem 5.3. For any (rationally) framedm-component linkJ for which
M = Sﬁ’, as above, there is an associated epimorphigm: D;" —
Ge(M).

Proof. For eachl’ € G}', choose an immersioll - D2 whose double

points avoid vertices (for a slight technical advantage we choose an over-
crossing edge at each double point) and such that each colored edge has one
of its vertices ordD?. Associate to this an unoriented tangté") in a 3-balll

B, by the rules shown in Fig. 5.4 (as in [O2]) in such a way that each edge

of I' corresponds to a single component of the tangle with corresponding
color when appropriate. This must be done in such a way that the local
orientations at the trivalent vertices can be extended to a global orientation
of the tangle. This explains the choice 5.4a) or b).

Give each white component &f(I") a+1 framing. Letb; be the cardi-
nality of ¢;. Choose a 3-balB, in S* for which the complementary tangle
(S® — intB,, (S* — intBy) N J) is trivial and containgy; subarcs from the
single link componeng;. Then(B,, T(I")) may be glued tgB,, B, N J) to
form an unordered, unoriented framed lidkJ L(I") in S® which contains
the link J as sublink. This gluing is not unique.

Now definey; : D" — 4,(M) to be the composition of the homo-
morphism®D;" — M,(M), which sendd" to Mjys. ), with the natural
projection M,(M) — 4,(M). (Recall from 81 tha® assigns to a framed
link in M the formal alternating sum of its sublinks.) It follows from the
proof of Theorem 2.1 that ; is surjective.
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TWLJ V- Y

b

V- T

Observe that the mayp; does not depend on the immersionlo$ince
a “band pass” leads to equal elementg jr(cf. [02]). For a similar reason
it does not depend on the glueing homeomorphism betw&grand B,
except for the information on which componentsgpfare glued to which
spots onJ;. If J has zero linking numbers then even the latter does not
matter (again by the band-pass move or by the homotopy classification of
links with zero linking numbers by theji(ijk)). These statements will be
discussed more fully in [CMZ2]. In any case, it may indeed be more natural
to average over all permutations of such glueings, but this will not be needed
in the present paper. O

Next we define a map
d: o — D

which is an extension of the “deframing map” of [GO2]. For an admissible
graphT” and any subse$ of the setT of all trivalent vertices i, let I's
denote the admissible graph obtained by “splitting ojpeat each vertex

in S(creating 3 new univalent vertices) and deleting any resulting isolated
colored edge (unless it is the only edge with that color). Theml@®t =

Y s.1(—=1°Ts. Note thatd is the identity if T is empty.

Proposition 5.5. The deframing mag is an isomorphism.
Proof. The reader can verify thakis its own inverse. O

In the remainder of this section we use the convention of [GO2] that
a trivalent vertex of a graph lying the domainof the deframing map be
denoted as in Fig. 5.6a by a “white vertex,” whereadféying in therange
it will denoted by a “black vertex” as in 5.6b.

We now identify five classes of relations &" which lie in the kernel
of the composition ofp; with the deframing map: ASaftisymmetry, S
(symmetry, IHX, Y (an integrality relation between Y-shaped graphs and
closed graphs), and isplated edgge
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a) white vertex b) black vertex

Fig. 5.6.

Theorem 5.7. The composition/; o d factors through an epimorphism
¢y D"/{AS, S, IHX, 1, Y} — G,(M)

The relations AS, S, IHX, | and Y are defined in the proof.

Definition 5.8. Let D, = DI"/{AS, S, IHX, 1, Y}. The elements oD}’
are calledm-Feynman diagrams of degrée

Proof of 5.7. An element ofl is a graphl’, one of whose white edges is
isolated. For such a graph we haWi ;s ) = 0 sinceL (I") contains an
isolated unknotted component. Sirdié) C I, it follows thaty; od(l) = 0.

The antisymmetry relatiorAS is shown in Fig. 5.9 and says that the
effect of changing the vertex orientation at a single trivalent vertex is the
same as negation i, as long as at least one edge incident to that vertex
is internal (i.e. ends in another trivalent vertex).

Fig. 5.9. Antisymmetry

This is the same as Proposition 2.7 of [GOZ2], and the proof that
¥ o d(AS) = 0 also goes through as in [GO2], the only essential ingre-
dient being the half-twist lemma (2.7). Note that the “marking lemma”
(Lemma 2.1 of [GO2]) also holds in the present context, but since “mark-
ings” are not part of the structure of an admissible graph (or a Chinese
Character in the case of [GOZ2]) it does not directly indicate relations
in D"

Tghere are two types afymmetry relationss. The first is shown in
Fig. 5.10 wheree is awhite edge ofl" with exactly one univalent vertex,
and says that changing the vertex orientation of the trivalent vertex of
does not change the imagg o d(I"). The proof may be summarized as
follows. A change in vertex orientation leads to an insertion of an oppositely
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oriented Borromean rings, changing a lop&ll23) from 1 to—1, say. But
the same effect or(123 can be achieved by changing the orientation of
the component arising from Since these two are (locally) link homotopic,
theirimages irg, are identical (see 2.9). But clearly the orientation of a link
component does not affect the surgered manifold.

Fig. 5.10.Symmetry

The second type of symmetry relation is very similar and has an identical
proof. It states that, for any colgr changing the vertex orientationseatery
trivalent vertex which is incident to an edge labelledjblgas no effect on
Y3 o d(I'). This is achieved by changing the orientation on jheolored
component of].

The relation in Fig. 5.11 is called the IHXélation— assume clockwise
vertex orientation in the plane of the picture (see Fig. 22 of [GOZ2]). Note
that any of the 4 edges which leave the picture can be colored or not colored.
However, the 4 edges leaving the picture must be distinct edges, and no two
may be colored alike. This condition ensures that each of the 3 graphs shown
in 5.11 is admissible. The proof of this set of relations is quite delicate and
will be postponed to [CM2]. The case when none of the edges is colored is
due to Garoufalidis and Ohtsuki [GO2].

N

Fig. 5.11.The IHX Relation

The Y relationsare shown in Fig. 5.12, with the colored edges drawn
in thicker pen for clarity. They are meant to say thal"ipossesses any
connected component which is Y-shaped, thEr=2I"" wherel” is obtained
by replacing the Y-shaped component (as shown) by the corresponding
“theta-shaped” closed grapthwith oppositely oriented trivalent vertices.

12 Note that the left hand side of each equation can be viewed as a halféthetad the
right hand side as a full thet@ with the colored edges (if any) split open at the middle to
conform to the definition of admissible graphs.
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Fig. 5.12.Y Relations

A sketch of the proofthat ; od = Oforthe case 5.12cis as follows. Consider
AS for oneof the white vertices of the H-shaped graph on the right hand
side of the equation. Applying ; o d to this AS relation yields a relation in
g, wherein one sees two Borromean interactions of opposite sign between
thei, j and white component. By link homotopy considerations, as in 82,
these can be cancelled and eliminated. The resulting relatignéan then
be seen to be exactly; o d applied to 5.12c. The other cases are proved in
exactly the same way. A more detailed proof will be included in [CM2].

This completes the proof of Theorem 5.7 (modulo the IHX relatians).

Recall thatC)" is the subgroup ofD;" spanned by closed graphs (all
white edges are internal). One can speak of relations AS, IHX and S among
elements ofe]" since these relations respect the defining conditiorCfor
The following is then immediate.

Proposition 5.13. Let E? = C;"/{AS, S, IHX}. There is a commutative
diagram of groups, as below, where the horizontal maps are injective.

e — D

\: \:

@zn (N 5;”
One also has,

Proposition 5.14. Let " € D/". Then2'T € C
equivalence class ¢fin D, , and SoC ® ZI31 =D
€ is of finite index inD) .

;n, whereT denotes the
D ®Z[3]. Itfollows that
Proof. Supposel” has some external white edges. If any one of these is
not part of a Y-shaped component, then, by AS and S (of the first type),

2T" = 0. On the other hand, if all of these edges lie in Y-shaped components
of I, then applying thé relationsk times (wherek is the number of such
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components) shows thafl2 e @?. Clearlyk < ¢, and so the first statement

follows. Sinceﬁ?1 is finitely generated, this implies thﬁ?1 is of finite
index. o

Corollary 5.15. The mapg; : 52‘ —> G¢(M) is an epimorphism after
tensoring witr%[%] or Q, and every element of the cokernelpgfhas order
dividing 2°.

We shall see that, unlike the case of homology sphefgds not in

general a rational isomorphism. In fa?éi has rank one whilgs(S' x )
has rank zero!

We compute some examples for the reader. Mere 1, M = St x &,
and J is the O-framed unknot i$®. Recall§, = M,/M,,1. In the chart,
Zsq represents a non-zero cyclic group of order a multiple of &cor

e lol2fz]s] 4 |5 |
@, / 2-torsion zlol|lz|z| 22 z
generators S| - | W|®|CWW| WO
G,(St x $) /2-torsion|| Z | 0 | Z | O 72 Zsq

Fig. 5.16.4(S! x S in low degrees

Fig. 5.17 shows pictures of the generator@éf(mod 2-torsion). Since
m = 1, we do not need to label the colored components, which are again
shown in thicker pen. We shall briefly outline how the table was derived. Let
I be an element of} with t trivalent vertices and non-isolated colored
edges. Thenitis easily seen that3c = 2¢ by noting that two white edges
emanate from each aftrivalent vertices while three emanate from each of
the other(t — c) trivalent vertices, and that in this calculation each white
edge is counted twicE Hence 2/3 < t < ¢. This simplifies calculations,
as does the following observation.

Proposition 5.18. If " € ¢;" has an odd number of trivalent vertices then

2 =0in @zn. More generally, if the number of non-isolated edges of some
fixed colorj is odd ther2l' = 0.

Proof. Let ¢ be the number of non-isolateecolored edges. The equation
3t — X¢ = 2¢ derived above shows thattifs odd then some; is odd. So

13 Note that the equatiort 3-¢c = 2¢ recovers the result that, for homology spheges Q
is zero unlesg is a multiple of 3 [GL1][GO2].



Finite type invariants of 3-manifolds 87

- O =

a) s b) W O

d)c e) WeW f) Wx®

Fig. 5.17.

it suffices to prove the second claim. Now changing the vertex orientation
at each of vertex incident to gcolored edge (denoteld) is a symmetry.
On the other hand;* = (—1)'T" by anti-symmetry, since no component of

I'is Y-shaped. Hence 2= 0inC, . O

Using the above considerations, one is led quite quickly by simple

combinatorics to see thﬁg for £ < 4 is generatedby the graphs shown
in the chart above. The cage= 5 requires more work which we do not
include here. It remains to show that &, C and W&W are of infinite order
(and linearly independent) ﬁz.

First consider the case = 2. It was shown in §3 thag,(S' x )
has a map ont@ given by C,, the coefficient ofz? in the Conway poly-
nomial of the manifold. From Fig. 5.12a we see that\®Y and then one
calculates tha#;(Y) is 0-surgery on a trefoil knot minuS! x S. Hence
Co(¢3(Y)) = 1, and the casé = 2 is settled.

The cas¢ = 3 is the most interesting because here it will be seen that
¢3 has a non-trivial kernel. First we show tha3(®) is zero by showing
that¢; of the graph Y shown in Fig. 5.19a is 2-torsion. We then apply the

Y relation in Fig. 5.12b to see that 2¥= © in 5;.

=

a) Y1 b) Y2
Fig. 5.19.
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Consider the framed linkis; andL 5 in 5.20. These describe homeomor-
phic 3-manifolds as can be seen by “sliding” the smallest 1-framed circle
over the O-framed circle.

0 _ _ J—
O | : :
2
a) Ly b) Lo
Fig. 5.20.

i3

The reader can then work out that this implies ihatY 1) = —¢3(Y2),
where Y, is the graph shown in 5.19b. But ¥ of order 2 by an application
of S and AS (see the proof of 5.14). Hence we have showrptf@) = 0.

To show that® is of infinite order, we use a little trick. Observe that if

M = L(q, 1) andJ’ is theg-framed unknot thei :@; —> G3(L(qg, 1))

is a rational epimorphism by Corollary 5.15. Sg#(L (g, 1)) has rank 1
then we are done. But this follows from 4.15c. This is summarized as
follows.

Proposition 5.21. The mapg; : @; — G1(St x ) is not a rational
isomorphism. The graph denotédin Fig. 5.17 lies in the kernelHere J
is theO-framed unknot

So the reader sees that more relations must be added to account for
handle slides. We shall not attempt a systematic treatment of this in the
present paper.

For the case = 4, consider the image of YWV in §4(S' x ). This
is of infinite order as detected I, the coefficient ofz* in the Conway
polynomial; indeed it is represented by the elemenodf Proposition 3.6.
Similarly ¢;(C) is the represented by the eleméntintroduced in Re-
mark 3.7, and is shown there to be of infinite order (detected®wnd not
a multiple ofi4. Thereforeg4(St x ) = Z2.

Note that the the linear independence of C aneWW\in @i also follows
from general principles, according to the following result.

Theorem 5.22. Consider the set4 of all closedm-admissible degreé
graphs withno vertex orientations (for fixeth and ¢). Let & be the subset
of 4 consisting of graphs which have @vennumber of non-isolated edges
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of each color, and9 = A — &. LetC(&) be the free abelian group o
and C(0O) be group generated b with relations2¢@ = 0. Then

€} = C(E)/IHX & C(O)/IHX

where the IHX relations are as before, but restricted to the appropriate set
and with suitable sign changé&see the proof.

Proof. We sketch a proof. Merely observe that the anti-symmetry rela-
tions serve to eliminate generators and eliminate the vertex orientations by
choosing one for each abstract graph; one must of course modify the signs
in the IHX relations accordingly. The second symmetry relation leads to
atautology ifl" € &, orto " = 0if I' € O (see Proposition 5.18). O

Corollary 5.23. Consider the set of all T" € &, each of which is a disjoint
union of the closed “theta-shaped” graphs that are the right hand sides
of the Y-relations (Fig. 5.12). Then is linearly independent ir@?. In
particular, each such is of infinite order.

Proof. Note that(IHX) C € (&) is clearly contained in the span of thdse
which have some connected component which either has 4 different colors
appearing, or has at least 3 trivalent vertices. But thd gstdisjoint from

this spanning set. |

This result can be refined to show C angW are linearly independent

in @i by observing that C does not lie in the span of the IHX relation since
each embedding of an “I-shaped graph” in C has two inputs colored alike.
This was disallowed in IHX.

Observe that it follows from Corollary 5.23 thatA® is of infinite order

in @é. In fact ¢;(Wx®) can be shown to be non-trivial of either infinite
order or order a multiple of 5 ifs(S' x S%) by considering:2 of Sect. 4.

6. Finite type invariants for spin manifolds

The theory of invariants of finite type for closed spin 3-manifolds was
defined in 1.1-1.3 except for explaining how the surgekég inherits
a spin structure from a spin structure bh The reader can compare the
theory of N. Shirokova [Sh]. An invariant of finite type for closed oriented
3-manifolds will be seerg fortiori, to be an invariant of finite type for spin
manifolds. In addition the Rochlin invariant is a degree 3 mod 16 invariant
of finite type. The theory outlined by Shirokova in [Sh] has neither of these
properties. As in 82, we find that the group of invariants is finitely generated
within any fixedH;-bordism class. In a later paper we hope to investigate
the mysterious invariants of spin manifolds arising from quantum invariants
as we have done in 84 for the non-spin invariants.

Here$SPNis the set of spin-structure-preserving homeomorphism classes
of spin 3-manifolds(M, o), MSP" is the free abelian group ofP", and
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MZP"is the span of(M, o), L] whereL is any admissible link of compo-
nents as in 81. It is only necessary to give a precise meanifi@/ta), L]
by assigning a spin structure to the manifoldg whereS < L.

Given a spin manifoldvl and an admissible link, there is a convenient
way to specify the spin structure induced bty using the language of
“characteristic sublinks” (see [KM]; p. 541). Namely, suppdée= S§ and
J’ C Jis a characteristic sublink corresponding to the given spin structure
on M. Then the appropriate spin structure lghg is the one corresponding
to the characteristic sublin®” U S. Note that since each component ®f
is £1-framed and has zero linking numbers with all other componéhts,
mustbe part of any characteristic sublink. This “framed surgery” language
is very convenient for checking whether or not certain diffeomorphisms
are actually spin diffeomorphisms since most of the diffeomorphisms we
employ are described in terms of the “Kirby calculus.”

If Ais aring then9SPis a filtered commutativé\-algebra (as shown
in Proposition 2.12). Since the “forgetful mag®™ — § respects the
filtrations, the following is clear.

Proposition 6.1. If ¢ : § — A'is a finite type invariant of degreethen

¢ : 85PN — 8 — A (using the forgetful map) is finite type of degree at
most¢, that is, there is a natural monomorphisth — ©@SP" which is an
algebra map.

Hence©@SPis large. There are also invariants not in the subalgébra

Proposition 6.2. The Rochlin invariany, : $5P" — Z¢ is a finite type
degree3 invariant.

Proof. Supposé&M, o) is a spin 3-manifold. We claim that we may assume
that M is obtainable as integral surgery on a lidkin S* which has all
zero linking numbers. For Murakami has shown that for Bhthere exists

a connected sum of lens spacKssuch thatM#X has such a surgery
description ([M2], Cor. 2.3). Moreover, ik is not emptyu([M, L]) =
w([M#X, L]) since the Rochlin invariant is additive under connected sum
and[M#X, L]is an alternating sutfivl, L ]#X. Thus we can assuni¢ = Sﬁ’

as above.

Supposel’ is the characteristic sublink af corresponding to the spin
structureo (see [KM]; p. 541-544). Suppodeis an admissible link of 4
components irM. By an isotopy inM, we may assume lies in > — J
and has zero linking numbers with each componeng.oThis uses the
properties ofJ and the fact that each componentlofs null-homologous
in M. If S < L then the characteristic sublink for the spin structure on
Ms = S} sis Cs = J' U S, by definition. Recall that the Rochlin invariant
of (S5 Cs) is given bys(J' U S) — Cs - Cs + 8Arf(J’ U S mod 16
([KM]; p. 542). Hereo is the signature of the linking matrix ands the
total linking number. For brevity denote this(Ms) by n(S). We must
show that) "5 | (—1)°u(S) = 0, in other words that(5L) = 0. Note that
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c(JUS —Cs-Cs=0(J)+0a(9 —J -J — (S wherer is the trace of
the linking matrix ofS. Since the latter matrix is diagonal withl entries
on the diagonaly (9 = 7(S). Thuso(J' U S — Cs- Csisindependentf S
and hence will not contribute to the alternating sum. It remains to show
that Arf (J’U §L) = 0 mod 2 ifL has 4 or more components. It has been
shown by Hoste, Murakami and Sturm that, for any “totally proper” lnk
in S, Arf (8T) = ax(T), the coefficient o' in the Conway polynomial
of T [Hol]. Letting T = §J' U L and using the fact thato § = id, we have
Arf (JJUSL) = Arf (8§-8J USL) = ax(8J' U L). Now for any sublink
J” of J', J” U L is an algebraically split link of more than 3 components
and Hoste has shown that(J” U L) = 0 [Ho2]. Hence Arf(J’USL) =0
as desired. We remark in passing that J. Levine’s generalization of Hoste’s
result has a proof which shows quite clearly that= 0 mod 2 if JU L
is algebraically split mod2! ([L2], Proposition 4.1). Hence it is sufficient
to assume thald is a “totally proper” link. Every 3-manifold is surgery on
a totally proper link inS® since any symmetric matrix of integers can be
diagonalized modulo 2 after stabilizing by adding-&. .

pin

SinceS® — P, whereP is the Poinca homology sphere, lies if(;
andu(S® — P) = 8, i is of degree precisely 3. O

Theorem 6.3. For any closed spir8-manifold M and any integer, the
Spi

groupgs"" (M) = (M;P"/ MPPTY (M) is finitely generated. Thug;™"(M)
is finitely generated, an@>™" = I 4@, P"(M;) where ¢SP" is the set
of Hi-bordism classes of spBrmanifolds andV; is a representative from
the class e F¢SPin,

Proof. Lemma 2.2 remainstrue inthe Spin category since itis merely acom-
binatorial identity. Lemma 2.3 also holds using the same proof. Lemma 2.4
remains true but the proof requires comment. It is necessary to check that
the diffeomorphism of the solid torus used in the proof actually preserves
the given spin structures. B@& x D? has only two spin structures and
these are determined by looking at the spin structur&on dD?. Since

the diffeomorphism is the identity on the boundary, it preserves the spin
structure.

The “Ohtsuki Lemmas” 2.5 and 2.7 remain true. The only ingredients of
the proofs of 2.5 and 2.7 which are not definitions are the diffeomorphisms
associated to “blowing up” or “blowing down” an unknotted circle which
has zero linking numbers with all other components. It must be checked
that these diffeomorphisms preserve the designated spin structures. Such
+1 framed circles are necessarily part of the characteristic sublink since
they have zero linking numbers with all other components, and for the same
reason it is known that blowing down such a curve does not change which of
the other components are in the characteristic sublink [KM]. For an identical
reason, Lemma 2.9 remains true in the Spin category. The rest of the proof
of 2.1 works word for word, reducing ""(M) to a finite spanning set
which, indeed, is obtained from the spanning set¢gfM) by including,
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for each elementM, L] of the latter,[(M, o), L] whereo varies over the
|[H1(M; Z5)| spin structures oM. O

7. Finite type invariants for bounded manifolds

We shall briefly discuss several theories for finite type invariants for com-
pact 3-manifolds with boundary. The first theory leaves the boundary “un-
marked” and the second and third assume the additional structure of an
orientation preserving homeomorphigim oM — §, whereS§; is a fixed
oriented surface in the homeomorphism clas§Mt The first theory was
defined in 81 as the reader will note that no assumption was made that
oM is empty. In the second theory? is the set of triplegM, dM, ¢) as
above wheréM’, 0M’, ¢') ~ (M, dM, ¢) if there is an orientation preserv-

ing homomorphismh : M — M’ such thaty’ o h = ¢ on dM. Given
alink L in M, a marking is induced oaM_ by using the given product
structure on the boundary of the cobordism frévinto M, . In the third
theory,¢ : dM — 9(Hg) (Hg is the handlebody of genuy is required to
induceg, : H1(0M) — H1(dHg) which restricts to an isomorphism from

the uniqueZ® summand containing kern¢H,(9M) LN Hi(M)) to the
kernel ofHi(dHg) — Hi(Hg).

We deferred until now the proof of our “Finiteness Theorem” 2.1 for
manifolds with boundary (unmarked). Let us indicate the changes necessary
in the proof given in 82. The braiding and half-twist lemmas need to be
expanded to allow, in Figs. 2.6 and 2.8, “pieces of the boundary” to run
algebraically zero times througdh,. This is made precise as follows. For
each boundary compone§, of M, attach a handlebody; with the same

boundary to form a closed oriented manifdid. Choose a spine foH;
which is abstractly homeomorphic to a uniongpfcircles, one base point
andg; arcs connecting the circles to the basepoint. Let the image of this

in M be denoted]; and their unionJ. As beforeM can be expressed as
surgery on a linkJ in S* which may be assumed to be disjoint frain
HenceM is recovered frons; by merely deleting a regular neighborhood
of J. J; should be viewed as a basgdcomponent link inS%. Moreover

if L is an admissible link inM then eachL; bounds a surface iM.
Therefore we may assume tHatlies in M — J — J and thatL; has zero
I|nk|ng number with each component circle df(it bounds a surface in

— J) as well as with each component &f(as before). Now it is clear
that we have effectively changed a problem about manifolds with boundary

into a problem about closed manifolds with marked based lihk¥hen
Lemmas 2.5 and 2.7 remain true with “strands” bfgoing through the

disk spanned by ;. Since\Tmerer records “the location” oM, this
means these lemmas hold in the category of manifolds with boundary.
For the remainder of the proof of Theorem 2.1 the reader should think of
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replacing the linkJ of the surgery lemma (2.9) and later by the partially
based linkJ U J. It is important to note that we needed to choose a basing
for our links in Definition 2.10 anyway, in order to use Levine’'s work.
Merely extend the partial basing to a full basing. The rest of the proof
of Theorem 2.1 now proceeds word for word wishU JArepIacing J.

O

Once again, invariants of degree 0 are precisely those functions which
are constant on surgery equivalence classes. These include betti numbers,
torsion numbers, the number of components of the boundary, the genera of
the boundary components, linking form invariants, triple cup product forms
and any invariants one might choose to detect the isomorphism class of the
pair (H1 (M), H1(dM)) (see [CGO] for a fuller discussion).

We do not know if the second or third theories satisfy finite generation.

Note that8? — & by “plugging up” M via solid handlebodies (using
the marking). Henc® — 9, showing that9? is large.

8. Finite type invariants for marked manifolds

Consider pairgM, ¥), where M is a compact oriented 3-manifold and
¥ is an isomorphism fronH;(M) to a fixed abstract abelian group

(a "marking” of Hi(M)). Let 8* be the set of equivalence classes of such
pairs of marked 3-manifolds, whe(®Mg, Vo) ~ (My, ¥) if and only if
there is an orientation-preserving homeomorphismMy — M; such that
Y10 f, = Yo. Note that#S! x S, o) ~ #S' x S, ¥rq1) for any v, ¥y

so that if one is attempting to distinguisyl from #S' x S?, there is no
loss in markingH;. Now, if Sis an admissible link iV, then a marking

of Hi(M) extends naturally to a marking dfl;(Ms), where Mg is the
surgered manifold. Indeed it is clear that a markindiefM) extends over
any Hj-bordism. Thus there is a theory of finite type invariants for this
category (as explained in Sect. 1), which will be denotedyNote that
atheory based on pait$l, o) wherea € HY(M; Z,,) works similarly.

If (M, v) is a marked 3-manifold then we can define many group-valued
invariants which would not be possible without the marking. These include
coefficients of the Conway polynomial, Reidemeister torsion and Massey
products (restricted to special classes of manifolds so they are uniquely
defined integers). Below we shall show that the Conway coefficients are
finite type. We shall not address the Massey products here, although, since
Massey products on link exteriors are known to be of finite type, one must
expect that they are in this situation also. The extent to which Reidemeister
torsion is determined by finite type invariants in this category will be detailed
in a later paper.

Suppose M, v) is a closed, marked 3-manifold with(M) = m > 1.
There is a canonical epimorphisBh— Z given by sending each generator
1 in eachZ factor of B to 1. The “Alexander polynomial” ofM, ) is
the order ofH; of the inducedZ-cover, divided byjtorsion Hy(M)|. Any
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such manifoldM is O-framed surgery on a linkK = {Kq, ..., K} of null-
homologous components, wittk(K;, K;) = 0, in a rational homology
spherex. The Conway polynomial oK, Vk (2) = Z1(ag+ @y 22 + anz* +
...),Iisthen defined and is related to the Alexander polynomial-eiK and
hence to the Alexander polynomial bf in a similar fashion as explained in
Sect. 3 (see §2.3.13 of [Ls][yhe Conway polynomial @M, ) is Vg (2).

Theorem 8.1. Let 8* be the set of equivalence classes of closed marked
3- manifolds(M, y) with b;(M) = k > 1. LetC, be the coefficient af<1+¢

in the Conway polynomial afM, ). ThenC, : 8* — Q is finite type of
degree at modt — 1 + ¢.

Remark. In fact if ¢ is odd thenC, = 0 so it is degree 0. I is even we
claim the degree is preciseky— 1 + ¢, but do not provide the proof here.

Proof of 8.1. This follows immediately from Theorem 3.2. The remark
follows from Conjecture 3.14. o

Corollary 8.2. The Lescop invariant, for (unmarked) manifolds with
b, = 2is finite type of degree 1. The invariant for manifolds withb; = 3
is finite type of degree 0.

Proof. 1. equals|torsion H;(M)| - C(M) (85.1.6 of [Ls]). The corollary
then follows from Theorem 8.1 and the subsequent remark. The proof for
b, = 3is easy and does not require 8.1 since in this €ade known to be

the square oft(123) [Co] and this is known to be constant éh-bordism
classes (see Sect. 1 and also [CGO]. Note thais independent of the
marking ofHy(M). O

Remark 8.3.Since we have invoked Conjecture 3.14 ko= 2,¢ = 2in

the proof of 8.2 §; = 2), we sketch the proof. Theorem 3.2 guarantees
that z* divides V(M4), whereas 3.14 claimg* divides V(M») (restricted

to by = 2). Hence it suffices to showf divides the Conway polynomial of

a generating set faf,(#_, S' x ) andgs. Hence it suffices to check this

for the images of a generating set for the torsion free paﬁzyand@i,
which is not difficult.

For manifolds withb; = 0O, i.e. rational homology spheres, Lescop’s
invariant agrees with the Casson-Walker invariantvhich is of degree 3
(see Corollary 10.3 below). Thus we have

Corollary 8.4. The Lescop invariank, : § — Q of (unmarked) closed
oriented3-manifolds is finite type of degree 3.
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9. Further generalizations

The theory we have presented is centered around the condéptmirdism.

In effect, the 3-manifolds which are deemed “closekMare precisely those
which areH;-bordant toM via a 4-manifoldW which consists of a single
2-handle addition. The “tangent vectors"Mtto the “space of 3-manifolds”

are then the formal differencés W — d_W, or could even be thought of

as the cobordisms themselves. This leads to a theory in which the degree
zero “polynomials” (being locally constant on the space of 3-manifolds) are
functions which are constant on tha-bordism classes, which means they
are group-valued functions on the set of isomorphism classes of the structure
(Hy, linking form, triple cup product forms with abelian coefficients). Hence
our theory of finite type invariants focusses on distinguishing manifolds with
isomorphic oriented cohomology rings, separating this from the “classical”
problem of distinguishing cohomology rings.

There are additional “classical” invariants of 3-manifolds, narhaper
Massey products, which could be included with the cohomology rings, and
there is a corresponding theory of finite type invariants. We summarize this
theory below. Theories which fix even more aspects of the homotopy type
are possible but will not be discussed.

Letk > 2 be an integer. We describe a family of theorieg-@ihite type
invariants which agrees with our primary theory koe 2.

Definition 9.1. A framed linkL in M is calledk-admissible if

a) each component df lies in (r1(M))y, thek™™ term of the lower central
series ofry (M)

b) the pairwise linking numbers @f are zero

c) the framings aret1.

Clearly a sublink of &-admissible link is itselk-admissible.

Definition 9.2. Let M¥ denote the subgroup oft spanned by al[M, L]
whereL is ak-admissible link of components in &manifoldM. A function
¢ : 8§ — Ais kinite type degreé if (M~ ;) = 0 andp(ME) # 0, and
(9? = Hom(M /M, 1, A) is the algebra of alk-finite type invariants of
degree at mogt.

Sincemk € MKt c ... € M% = M, we have
Of20to... 202=0,
that is to say, there araoreinvariants ak increases.
Definition 9.3 (see [CGOQ]). Two 3-manifolds M and N will be called
k-surgery equivalent if there is a sequen@e= Mg, My, ..., M; = N
such thatM;,; is obtained by+1-surgery on a circle inM; which lies
in 71(Mj),. They arer/my-bordant if there is an oriented cobordisk¥

betweenM and N, which is a “product” onsmy/(1)k (s0 fork = 2 this is
H;-bordism).
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Theorem 9.4. [CGO] Two 3-manifoldsM and N are k-surgery equivalent
if and only ifM and N are =r/my-bordant(k > 2).

If one stipulates that the “closest” 3-manifolds ¥b are ones that are
7 /m-bordant via a single 2-handle addition, and that the tangent vectors
at M are formal differences of such, and applies a notion of combinatorial
derivative, then one generat69$f as the class of polynomials of degree at
moste.

Proposition 9.5. Let #¢ denote the set of allt/m-bordism classes of
3-manifolds. ThenMf = @, Mi(@) and Of = Tye,Of (@) where
O () is the corresponding theory restricted to manifolds in ther-
bordism class od.

It is shown in [CGQ] thak-surgery equivalence is related to Massey
products. It is shown that a manifold witty = Z™ is k-surgery equivalent
to #", St x S?if and only if its Massey products of order less thdn-21
vanish.

The proof that(QLf(a) is finitely generated for each € J is not
complete even though almost all of the steps of the proof of 2.1 carry
over without difficulty. Lemmas 1.4 and 2.2 hold without change, although
a non-trivial result from [CGO] is required. Lemmas 2.3 and 2.4 hold
with k-admissible replacing admissible. Lemmas 2.5 and 2.7 hold without
alteration. Lemma 2.9 can be rephrased and partially recovered.

Lemma 9.6. If L and L" are surgery equivalent links in &manifold M
then[M, L] ~ [M, L']in gX(M).

This is true because a surgery equivalence betviieka in M is, by
definition accomplished by at1 surgery on a circleK which bounds
a disk inM. Clearly more general alterations are possible ska@®uld be
allowed to represent a non-trivial loop {tr1(M))x. Here the proof stops
due to the lack of an analogue of Levine’s theorem. However note that it
is already possible to reduce to the case where thellink L U J € S°
has only “Borromean interactions” and hence is given by, loosely speaking,
uni-trivalent graphs inM. This is entirely consistent with the fact that
7 /m-bordism of manifolds is classified bis(1(M)/71(M)x) modulo
automorphism (see [CGOQ]). Since the latter group is finitely generated, it
is fairly clear that one can reduce to a finite sepafametergpresumably
Massey products — or Milnor’s invariants — of weight less tha). 2
However the details have not yet been considered. Moreover, it is less clear
what is the analogue of the final step (Lemma 2.5), that is to reduce from
m(1122 = 10 (123 = 6, forexample, to asum of cases whgi@ 122 <
{0, £1} and7x(123 € {0, +1}. Nonetheless it would be surprising if this
was a serious problem. Note that it is not necessadlassifylinks modulo
the appropriate equivalence relation, just as it was not necessary for us
(in 2.1) to use the full strength of Levine’s surgery equivalence theorem. The
ill-definedness of higher Massey products would be a serious annoyance.
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It seems clear, in light of recent work of Habegger and Masbaum relating
to Milnor’s invariants to the Kontsevich integral, that theorder (see 4.5)
would vary less and less i@ -bordism class asincreases. This should
allow for the well-definedness of more invariantskefinite type derived
from 7393,

The reader should note thieffinite type equals 2-finite type for those
manifolds wherer, = m,. This includes all manifolds with cyclic first
homology!

A theory based on control dll the higher Massey products at once
seems attractive, but the finite generation (2.1) seems unlikely for 3-mani-
folds whose lower central series strictly descends.

10. Relationships with other theories and other results

In this section, we mention some relationships with other theories: that of
Garoufalidis-Ohtsuki [GO1] for rational homology spheres, and of Garouf-
alidis-Levine [GL3] relating to the mapping class group.

The theory of Garoufalidis-Ohtsuki for rational homology spheres is
based on surgery on algebraically split links in homology spheres and as
such is not strongly related to our approach. In an attempt tg,ginitely-
generated they impose their “Property 1" which is overly strong in our
opinion. Morally, our theory should have strictly more invariants. Certainly
theZp-rank of H1(M; Z) is of finite type degree zero for us but not of finite
type for them. However, due to a slight flaw in their theory, we cannot show
in generality that an invariant which is of GO-finite type is finite type in
our sense. Indeed, Garoufalidis-Ohtsuki intendedghathould be finitely-
generated (consequence of their Theorem 2). Howevergh&mot finitely
generated: Suppodd is a rational homology sphere whose linking form
is not isomorphic to the direct sum of forms on cyclic groups (see [KK]).
Let ¢ be the characteristic function dvi. Theng is finite type in the sense
of [GO1], because the only restrictions placedsdny [GO1] involve Dehn
surgery on algebraically split links in anmtegral homology sphere. But any
manifold so obtained has a linking form which is a direct sum of linking
forms oncyclicgroups (since its linking matrix is diagonal). Henftis zero
on all these manifolds. Since there are an infinite number of such manifolds
M as above, theig, is infinitely generated. (Indeed there are an infinite
number of non-isomorphic linking forms which are not “diagonalizable”.)
But certainly¢ is not finite type in our sense (for aiythere is a Brunnian
¢-component linkL in S* on which surgery does not yiel® — consider
M# S, L]).

Now we will show that, on the subclass of rational homology spheres,
any invariant which is finite typa in the sense of [GO1] and which is
additive on connected sums, is finite type of degree at masbur sense.

Theorem 10.1.Let R C M be the span of the set of rational homology
spheres. Suppose that: R ® Q — Q is of finite typen in the sense of
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Garoufalidis-OhtsukilGO1, 8§1.2]and is additive on connected sums. Then
the induced map : R — Q (i.e. the composition ap with the natural
inclusionR — R ® Q) is finite type of degree at mastin our sense.

Corollary 10.2. The invariant of Casson-Walker for rational homology
3-spheres is a rational valued finite type invariant of deg8ee

Proof of10.1. Infact we need only assume thjasatisfies their “Property 0.”
Property 0 says that([X, L]) = O for everyintegral homology spher&
and every rationally framed (with the proviso that the framingsbe-
zerg algebraically split linkL in ¥ with more thann components. (Here
“algebraically split” means pairwise linking numbers zero.) Supplgse
is a fixed rational homology sphere ahdis a fixed admissiblen + 1
component link inM. It suffices to show thap([M, L]) = 0. Throughout
we will identify R with its image inR ® Q.

First suppose thakl can be expressed & where J is a integrally
framed algebraically split link ir8®. Then we have the following combina-
torial Lemma.

Lemma 10.3. With the above notation S}, L] = Y ¢_;(—=1)S[S*, L U S].

The theorem follows immediately from the Lemma since, by Property O
of [GO1], ¢ vanishes ofS?, L U S| sincel U Shas more than components.
The Lemma is proved easily by induction pnthe number of components
of J. Itis trivial for j = 0, so assume it for all links of > 0 components
and consider a link ofj + 1) components of the forrd U K whereK is the
last component. Then by Lemma (&} ., L] = —[S}, LUK]+[S}, L.

By induction this equald"g_;(—1)S(—[S, LUK U S+ [S*, L U S]). But
thisis) s_; (D[S, LU 9.

Now consider the general cag¥l, L]. By a result of Murakami and
Ohtsuki [M2], there exists a rational homology sph&reuch thatM#X is
integral surgery on some algebraically split linkSh But ¢([M#X, L]) =
¢([M, L)) sinceq is additive andL is not empty. Thus the above special
case suffices to show thatis finite type. o

There is an interesting relation with the mapping class group. Recall the
subgroupX of the mapping class group generated by Dehn twists along
bounding simple closed curves (see [GL3]).

Theorem 10.4 ([CGQ]). M is Hj-bordant to M’ if and only if there is
a Heegard splittingM = H; U H, and a homeomorphism € X such
thatM’ = H; Ugof Ho.

This indicates that one could filter all 3-manifolds using the type of fil-
tration discussed by Garoufalidis and Levine in ([GL3], 1.3) corresponding
to X, and that at least at the “zero level” it would agree with our theory.
However since Ohtsuki’s theory for homology spheres is a direct summand
of our M, and since it is still unknown even in this case if these theories
agree (Ohtsuki versus [GL3]), we shall not pursue this here.
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