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0. Introduction

Homology theory assigns to any topological space X a sequence H0pXq, H1pXq, H2pXq, . . . of
abelian groups called the homology groups of X. In rough geometric terms, these groups record
the “holes” in X. In particular, the elements in HnpXq are the n-dimensional holes, each of which
can be represented (in many ways) by n-cycles, oriented n-dimensional objects without boundary
mapped into X to surround the hole.† The sum of two holes is represented by the formal sum of
their representative cycles, so the identity element 0 P HnpXq is represented by the empty n-cycle.

To make this more precise, we introduce an equivalence relation „ on cycles: First extend the
notion of n-cycles to n-chains, oriented n-dimensional objects that may have boundary. The term
chain is used because such objects in practice are built up as chains of simpler objects, e.g. triangles,
tetrahedra, etc. More on this in §2. Now two n-cycles α and β are homologous, written α „ β, if
their difference α´ β “ α` p´βq (where ´β “ β with its orientation reversed) is the boundary Bτ
of some pn` 1q-chain τ .

We write α for the equivalence class of a cycle α and call it the homology class of α; this is one of
the “holes” above. Thus by definition α “ β ðñ α „ β ðñ α´β “ Bτ for some pn`1q-chain τ . In
particular α “ 0 ðñ α bounds an pn`1q-chain, and in this case we say that α is null-homologous.

This is illustrated in the figure below. On the left X is a 2-holed torus, α is the blue loop, β
is the pair of purple loops, and τ is the green shaded surface that α and β cobound, showing that
α “ β in H1pXq. On the right Y is the complement in R3 of the 2-component Hopf link (drawn in
black), α is the blue sphere, β is the pair of purple tori, and τ is the 3-dimensional region between
α and β, showing that α “ β in H2pY q. It is left to the reader to sort out the orientations (given
by arrows on the left, and implicitly by outward pointing normals on the right).

† These objects need not be spherical, as for the homotopy groups πnpXq, nor even connected. But they should
be compact. For example, the 1-cycles and the 2-cycles, respectively, can be viewed as finite collections of oriented
loops, and of closed oriented surfaces, mapped into X.
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Below is a collage of just a few of the leading figures in the development of algebraic topology
during the first half of the twentieth century:

Henri Poincaré Emmy Noether Heinz Hopf

Many different homology theories were introduced in the first half of the 20th century, but it
was not until the mid 1940s through the joint work of Samuel Eilenberg and Norman Steenrod
(the last pair pictured above) that topologists understood how to relate these theories, and for that
matter, how to define what a homology theory really is.
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1. Formal Approach

This section presents the axiomatic approach to homology theory due to Eilenberg and Steenrod†

as well as some fundamental tools for calculating homology groups from the axioms. As it turns
out, it is convenient to assign homology groups to all pairs pX,Aq of topological spaces with A Ă X
(where a single space X is identified with the pair pX,∅q) or at least an appropriately restricted
class of admissible pairs such as simplicial or cellular pairs (see §2, or [ES, I§1] for more details).

From the geometric perspective, the elements of HnpX,Aq can be viewed as equivalence classes
α of oriented n-chains α in X with boundary Bα in A, where α “ β if and only if there is an
oriented pn ` 1q-chain τ in X with boundary Bτ “ α ´ β ` γ for some chain γ in A, also written
Bτ ”A α´β. In particular α and α`γ for any n-chain γ in A represent the same relative homology
class. This is illustrated below when X is a torus T 2 and A is a pair of disks in X.

α

β
β

τ

A

A

To state the axioms, we need the notion of a map of pairs f : pX,Aq Ñ pY,Bq, meaning a map
f : X Ñ Y for which fpAq Ă B (in this context “maps” are always assumed continuous, while
maps between groups are homomorphisms). Two such maps are homotopic if they are homotopic
through maps of pairs, i.e. each stage of the homotopy carries A into B. Write MapppX,Aq, pY,Bqq
for the set of all such maps, and rpX,Aq, pY,Bqs for the set of homotopy classes of such maps. For
example π1pX,x0q “ rpI, BIq, pX,x0qs (where I :“ r0, 1s). We may also encounter triples pX,A,Bq
of spaces, where B Ă A Ă X, and triads pX;A,Bq, where X “ A Y B but A and B need not be
nested. Of particular importance are excisive triads pX;A,Bq, requiring X to be covered by the
interiors of A and B. Maps of triples or triads are defined as for pairs.

In addition, we need the fundamental notions of exact sequences of abelian groups, and more
generally for later use, chain complexes and chain maps between chain complexes. Note: Analogous
definitions can be made in any category of modules, but we will not need these for our purposes.

Definition A sequence ¨ ¨ ¨ Ñ Cn`1
Bn`1
ÝÝÝÑ Cn

Bn
ÝÑ Cn´1 Ñ ¨ ¨ ¨ of abelian groups joined by

homomorphisms is exact at Cn if impBn`1q “ kerpBnq, and is exact if it is exact at each group in
the sequence. More generally, this sequence is called a chain complex if impBn`1q Ă kerpBnq, or
equivalently BnBn`1 “ 0, for each n (so an exact sequence is a special kind of chain complex).

A chain map from this chain complex to another ¨ ¨ ¨ Ñ C 1n`1

B1n`1
ÝÝÝÑ C 1n

B1n
ÝÑ C 1n´1 Ñ ¨ ¨ ¨ is a

sequence of maps fn : Cn Ñ C 1n

¨ ¨ ¨ Cn`1 Cn Cn´1 ¨ ¨ ¨

¨ ¨ ¨ C 1n`1 C 1n C 1n´1 ¨ ¨ ¨

Bn`1

fn`1

Bn

fn fn´1

B1n`1 B1n

that make the diagram commute: B1nfn “ fn´1Bn for all n.

† announced in Proc. N.A.S. 31 (1945) 117–120, and spelled out in their 1952 book [ES]: Foundations of Algebraic
Topology, Princeton University Press
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1.1 The Eilenberg-Steenrod Axioms (1945)

A homology theory consists of two functions H and B:

‚ H assigns to each (admissible) pair pX,Aq a sequence of abelian groups HnpX,Aq for all n P Z
(equal to zero for all n ă 0, see [ES, I§3]) called the homology groups of pX,Aq, and to each map
of pairs f : pX,Aq ÝÑ pY,Bq a sequence of group homomorphisms fn : HnpX,Aq ÝÑ HnpY,Bq.

Remark The elements in HnpX,Aq are called relative homology classes, while those in HnpXq
are absolute classes. The maps fn, usually denoted f˚ with implicit dependence on n, are called
the maps induced by f ; if they are all isomorphisms, then f is called a homology equivalence.

‚ B assigns to each pair pX,Aq a sequence of group homomorphisms Bn : Hn`1pX,Aq ÝÑ HnpAq
(usually just written B with implicit dependence on n) called the boundary maps.

These must satisfy the following seven axioms:k1 – k2 (functoriality) 11˚ “ 11 (where 11s denote identity maps) and pfgq˚ “ f˚g˚k3 (naturality) Bf˚ “ pf |Aq˚Bk4 (homotopy) f » g ùñ f˚ “ g˚k5 (exactness) For any pair pX,Aq, the sequence

¨ ¨ ¨ ÝÑ Hn`1pX,Aq
B
ÝÑ HnpAq ÝÑ HnpXq ÝÑ HnpX,Aq

B
ÝÑ Hn´1pAq ÝÑ ¨ ¨ ¨

is exact, where unlabeled maps are induced by inclusions.k6 (excision) If U Ă A˝, then the inclusion pX´U,A´Uq ãÑ pX,Aq is a homology equivalence.†k7 (dimension) Hnpptq “ 0 for all n ‰ 0 (where pt denotes a space consisting of a single point)

Remark The group G “ H0pptq is called the coefficient group of the theory. Typically one
constructs theories with G “ Z, and then there is a formal procedure for producing associated
theories with any other coefficient group. If G ‰ Z, we generally write HnpX,A;Gq for HnpX,Aq.

There are many homology theories. The best known are

‚ simplicial homology (defined for simplicial pairs; good for understanding basic notions)

‚ cellular homology (defined for CW-pairs; great for calculations)

‚ singular homology (defined for all pairs; good for verifying the axioms)

‚ Čech homology (defined for all pairs; good for weird spaces)

These theories (and any others that satisfy the ES axioms) are equivalent on the category
of CW-pairs that are admissible for both theories, meaning they assign the same groups and
homomorphisms once the coefficient group is fixed (but may differ on more general spaces).

Remarks k1 Continuing the geometric perspective above, one can define f˚pαq :“ fpαq and
Bα :“ Bα. It is instructive to verify the exactness and excision axioms from this point of view. We
leave this as an exercise for the reader.k2 Under suitable conditions on pX,Aq, explained more fully in §3, the ‘relative’ homology
groups HnpX,Aq are isomorphic to (a reduced version of) the absolute groups HnpX{Aq, where
X{A is the quotient space obtained from X by collapsing A to a point. But in general, HnpX,Aq
and HnpX{Aq need not be related.

† Setting B “ X ´ U , this can be reformulated as a statement about triads: If pX;A,Bq is excisive, then the
inclusion pB,AXBq ãÑ pX,Aq is a homology equivalence.
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k3 Excluding the dimension axiom and allowing n ă 0, we get the so-called generalized homology
theories. These have played a major role in many areas of research in topology, and include bordism
theory, K-theory and stable homotopy theory.k4 Cohomology theory is defined by reversing all the arrows, writing HnpX,Aq for the groups,
δ : Hn´1pAq Ñ HnpX,Aq for the coboundary maps, and f˚ for the induced maps.

HW#1 Write this definition out precisely, taking special care with the second and third axioms.

k5 By combining the homology groups HnpX,Aq for n “ 0, 1, 2, . . . into a single graded group
HpX,Aq “ ‘8n“0HnpX,Aq the exact sequence of pX,Aq can be viewed as an exact triangle

HpXq

HpAq HpX,Aq
´1

with diagonal maps (induced by inclusions) of degree zero, and the horizontal boundary map of
degree ´1. Here a map of graded groups is said to be of degree k if it sends each element of pure
degree i, meaning all its coordinates except the ith are zero, to an element of pure degree i` k.†

1.2 Exact Sequences

Exact sequences play a central role in algebraic topology. In this section we (re)acquaint the
reader with some of their basic properties, and describe how to exploit these properties in homology
calculations. We begin with a simple algebraic result that spells out some useful relationships among
the groups and maps in any exact sequence of abelian groups.

Exact Sequence (ES) Lemma. k1 If ¨ ¨ ¨
p
ÝÑ A

q
ÝÑ ¨ ¨ ¨ is exact, then A “ 0 ðñ p “ 0 “ q.k2 If ¨ ¨ ¨

p
ÝÑ A

q
ÝÑ B

r
ÝÑ ¨ ¨ ¨ is exact, then q “ 0 ðñ p is onto ðñ r is one-to-one, and

q is an isomorphism ðñ p and r are zero. It follows pusing k1 q that every third group in a long
exact sequence vanishes if and only if every third map is an isomorphism.k3 If ¨ ¨ ¨

p
ÝÑ A

q
ÝÑ B

r
ÝÑ C

s
ÝÑ ¨ ¨ ¨ is exact, then there is a short exact sequence

0 ÝÑ cokerppq ÝÑ B ÝÑ kerpsq ÝÑ 0.

In particular, if C is free abelian, then B – cokerppq‘ kerpsq by part kb of the SES Lemma below.

Proof k1 and k2 are straightforward. For k3 , note that there is a short exact sequence

0 ÝÑ kerprq ÝÑ B ÝÑ imprq ÝÑ 0.

But kerprq “ impqq – A{ kerpqq “ A{imppq “ cokerppq and imprq “ kerpsq. �

† Combining this perspective with some basic category theory (functors and natural transformations) the axioms
can be rephrased succinctly. First some notation: For any admissible category TP of topological pairs (see §2 for
the definition) let TP1 be its associated homotopy category in which the each morphism set MapppX,Aq, pY,Bqq is
replaced with rpX,Aq, pY,Bqs, and R : TP1 Ñ TP1 be the restriction functor that sends any object pX,Aq to A,
and any map pX,Aq Ñ pY,Bq to its restriction A Ñ B. Also, let GG denote the category of all graded abelian
groups and maps of degree zero. Then a homology theory on TP consists of a functor H : TP1 Ñ GG and a natural
transformation B : H Ñ H ˝R of degree ´1 satisfying the last three Eilenberg-Steenrod axioms (where for exactness
we use the exact triangle as above with bottom map BX,A, excision remains the same, and dimension asserts that
Hpptq is concentrated in degree zero).
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Now specialize to the case of a short exact sequence

(˚) 0 ÝÑ A
f
ÝÑ B

g
ÝÑ C ÝÑ 0

of abelian groups. Note that exactness at A means f is one-to-one, and exactness at C means g is
onto. The sequence is said to split on the left if there exists a homomorphism ` : B Ñ A such that
`f “ 1A, and to split on the right if there exists a homomorphism r : C Ñ B such that gr “ 1C .†

Here is a very useful result about splittings.

Short Exact Sequence (SES) Lemma. The sequence p˚q splits on the left if and only if it

splits on the right, in which case we just say that p˚q splits. Furthermore, ka if p˚q splits, then

B – A‘ C; kb if C is free abelian, then p˚q splits.

Remarks 1) The sequence 0 Ñ Z ˆ2
ÝÑ Z ÝÑ Z2 Ñ 0 is not split; do you see why?

2) The converse of ka fails. For example, 0 Ñ ZÑ Z‘ Z82 Ñ Z82 Ñ 0, where the first map sends
n to p2n, 0, 0, . . . q and the second sends pn, k1, k2, . . . q to pn, k1, k2, . . . q, is not split.

HW#2 Prove the SES lemma.

HW#3 Using the Eilenberg-Steenrod axioms, and the ES and SES Lemmas, prove:

(a) Homotopy equivalences are homology equivalences. Conclude that if X is contractible, then
HnpXq – Hnpptq for all n.

(b) Retractions induce epimorphisms on homology. Furthermore, if A is a retract of X then

HnpXq – HnpAq ‘HnpX,Aq

for all n (hint: use the exactness axiom), but this conclusion need not hold in general (use the
example X “ B1, A “ S0, calling on the first result in (c) below to compute HnpS

0q).

(c) If U and V are disjoint open subsets of a space X, then HnpU Y V q – HnpUq ‘ HnpV q
for each n. Deduce that if X has finitely many connected components X1, . . . , Xk, then
HnpXq – HnpX1q ‘ ¨ ¨ ¨ ‘HnpXkq. What if it has infinitely many components?

1.3 Diagram Chasing

This is a technique for studying commutative diagrams involving exact sequences. We describe
it by means of the Short Five Lemma, whose proof involves a diagram chase, and then ask you to
supply a proof of a useful generalization, the Five Lemma.

Short Five Lemma. If the commutative diagram

0 A B C 0

0 D E F 0

f

p

g

q r

h k

has exact rows, and if p and r are isomorphisms, then q is an isomorphism.

Proof To show q is 1-1, it suffices to show kerpqq “ 0. So given b P B with qpbq “ 0, we must
show b “ 0. By commutativity of the right square rgpbq “ kqpbq “ kp0q “ 0, and so gpbq “ 0 since
r is 1-1. Exactness at B shows Da P A with fpaq “ b. Commutativity of the left square shows
hppaq “ qfpaq “ qpbq “ 0. Thus ppaq “ 0, since h is 1-1 (exactness at A1), and so a “ 0 since p is
1-1. Thus b “ fpaq “ fp0q “ 0, as desired.

† Note that from set theory, g is onto ðñ g has a right inverse, i.e. D a function r with gr “ 1. So why doesn’t
every SES split on the right? The point is, we don’t know that such an r can be found that is a homomorphism.
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To show q is onto, pick any e P E. Then Dc P C with rpcq “ kpeq, since r is onto, and so
Db P B with gpbq “ c, since g is onto (exactness at C). Commutativity of the right square shows
rgpbq “ kqpbq “ kpeq, that is, k maps e and e1 :“ qpbq to the same element in F . So consider the
difference e2 “ e ´ e1 (this is a standard trick in diagram chasing arguments) which k maps to 0
since it is a homomorphism. By exactness at E, there exists d P D with hpdq “ e2. Surjectivity of p
then gives a P A with ppaq “ d, so e2 “ hppaq “ qfpaq. Thus qpb`fpaqq “ e1`e2 “ e1`pe´e2q “ e.
Therefore e is in the image of q, and so q is onto. �

Unfortunately, writing out the proof as we did above obscures the visual clarity of the technique.
It is in fact a dynamic process of drawing arrows between dots (representing elements) in the
diagram, many of which are best left unnamed. The following pictures provide the structure for
such a proof, in the spirit of “proofs without words.”

q is injective q is surjective

HW#4 Prove the Five Lemma: If the commutative diagram

A B C D E

P Q R S T

p q r s t

has exact rows, and if p, q, s, t are isomorphisms, then r is an isomorphism.

The Five Lemma is ubiquitous in homology theory calculations. For example it implies:

Homology Equivalence (HE) Lemma. The following are equivalent for any triple A Ă B Ă X:ka the inclusion A ãÑ B is a homology equivalencekb the inclusion pX,Aq ãÑ pX,Bq is a homology equivalencekc HnpB,Aq “ 0 for all n.

Proof ka ùñ kb : The diagram

¨ ¨ ¨ HnpAq HnpXq HnpX,Aq Hn´1pAq Hn´1pXq ¨ ¨ ¨

¨ ¨ ¨ HnpBq HnpXq HnpX,Bq Hn´1pBq Hn´1pXq ¨ ¨ ¨

– – – –

commutes and has exact rows with vertical isomorphisms as indicated (explain why). Now apply

the 5-lemma. The converse kb ùñ ka is proved in the same way, after a shift in the diagram. The
equivalence ka ðñ kc follows from the exact sequence of the pair pB,Aq, using the ES Lemma. �

The HE Lemma can be used to establish variants of the excision axiom, which asserts that U
can be excised from pX,Aq (i.e. the inclusion pX ´U,A´Uq ãÑ pX,Aq is a homology equivalence)
provided U Ă A˝. Can this condition on U be relaxed? For example, can one always excise A˝ from
pX,Aq? The answer is “no” in general, but “yes” if A is “nicely” embedded in X. To make this
precise we recall Hatcher’s notion of a “good pair” (also called an “NDR-pair” in the literature,
standing for “neighborhood deformation retract”).

Definition The pair pX,Aq is called a good pair if A is closed in X and is a strong deformation
retract of some neighborhood N of itself, denoted N Œ A.
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By definition, this means there exists a retraction r : N Ñ A with i ˝ r » 11N (rel A), where
i : A ãÑ N is the inclusion. (Recall that r being a retraction just means r ˝ i “ 11A.) We say that
pX,Aq is very good if A is closed in X and pB, BBq is good, where B “ X ´ A˝ and BB is the
“boundary” or “frontier” of B, i.e. BB “ AXB “ BA.

HW#5 Show that any very good pair pX,Aq is good. In particular, show that if N Œ BB in

B “ X ´ intA, then AYN Œ A in X.

Now if pX,Aq is very good, with B “ X ´A˝ and N Œ BB in B as above, then both BB ãÑ N
and A ãÑ AYN are homology equivalences. It follows from the HE-lemma that the vertical maps
in the following commutative diagram

HnpB, BBq HnpX,Aq

HnpB,Nq HnpX,AYNq

are isomorphisms. The lower horizontal map is also an isomorphism, by excision, and so the upper
one is as well. This proves:

Excision Lemma. If pX,Aq is very good, then A˝ can be excised from pX,Aq.

For example, pSk, Bq is very good for any closed hemisphere B of Sk, so excising B˝ from pSk, Bq
yields an isomorphism HnpS

k, Bq – HnpB
k, Sk´1q since Sk ´B˝ is clearly homeomorphic to Bk.

HW#6 Using this observation, show that HnpS
kq – Hn´1pS

k´1q for any n ą 1 and k ě 1.

Conclude that HnpS
kq “ 0 for all n ą k ě 1. What goes wrong when n “ 1?

Similarly if a manifold M is the union P YQ of two codimension zero submanifolds that meet
along their common boundary, then Q˝ can be excised from pM,Qq (which is a very good pair by
Morton Brown’s “collaring theorem”†) giving HnpM,Qq – HnpP, BP q.

The HE-lemma can also be used to elucidate the relationship between relative and absolute
homology, in particular between HnpX,Aq and HnpX{Aq, where X{A denotes the quotient space
of X with A collapsed to a point:

Relative Homology (RH) Lemma. If pX,Aq is good, then HnpX,Aq – HnpX{A,A{Aq for all

q. This last group is isomorphic to the “reduced homology” rHnpX{Aq of X{A, defined in the next

section. Thus for good pairs pX,Aq, we have HnpX,Aq “ rHnpX{Aq.

Proof For notational efficiency we write pY “ Y {A and Y0 “ Y ´A for any Y Ą A. Then there
is a commutative diagram

HnpX,Aq HnpX,Nq HnpX0, N0q

Hnp pX, pAq Hnp pX, pNq Hnp pX0, pN0q

with vertical maps induced by the natural projection p : X Ñ pX and horizontal maps induced by
inclusions. Now the two horizontal maps on the left are isomorphisms by the HE Lemma (one must

check that N Œ A in X ùñ N̂ Œ Â in pX) as are the ones on the right (they are excisions). So is

the rightmost vertical map, because p|X0 : X0 Ñ pX0 is a homeomorphism. It follows readily that
the other two vertical maps are also isomorphisms, the leftmost one being the desired one. �

† A simple proof due to R. Conelly is given in Appendix B of Vick’s Homology Theory
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1.4 Reduced homology

Let pH, Bq be a homology theory with coefficient group Z. To avoid having to make special
arguments about long exact sequences at the H0 level (which arise since H0pptq ‰ 0) it is

convenient to have a “reduced” homology theory rH for which rH0pptq “ 0. So define

rHnpXq “ kerpHnpXq Ñ Hnpptqq

where the map on the right is induced by the constant map. If A Ă X is nonempty, set

rHnpX,Aq “ HnpX,Aq

or equivalently rHnpX,Aq “ kerppHnpX,Aq Ñ Hnppt, ptqq since the last group is trivial. Thus the
reduced homology of pX,Aq is identical to its regular homology except when n “ 0 and A “ ∅, in
which case it is a proper subgroup of H0pXq satisfying

H0pXq – rH0pXq ‘ Z

by the SES Lemma, since the short exact sequence 0 Ñ rH0pXq ãÑ H0pXq Ñ H0pptq “ Z Ñ 0

splits. In particular rHnpptq “ 0 for all n.

HW#7 Show that reduced homology (with suitably defined boundary maps and induced maps)

satisfies all the Eilenberg-Steenrod axioms except excision. For the exactness use the following
general result, proved using a diagram chase:

Proposition. The kernel pK, B|q of any chain map f : pC, Bq Ñ pC 1, B1q between chain complexes
is a chain complex. If both pC, Bq and pC 1B1q are exact and f is onto, then pK, B|q is also exact.

Here K “ kerpf : C Ñ C 1q and B| is the restriction of B, which must be shown to map K to K.

HW#8 Prove by induction on n that rHnpS
kq “ Z for n “ k and vanishes for all other n.†

Conclude that for k ą 0

HnpS
kq “

#

Z if n “ 0 or k

0 otherwise

(Note that from HW#3b), H0pS
0q “ Z‘ Z and HnpS

0q “ 0 for n ą 0.)

1.5 Other computational tools

In this section we construct two exact sequences that are useful for computing homology groups,
the Mayer-Vietoris Sequence and the Sequence of a Triple.

Mayer-Vietoris Sequence. For any triad pX;A,Bq pmeaning X “ A Y Bq such that A and B
are either both open in X, or both closed in X with at least one of pX,Aq or pX,Bq very good,
there is an exact sequence

¨ ¨ ¨ Hn`1pXq HnpAXBq HnpAq ‘HnpBq HnpXq ¨ ¨ ¨
∆ ∆ pα˚,β˚q a˚´b˚ ∆

where A
α
ÐÝ AXB

β
ÝÑ B and A

a
ÝÑ X

b
ÐÝ B are inclusions, and ∆ is the composition

HnpXq ÝÑ HnpX,Aq
–
ÐÝ HnpB,AXBq

B
ÝÑ Hn´1pAXBq

where the middle map is excision. There is a completely analogous version of this sequence for
reduced homology pjust add tildesq.

† Hint: Consider the pairs pSk`1, Bq, where B is the southern hemisphere, and pBk`1, Sk
q.
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Leopold Vietoris
on his 110th birthday

Exercise Rewrite the Mayer-Vietoris sequence as an exact
triangle.

Remark This sequence can be described geometrically: On
the nth level, the maps are induced by inclusions. The first
sends α (for any n-cycle α Ă A X B) to pα, αq (viewing
α as a cycle in A and B, resp.), while the second sends
pα, βq to α´ β. The boundary map ∆ sends α to B, where
α “ αA Y αB, meeting along their common boundary B,
with αA Ă A and αB Ă B.

The proof of the Mayer-Vietoris Sequence relies on the following algebraic lemma:

Barrett-Whitehead Lemma. Given a commutative diagram

¨ ¨ ¨ Cn`1 An Bn Cn An´1 ¨ ¨ ¨

¨ ¨ ¨ C 1n`1 A1n B1n C 1n An´1 ¨ ¨ ¨

B

– r

f

p

g

q

B

– r p

B1 f 1 g1 B1

with exact rows, where all the r maps are isomorphisms, there exists a long exact sequence

¨ ¨ ¨ B1n`1 An A1n ‘Bn B1n An´1 ¨ ¨ ¨
∆ pp,fq f 1´q ∆

where ∆ “ B ˝ r´1 ˝ g1.

Exercises 1) Prove the lemma by a diagram chase.

2) Deduce the Mayer-Vietoris Sequence (and its reduced version) by applying the Barrett-Whitehead
Lemma with the upper and lower sequences equal to the exact sequences of the pairs pB,A X Bq
and pX,Aq, respectively.

3) “Prove” the Mayer-Vietoris Sequence from its geometric description in the Remark above.

HW#9 Use the Mayer-Vietoris Sequence to calculate

a) HnpS
kq (again)

b) HnpT
kq, where T k is the k-torus (the product of k copies of the circle)

for all n and k.

HW#10 Let M and N be manifolds, and M _ N be their wedge product, the quotient space of

the disjoint union M \N obtained by identifying a point in M with a point in N . Use the Mayer-
Vietoris Sequence to calculate the homology of M _ N . Then use this in turn to compute the
homology of the pair pSk, Sk´1q (viewing Sk´1 Ă Sk by identifying Rk with Rk ˆ t0u in Rk`1), or
equivalently the reduced homology of the quotient space Sk{Sk´1 – Sk _Sk (see the RH Lemma).

Exact Sequence of a Triple. For any triple A Ą B Ą C of spaces, there is an exact sequence

¨ ¨ ¨ Hn`1pA,Bq HnpB,Cq HnpA,Cq HnpA,Bq ¨ ¨ ¨
∆ ∆

where the unlabeled maps are induced by inclusions, and ∆ is the composition of the boundary map

Hn`1pA,Bq
B
ÝÑ HnpBq with the map HnpBq Ñ HnpB,Cq induced by inclusion.
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As with the Mayer-Vietoris Sequence, this can be proved using a suitable algebraic lemma. To
state it, recall that a chain complex is a sequence of abelian groups joined by homomorphisms

¨ ¨ ¨
B
ÝÑ Cn`1

B
ÝÑ Cn

B
ÝÑ Cn´1

B
ÝÑ ¨ ¨ ¨

such that any composition of two consecutive maps in the sequence is zero.

Braid Lemma. If three of the four braided chain complexes in the following commutative diagram
pdistinguished by their colorsq are exact, then so is the fourth:

¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨

Exercises 1) Prove the lemma by a diagram chase.

2) Deduce the Sequence of a Triple by applying the Braid Lemma. (Hint: Fill in the red, blue and
green strands with the sequences of the pairs pA,Cq, pA,Bq and pB,Cq, respectively, and observe
that this makes the yellow strand into the desired sequence of the triple pA,B,Cq. The only
nontrivial thing to check is that the composition HnpB,Cq Ñ HnpA,Cq Ñ HnpA,Bq is zero, which
follows from the axioms since this composition also factors as HnpB,Cq Ñ HnpB,Bq Ñ HnpA,Bq
(by functoriality) and HnpB,Bq “ 0 (by the exact sequence of pB,Bq).)

HW#11 Use the Sequence of a Triple and induction to calculate HnpS
k``{Skq for all n, k and `.

(A simpler way to make this calculation is to note that Sk``{Sk is homotopy equivalent to a wedge
of spheres; do you see why?)

HW#12 If you feel inspired, complete the exercises on the last two pages.

For later use, we take this opportunity to reformulate the definitions of chain complexes and
chain maps (see page 3) in terms of graded groups:

Definition A chain complex is a graded group C “ ‘nCn equipped with a boundary map
B : C Ñ C, meaning an endomorphism of degree ´1 for which B2 “ 0. We denote this chain
complex by the pair pC, Bq, where the grading is implicit. A chain map f : pC, Bq Ñ pC 1, B1q between
chain complexes is a map of degree 0 that commutes with the boundary maps, i.e. fB1 “ Bf .

For the record, we reiterate that such a chain map is really a sequence of maps fn : Cn Ñ C 1n

¨ ¨ ¨ Cn`1 Cn Cn´1 ¨ ¨ ¨

¨ ¨ ¨ C 1n`1 C 1n C 1n´1 ¨ ¨ ¨

Bn`1

fn`1

Bn

fn fn´1

B1n`1 B1n

that make the diagram commute: B1nfn “ fn´1Bn for all n. The graded formulation is just a more
efficient way to say this.
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2. Constructing Homology Theories

Every homology theory is constructed as a composition of two functors:

TP ÝÑ CC ÝÑ GG

Here TP is an “admissible” category of topological pairs (defined below; it need not be the full
category TOP of all topological pairs) while CC and GG are the algebraic categories of chain
complexes and graded abelian groups, respectively. So the first topological step TP Ñ CC (which is
different for each theory) passes from topology to algebra, while the second algebraic step CC Ñ GG
(which is the same for all theories) stays within algebra.

To define TP more precisely, we use the following terminology: A singleton is any space consisting
of a single point. Any map from a singleton into a nonempty space is called a trivial map. The
product inclusions of a pair pX,Aq are the maps pX,Aq Ñ pXˆr0, 1s, Aˆr0, 1sqq given by x ÞÑ px, 0q
and x ÞÑ px, 1q. The lattice of a pair pX,Aq is the category consisting of all 6 pairs arising from the
triple pX,A,∅q and all 36 inclusions between such pairs. The lattice of a map f : pX,Aq Ñ pY,Bq
of pairs is the category consisting of the lattices of pX,Aq and pY,Bq, and all the maps induced
by f between corresponding pairs in those lattices. In general, we say that a subcategory A of
TOP contains a pair pX,Aq, a map of pairs f , or another subcategory B, to mean that pX, aq is an
object in A, f is a morphism in A, or B is a subcategory of A. We can now describe the allowable
topological categories TP :

Definition (Eilenberg and Steenrod, 1952) An admissible category of topological pairs is a sub-
category TP of TOP that contains all trivial maps, all product inclusions of objects in TP, and all
lattices of morphisms in TP.

As for the algebraic categories, the objects in CC are chain complexes of abelian groups and the
morphisms are chain maps between them (see pages 3 and 11). The objects in GG are Z-graded
abelian groups (or equivalently sequences of abelian groups) and the morphisms are degree zero
maps between them (or equivalently maps between the corresponding groups in the sequences).

2.1 The Algebraic Step

There is a standard functor H : CC Ñ GG that is the same for all homology theories. It sends
any chain complex pC, Bq in CC to its graded homology group

H “ HpC, Bq :“ Z{B

where Z “ kerpBq and B “ impBq (referred to respectively as the cycles and boundaries in pC, Bq).
Note that B Ă Z since B2 “ 0, so this quotient makes sense.† Thus each element of H is a coset
z `B of B in Z, often denoted z and referred to as the homology class of the cycle z.

To see how H is graded, recall that this chain complex pC, Bq can be viewed as a sequence

¨ ¨ ¨
Bn`2
ÝÑ Cn`1

Bn`1
ÝÑ Cn

Bn
ÝÑ Cn´1

Bn´1
ÝÑ ¨ ¨ ¨

with each BnBn`1 “ 0. Set Zn “ kerpBnq (the n-cycles) and Bn “ impBn`1q (the n-boundaries), and
note that Bn Ă Zn. The nth homology group of the complex is the quotient Hn “ Zn{Bn, which
measures the inexactness of pC, Bq at Cn and gives the graded structure H “ ‘nHn.

† Also note that a chain complex pC, Bq is exact if and only if its homology HpC, Bq is trivial.
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As for morphisms, H sends each chain map f : pC, Bq Ñ pC 1, B1q to the naturally induced map

f˚ : HpC, Bq Ñ HpC 1, B1q of graded groups defined by f˚pzq “ fpzq.

HW#13 Show that this map f˚ is a well defined homomorphism of graded groups of degree zero

(hint: Use the universal property of quotient groups) and that 11˚ “ 11 and pfgq˚ “ f˚g˚ (when
the composition is defined).

How to actually compute the homology of a chain complex

pC, Bq : ¨ ¨ ¨
Bn`2
ÝÝÝÑ Cn`1

Bn`1
ÝÝÝÑ Cn

Bn
ÝÑ Cn´1

Bn´1
ÝÝÝÑ ¨ ¨ ¨

This reduces to computing each Hn “ HnpC, Bq “ Zn{Bn “ kerpBnq{impBn`1q, which in turn
depends only on the chain group Cn and the incoming and outgoing boundary maps Bn`1 and Bn.
We show how to carry this out when each Cn is finitely generated and free abelian. But first:

A quick “review” of linear algebra over Z (from Father Guido Sarducci’s 5-Minute University?)

Let A be a finitely generated abelian group. Then there is an isomorphism

A – Zr ‘ Za1 ‘ ¨ ¨ ¨ ‘ Zat
for a unique nonnegative integer r (the rank of A, written rkpAq) and some list ~a “ pa1, . . . , atq of
positive integers (a torsion list for A). Note that ~a is not unique.†

The group A is free abelian iff ~a is empty or consists of 1s only, so iff A – Zr for some r.
It is a nontrivial fact (not proved here) that any subgroup B of A is then also free abelian of
rkpBq ď rkpAq. Furthermore, the quotient group A{B can be computed by diagonalizing the
inclusion map B ãÑ A, as explained in a more general setting below:

Any homomorphism Zq Ñ Zr between finite rank free abelian groups – given by an rˆ q integer
matrix M with respect to the standard bases – can be diagonalized. This means we can change
bases to reduce M to a positive diagonal matrix D “ pdijq, meaning its entries d11, . . . , dtt are all
positive for some t ě 0, and all other entries of D are zero. Such a matrix D (which is not unique)
is called a Smith Form of M , written D “ SFpMq. It is specified by its list

torpMq :“ pd11, . . . , dttq

of nonzero diagonal, which we call a torsion list for M . This list is all we need to compute homology.

We now show how to extract torpMq from M using a single operation OP = add or subtract
one row or column of M from another. Initially set torpMq “ pq, the empty list. If M “ 0 then
you’re done. Otherwise, inductively expand torpMq as follows: Let m be a nonzero entry in M
of smallest absolute value, and set |M | “ |m|. If m divides all the other entries in its row ~r and
column ~c, then 1) append |m| to the list torpMq, and 2) shrink M (using OP to zero out all the
other entries in ~r and ~c, then delete ~r and ~c) and induct on the size of M . If m does not divide
some entry in ~r or ~c, then use OP to replace M with a matrix with smaller |M |, and again induct.

Although not unique, torpMq “ pa1, . . . , atq gives important information about M . Indeed it is
geometrically evident that impMq – Zt, kerpMq – Zq´t, and

cokerpMq “ Zr{impMq – Zr´t ‘ Za1 ‘ ¨ ¨ ¨ ‘ Zat .
Note rkpMq :“ rkpimpMqq “ t and nulpMq :“ rkpkerpMqq “ q ´ t, which implies the rank plus
nullity theorem q “ rkpMq ` nulpMq in this setting.

† Since Za ‘ Zb – Zab iff gcdpa, bq “ 1, however, we can arrange for a1 ď ¨ ¨ ¨ ď at, with each ai a divisor of
ai`1, or each ai a prime power. With either modification, ~a is unique, giving the invariant or primary forms of the
classification of finitely generated abelian groups. Note: the reason for the terminology “torsion list” is that the
torsion elements in A (meaning the elements of finite order) form a subgroup TorpAq isomorphic to Za1 ‘ ¨ ¨ ¨ ‘ Zat .
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Now to compute Hn, note that the short exact sequence 0 Ñ Zn ãÑ Cn
Bn
ÝÑ Bn´1 Ñ 0 splits

since Bn´1 (as a subgroup of the free abelian group Cn) is free abelian. Thus Cn – Zn ‘Bn´1, so

cokerpBn`1q “ Cn{Bn – pZn{Bnq ‘Bn´1 “ Hn ‘ impBnq.

By the green remarks, cokerpBn`1q – Zcn´rn`1‘Za1‘¨ ¨ ¨‘Zat and impBnq – Zrn , where cn “ rkpCnq,
ri “ rkpBiq, and pa1, . . . , atq is any torsion list for Bn`1. It follows that

(˚) Hn – Zcn´prn`1`rnq ‘ Za1 ‘ ¨ ¨ ¨ ‘ Zat .

Summarizing: All we need to compute the homology of a chain complex pC, Bq whose chain
groups are all free abelian of finite rank are the torsion lists torpBnq of the boundary maps ! †

HW#14 Compute a torsion list for the 7ˆ5 matrix M whose entries in its first four rows (reading

left to right / top to bottom) are the first 20 positive integer primes, and whose remaining entries
are zero. Then use this to compute the homology of any short chain complex Z5 M

ÝÑ Z7 L
ÝÑ Zr where

L is an integer matrix of rank 2 with LM “ 0.

2.2 The Topological Step

We turn now to the construction of functors TP Ñ CC. In particular, we will describe three
such functors, defined on three increasingly large admissible categories: SC “ simplicial complexes,
CW “ cell complexes (a.k.a. CW-complexes), and finally TOP “ all topological pairs.

To explain the basic construction, we first informally describe what a simplicial complex X is
(ignoring orientation issues that complicate the picture) and define an associated chain complex
pCpXq, Bq of Z2-modules (= vector spaces over Z2) rather than Z-modules (= abelian groups) since
we are ignoring orientations. After that, we give a more precise treatment for all three categories
SC, CW, and TOP, and incorporating orientations to work over Z.

Here’s the basic idea: An n-dimensional simplex (or just n-simplex) is any subset of a euclidean
space that is the convex hull of n ` 1 “independent” points, meaning the points do not lie in any
affine space of dimension ă n. Thus simplices of dimension 0, 1, 2 and 3 are just points, closed
intervals, solid triangles, and solid tetrahedra.

A simplicial complex is a union X of simplices in some euclidean space, any two of which
intersect in a common face. Any finite formal sum (= Z2-linear combination) of the n-simplices
in X is called a (mod 2) n-chain in X. The set CnpX;Z2q of all such chains forms a Z2-vector
space, where addition is defined in the obvious way, and the zero element is just the empty linear
combination. The n-simplices in X form a natural basis for CnpX;Z2q, so all the simplices in X
form a natural basis for the graded Z2-vector space CpX;Z2q “ ‘nCnpX;Z2q.

There is a linear “boundary” map B : CpX;Z2q Ñ CpX;Z2q of degree ´1 (i.e. a sequence of linear
maps Bn : CnpX;Z2q Ñ Cn´1pX;Z2q) defined on each simplex to be the sum of all its pn ´ 1q-
dimensional faces (the two endpoints of an interval, three edges of a triangle, four triangular faces
of a tetrahedron, etc). An easy check shows B2 “ 0 (i.e. BnBn`1 “ 0 for every n; see HW#17 below).
The result is the Z2-simplicial chain complex pCpX;Z2q, Bq :

ÝÑ Cn`1pXq
Bn`1
ÝÑ CnpXq

Bn
ÝÑ Cn´1pXq ÝÑ ¨ ¨ ¨

whose homology HpCpX;Z2q, Bq, also denoted HpX;Z2q, is called the mod 2 homology of X.
Subscripts can be added to denote the graded components, e.g. HnpX;Z2q “ ker δn{imδn`1.

† If we work over a field F (with chain complexes of vector spaces over F rather than abelian groups) then noting

that linear maps between vector spaces have trivial torsion, p˚q becomes HnpC, B;F q – F cn´prn`1`rnq.
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Example The 2-simplex (solid triangle) ∆, viewed as the union of all its faces, has three vertices,
three edges, and one face (the triangle itself), has Z2-simplicial chain complex

0 Ñ Z B2
ÝÑ Z3 B1

ÝÑ Z3 Ñ 0 where B1 “

¨

˝

0 1 1
1 0 1
1 1 0

˛

‚ and B2 “

¨

˝

1
1
1

˛

‚

(The reader should verify that B1B2 “ 0).

Now for a more precise treatment:

We begin by describing the absolute objects in the various categories – i.e. a single simplicial
complex, cell complex, or topological space X, rather than a pair pX,Aq – and the morphisms
between them – called simplicial maps, cellular maps, or just (continuous) maps, respectively.
Next we define the associated chain complexes pCpXq, Bq. And at the end of the section, we
address the relative case, showing algebraically how to use CpXq and CpAq to define the relative
chain complexes pCpX,Aq, Bq when A ‰ ∅.

Simplicial Complexes SC

Simplices

Start with n` 1 points x0, . . . , xn in a euclidean space. Their convex hull is the set

rx0, . . . , xns “
!

n
ÿ

i“0

tixi

ˇ

ˇ

ˇ
ti ě 0,

n
ÿ

i“0

ti “ 1
)

.

If x0, . . . , xn are independent, meaning they do not lie in any affine subspace of dimension ă n,
then rx0, . . . , xns is called an n-simplex, with vertices x0, . . . , xn. Thus the vertices of a 1-simplex
are distinct, those of a 2-simplex are noncollinear, those of a 3-simplex are noncoplanar, etc.

HW#15 Show that the points x0, . . . , xn are independent ðñ the vectors x1 ´ x0, . . . , xn ´ x0

are linearly independent.

The coefficients pt0, . . . , tnq for any point x “
řn
i“0 tixi in a simplex σ “ rx0, . . . , xns are unique,

and are called the barycentric coordinates of x. For example the vertices of σ are the points
with one barycentric coordinate equal to 1 (and the rest 0), and it follows that they are uniquely
determined by σ, characterized geometrically as the points in σ that don’t lie in an open interval
contained entirely in σ. Thus there are exactly n! distinct ways to write σ in the form rx0, . . . , xns,
corresponding to the n! ways to reorder its vertices x0, . . . , xn. For example, a 1-simplex rx0, x1s “

rx1, x0s, and a 2-simplex

rx0, x1, x2s “ rx1, x2, x0s “ rx2, x0, x1s “ rx2, x1, x0s “ rx1, x0, x2s “ rx0, x2, x1s.

A simplex equipped with an ordering of its vertices is called an ordered simplex.

The interior of a simplex σ is called an open simplex. It is the set of all points in σ whose
barycentric coordinates are all nonzero, while the boundary Bσ of σ is the complement of its
interior. The barycenter bσ of σ is the unique point whose barycentric coordinates are all equal, so
bσ “ p1{pn` 1q, . . . , 1{pn` 1qq if σ is an n-simplex.

Faces of a simplex

Each n-simplex has 2n faces, where a face just means a simplex spanned by a subset of the
vertices. In particular, σ “ rx0, . . . , xns has n` 1 codimension one faces

σi :“ rx0, . . . , x̂i, . . . , xns for i “ 0, . . . , n

where the caret over xi indicates that it should be omitted (note that this notation depends on a
choice of ordering of the vertices).
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Simplicial complexes and simplicial maps

Strictly speaking, we’ll define finite simplicial complexes and finite cell complexes. With a little
more work, one can also define infinite ones, but as we limit our discussion to finite ones, we drop
the prefix finite.

Definition A simplicial complex X is any finite set of simplices in a euclidean space for which
a) any face of a simplex in X is another simplex in X, and b) any two simplices in X intersect in
a common face.

The union of all the simplices in X is denoted |X| (although by abuse of notation, we sometimes
simply write X for |X|, although this is an abuse of notation since the simplex decomposition is
part of the structure). A simplicial structure or triangulation of a topological space Y is a simplicial
complex X together with a homeomorphism |X| Ñ Y . Note that any simplicial complex is the
disjoint union of its open simplices.

Definition A simplicial map f : X Ñ Y between simplicial complexes X and Y is a (continuous)
map f : |X| Ñ |Y | that sends each simplex in X affinely onto a simplex in Y .

In particular, f must map vertices in X to vertices in Y , but in general it need not preserve the
dimension of every simplex. For example, it could map all of X onto a single vertex of Y .

Oriented simplices

An oriented simplex is a simplex equipped with an equivalence class of orderings of its vertices,
where the equivalence is generated by even permutations. Thus there are exactly two oriented
simplices with a given set of vertices; if σ is one such, then ´σ will denote the other. For example
the six 2-simplices displayed above are distinct as ordered simplices, whereas the first three represent
one oriented 2-simplex σ, and the last three represent ´σ.

The standard oriented n-simplex is ∆n “ re0, . . . , ens Ă Rn, where e0 is the origin, and e1, . . . , en
are the tips of the standard basis vectors in Rn.

The boundary of an oriented simplex:

The boundary Bσ of an oriented simplex σ is the union σ0 Y ¨ ¨ ¨ Y σn of its codimension one
faces, or more precisely, their signed sum:

Bσ “

n
ÿ

i“0

p´1qiσi “
n
ÿ

i“0

p´1qirx0, . . . , x̂i, . . . , xns.

Thus Bσ is an integer linear combination of oriented simplices. A priori, this definition appears to
depend on an ordering of the vertices, but in fact it does not:

HW#16 Show that Bσ is well-defined for oriented n-simplices σ, i.e. unchanged as a sum of

oriented simplices under any even permutation of the vertices of σ. (Hint: Show that Bσ changes
sign if we transpose any two adjacent vertices.)

The key to constructing a chain complex CpXq, Bq from a simplicial complex X is the observation
that the boundary of the boundary of any simplex is zero. We leave the proof of this observation
to the reader:

HW#17 Show that B2σ “ 0. (Hint: The simplex obtained from rx0, . . . , xns by omitting the ith

and jth vertices, for i ă j, is equal to pσiqj´1 and also to pσjqi.)

Before moving on to the construction of CpXq, Bq, we introduce the relevant features of other
two categories CW and TOP.
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Cell Complexes CW

Cells: An n-cell is (a copy of) the closed n-ball Bn, equipped with its natural orientation inherited
from Rn, and an open n-cell is the interior of an n-cell. A cell just means an n-cell for some n.

Cell complexes and cellular maps:

Definition A cell complex or CW complex is a space X equipped with a filtration

X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn “ X

for some n ě 0 (called the dimension of X) where X0 is a finite collection of points, and inductively
each Xk (called the k-skeleton of X) is obtained from Xk´1 by attaching finitely many k-cells. †

The attaching maps of the cells can be arbitrary continuous maps, and are usually considered as
part of the structure of the cell complex (see Hatcher pp. 5–8).

Remark A simplicial complex with oriented simplices is just a cell complex in which those
simplices are viewed as cells whose attaching maps are embeddings that map each proper face onto
another simplex. Somewhere in between simplicial and CW complexes are Hatcher’s ∆-complexes,
a.k.a. semisimplicial complexes, which we do not treat here.

In general, a cell complex X (just like a simplicial complex) is the disjoint union of the interiors
of its cells, which are embedded open balls in X, but the boundaries of its cells are not necessarily
embedded. They may have been partially or totally collapsed by the attaching process.

Definition A cellular .̇.

Can we make sense of the boundaries of the cells in a cell complex? Any pk ` 1q-cell e in a cell
complex X has an attaching map fe : Be Ñ Xk. Although fe need not be an embedding, we can
still view its image as an integer linear combination of k-cells in X:

For each k-cell c in X, the quotient space

Xk
c :“ Xk{pXk ´ c˝q

obtained by crushing the complement of c in Xk to a point, is naturally identified with c{Bc “ Sk

(via inverse stereographic projection). Noting that Be “ Sk, the composition of the attaching map
fe with the quotient map qc : Xk Ñ Xk

c

Be
fe
ÝÑ Xk qc

ÝÑ Xk
c

is a map fec : Sk Ñ Sk whose induced homomorphism ZÑ Z in any homology theory (identifying
HkpS

kq with Z) is given by multiplication by an integer dec “ degpfecq, called the Brouwer degree
of fec. In geometric terms, dec records how many times fe wraps Be around c. See below for more
details. Now define the boundary of the pk ` 1q-cell e in the cell complex X to be the following
integer linear combination of k-cells in X:

Be “
ÿ

k-cells c in X

dec c .

The fundamental notion of the degree of a map between spheres of the same dimension was
introduced by L.E.J. Brouwer in 1912, who showed that homotopic maps have equal degrees, and
in fact deg : πkpS

kq Ñ Z is a group isomorphism (by a theorem of Hopf in 1925). For smooth maps
f : Sk Ñ Sk (which represent all homotopy classes) there is a nice formula degpfq “

ř

x signpdfxq,
summed over all x P f´1pyq for any regular value y of f . So intuitively, one can think of degpfq as
the number of times f wraps the sphere around itself. Some other basic properties of deg include:

† Recall from general topology that the space X Yf e obtained by attaching a cell e to a space X via a map
f : BeÑ X is the quotient space pX\eq{px P Be „ fpxq P Xq. It is an interesting exercise to prove that if g : BB Ñ X
is any map homotopic to f , then X Yg e is homotopy equivalent to X Yf e.
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‚ deg 11 “ 0 and degpfgq “ degpfq degpgq

‚ degpfq “ 0 if f is not surjective

‚ degpfq “ ´1 if f is a reflection.

From the last property one can conclude that the degree of any fixed point free map Sk Ñ Sk is
p´1qk`1, and as consequences 1) Sk has a nonzero tangent vector field iff k is odd, and 2) if k is
even, then Z2 is the only nontrivial groups that acts on Sk. For details see Hatcher §2.2.

Topological Spaces

For an arbitrary space X, the role of an n-simplex or n-cell is played by a singular n-simplex,
meaning a (continuous) map σ : ∆n Ñ X from the standard n-simplex into X (this map need
not be one-to-one, draw pictures). The boundary of σ is defined just as in the simplicial complex
setting to be the alternating sum of its faces: Bσ “

řn
i“0 σi, where the ith face σi : ∆n´1 Ñ X is

the singular pn´1q-simplex given by σipt0, . . . , tn´1q “ σpt0, . . . , ti´1, 0, ti, . . . , tn´1q, i.e. σi “ σ ˝fi
where fi : ∆n´1 ÝÑ ∆n is the unique affine map sending ej to ej for j ă i, and to ej`1 for j ě i.†

The Associated Chain Complexes

Fix X, a simplicial complex, CW complex, or topological space. In the simplicial case, choose
arbitrarily an orientation for each simplex (one way to do this is to arbitrarily order the vertices
and then use this ordering to induce an orientation on each n-simplex for n ą 0). In the other
two cases, the orientations of the cells or singular simplices are automatic since balls are naturally
oriented, as are the standard simplices.

Let Cn “ CnpXq be the free abelian group generated by the n-simplices with their chosen
orientations (for X a simplicial complex) or the n-cells or singular n-simplices with their natural
orientations (for X a cell complex or an arbitrary topological space). In the simplicial or cellular
case, a superscript may be added to specify which chain groups are being defined, so either C∆

n

or CCW
n . The elements of Cn, called n-chains in X, are thus integer linear combinations of the

oriented (singular) n-simplices or n-cells in X.

Now the boundary map B on the generating set for CnpXq (of (singular) simplices or cells)
extends linearly to each chain group, giving boundary homomorphisms Bn : Cn Ñ Cn´1 with
BnBn`1 “ 0 for every n. Tis was verified in the simplicial case in HW#17, and the same proof
applies when X is just a space.†

Thus, depending on the context, this yields the simplicial/cellular/singular chain complex of X:

pC, Bq “ pCpX,Aq, Bq : ¨ ¨ ¨ ÝÑ Cn`1
Bn
ÝÑ Cn

Bn´1
ÝÑ Cn´1 ÝÑ ¨ ¨ ¨

with superscripts ∆ or CW when needed. Its homology HpCpXq, Bq, also denoted HpXq (again
with superscripts ∆ or CW if needed) is called the simplicial/cellular/singular homology of X.

Example k1 Compute the simplicial homology of the circle S1 viewing it as the boundary of
the standard 2-simplex re0, e1, e2s, with three vertices e0, e1, e2 and three edges re1, e2s, re0, e2s,
re0, e1s. Since the boundary of any edge rei, ejs is ej ´ ei, the associated chain complex is

0 ÝÑ Z3 B1
ÝÑ Z3 ÝÑ 0 where B1 “

¨

˝

0 ´1 ´1
´1 0 1

1 1 0

˛

‚

† Recall that the standard n-simplex is the convex hull in Rn of the origin e0 “ 0 and the tips of the standard
basis vectors e1, . . . , en, i.e. ∆n

“ re0, . . . , ens. By abuse of notation, Hatcher writes σi as σ|re0, ¨ ¨ ¨ , êi, ¨ ¨ ¨ , ens.
† Verifying B2

“ 0 is more difficult in the cellular case. We do not do this here, although it is implicitly verified
later in showing that the theories yield isomorphic homology groups for any space in the overlap between the categories
on which the theories are defined.
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which yields H0pS
1q “ cokerpB1q and H1pS

1q “ kerpB1q, both isomorphic to Z, and all the other
homology groups are trivial (consistent with HW#8). Indeed one computes torpB1q “ p1, 1q and so
the calculation follows immediately from the basic formula p˚q on page 13.

The cellular homology of S1, viewed a CW complex with one 0-cell and one 1-cell, leads to the
chain complex

¨ ¨ ¨ Ñ 0 Ñ Z B1
ÝÑ ZÑ 0

with B1 “ 0, so immediately we obtain the same groups as in the simplicial case. The singular
homology is hopeless to calculate this way; but once we verify the axioms in that case, we can just
use the sequence of a pair or Mayer-Vietoris to compute as before.

HW#18 Let K be the 1-skeleton of a 3-simplex (i.e. all its vertices and edges). Compute H1pKq.

Example k2 Compute the simplicial homology of S2, viewing it as the boundary of the standard
3-simplex re0, e1, e2, e3s. It has four vertices e0, e1, e2, e3, six edges rei, ejs for 0 ď i ă j ď 3, and
four faces rei, ej , eks for 0 ď i ă j ă k ď 3, and so (ordering the simplices lexicographically) the
associated chain complex is

0 ÝÑ Z4 B2
ÝÑ Z6 B1

ÝÑ Z4 ÝÑ 0

where

B1 “

¨

˚

˚

˝

´1 ´1 ´1 0 0 0
1 0 0 ´1 ´1 0
0 1 0 1 0 ´1
0 0 1 0 1 1

˛

‹

‹

‚

and B2 “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0
´1 0 1 0

0 ´1 ´1 0
1 0 0 1
0 1 0 ´1
0 0 1 1

˛

‹

‹

‹

‹

‹

‹

‚

To compute the homology, we find torpB1q “ torpB2q “ p1, 1, 1q, and it follows from p˚q that HnpS
2q

is infinite cyclic for n “ 0, 2 and trivial otherwise (again consistent with HW#8).

The cellular homology of S2, viewed a CW complex with one 0-cell and one 2-cell, leads to the
chain complex

¨ ¨ ¨ Ñ 0 Ñ Z B2
ÝÑ 0

B1
ÝÑ ZÑ 0

so immediately we obtain the same groups as in the simplicial case. In fact essentially the same
argument recovers the homology of any sphere with virtually no work.

HW#19 Find a triangulation of the real projective plane RP 2 with 10 triangles and use this to

compute its homology.

Such calculations in the simplicial case quickly become unwieldly because of the complexity of
triangulations of even the simplest spaces; the previous homework was designed to give you an
appreciation of this fact. For example, any triangulation of the 2-torus – say with v vertices, e
edges and f faces – requires at least 14 faces. Indeed, each face has 3 edges and each edge is shared
by 2 faces, so 3f “ 2e. Thus the Euler characteristic χ “ v ´ e ` f “ v ´ e{3 “ v ´ f{2. Since
χ “ 0 for the torus, this shows that e “ 3v and f “ 2v. But it is clear that e ď

`

v
2

˘

“ vpv ´ 1q{2,
so vpv ´ 1q ě 2e “ 6v, whence vpv ´ 7q ě 0. Thus v ě 7 and so f ě 14.

HW#20 Show that any triangulation of a closed orientable surface of genus 2 must contain at

least 21 faces. Find a general lower bound for a closed surface of Euler characteristic χ.

HW#21 Compute the homology of any connected closed surface using cellular homology.
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3. Uniqueness: cellular homology

It is a fact that any two homology theories defined on the category of (finite) CW-pairs will
agree on that category, that is, will assign isomorphic homology groups to any given CW-pair. We
prove this here for the absolute homology groups, leaving the relative case to the reader.

Fix such a homology theory H˚ and a CW-complex X. It suffices to show that HnpXq can be
computed by a scheme depending only on the cell structure of X: For each integer n ě 0, set

CnpXq :“ HnpX
n, Xn´1q

where Xn is the n-skeleton of X, and define the boundary map Bn : CnpXq ÝÑ Cn´1pXq to be the
connecting homomorphism in the sequence of the triple pXn, Xn´1, Xn´2q, i.e. Bn is the composition

Hn`1pX
n`1, Xnq

B
ÝÑ HnpX

nq
j˚
ÝÑ HnpX

n, Xn´1q.

Then BnBn´1 “ j˚B j˚B “ j˚0 B “ 0, and so we have a chain complex

pCpxq, Bq : ¨ ¨ ¨ Ñ Cn`1pXq
Bn`1
ÝÝÝÑ CnpXq

Bn
ÝÑ Cn´1pXq Ñ ¨ ¨ ¨

Theorem 3.1. HnpXq is isomorphic to HnpCpXq, Bq for every n.

Lemma 3.2. HkpX
n, Xn´1q “

#

Zcn if k “ n, where cn is the number of n-cells in X

0 otherwise

Proof. HkpX
n, Xn´1q “ rHkpX

n{Xn´1q, since pXn, Xn´1q is a good pair. But Xn{Xn´1 –W , the
union of cn copies of Sn wedged together at a point p (with regular neighborhood N), and so

HkpX
n, Xn´1q “ rHkpW q “ rHkpW,pq by the sequence of the pair pW,pq

“ rHkpW,Nq by the 5-lemma

“ rHkpW ´ intN, BNq by excision

“ ‘cn
rHkpB

n, BBnq “ ‘cn
rHkpS

nq “

#

Zcn if k “ n

0 otherwise. �

Corollary 3.3. HkpX
nq “

#

HkpXq if k ă n

0 if k ą n
, and HnpX

nq has HnpXq as a quotient.

Proof. Fix k, and consider the maps in : HkpX
n´1q Ñ HkpX

nq induced by inclusions:

HkpX
0q Ñ ¨ ¨ ¨ Ñ HkpX

k´1q
ik
ÝÑ HkpX

kq
ik`1
ÝÝÝÑ HkpX

k`1q Ñ ¨ ¨ ¨ Ñ HkpXq

Each in fits into an exact sequence Hk`1pX
n, Xn´1q Ñ HkpX

n´1q
in
ÝÑ HkpX

nq Ñ HkpX
n, Xn´1q

whose first group vanishes if n ‰ k`1 and whose last group vanishes if n ‰ k, by the lemma. Thus
in is an isomorphism if n ‰ k or k ` 1, and an epimorphism when n “ k ` 1. Therefore, for n ă k
we have HkpX

nq – HkpX
0q “ 0 (since k ą 0), for n ą k we have HkpX

nq – HkpXq, and HkpX
kq

maps onto HkpX
k`1q – HkpXq. �
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Proof. (of Theorem 3.1)

HnpX
n`1q – HnpXq

HnpX
nq

Hn`1pX
n`1, Xnq HnpX

n, Xn´1q Hn´1pX
n´1, Xn´2q

Hn´1pX
n´1q

i˚

j˚B

Bn`1

B

Bn

j˚

Since HnpX
n`1, Xnq “ 0 (by the Lemma), i˚ is onto. Since HnpX

n´1q “ 0 “ HnpX
n´2q (by the

Corollary) the j˚ maps are one-to-one. Now by the Corollary

HnpXq – HnpX
n`1q – HnpXq{impBq (by the first isomorphism theorem)

– impj˚q{impBn`1q – kerpBq{impBn`1q – kerpBnq{impBn`1q “ HnpCpXq, Bq �
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4. Verifying the axioms

In this section, we establish the Eilenberg-Steenrod axioms for singular homology. The first three
(functoriality of H and naturality of B) and the last (homology of a point) are straightforward, and
left to the reader. Thus it remains to verify the homotopy, exactness and excision axioms.

Homotopy

Fix a homotopy H : X ˆ I Ñ Y from f : X Ñ Y to g : X Ñ Y . Then there is an associated
chain homotopy P : CpXq Ñ CpY q from f# to g#, defined as the linear extension of the map on
singular n-simplices σ in X given by

Pσ “ σ0 ´ σ1 `´ ¨ ¨ ¨ ` p´1qnσn

(note the superscripts, not subscripts). Here σi is the singular pn` 1q-simplex in Y defined by

σi “ H ˝ pσ ˆ 11q ˝ ti

where ti : ∆n`1 Ñ ∆n ˆ I is the unique affine map given by

tipejq “

#

pej , 0q if j ď i

pej´1, 1q if j ą i

Thus Pσ is an alternating sum of singular pn` 1q-simplices that are the images under H ˝ pσˆ 11q
of a decomposition of ∆n ˆ I. Draw picture.

One need only check that BP ` PB “ g# ´ f#, which we illustrate when n “ 2: Label the
bottom vertices pei, 0q of ∆2 ˆ I by a, b, c, and the correponding top vertices by A,B,C. We show
that BP “ g# ´ f# ´ PB “ top - bottom - sides:

BP “ BpaABC ´ abBC ` abcCq

“ ABC ´ aBC ` aAC ´ aAB ´ pbBC ´ aBC ` abC ´ abBq ` bcC ´ acC ` abC ´ abc.

The first and last terms are the top and bottom, and the rest (after cancelling four terms) are seen
to be ´PB.

Exactness

Snake

Excision

The rough idea is to show via “subdivision” how to represent elements of HnpX,Aq by relative
cycles whose simplicies are small relative to the set U Ă A being excised, in the sense that they
never stretch from X ´A to U , and then to discard the simplices that meet U .

Definition Let U be an open cover of X. A singular simplex σ : ∆n Ñ X is U-small if its image
lies in some U P U , and a singular chain is U-small if all of its constituent simplices are U-small.

Subdivision Lemma. If U is an open cover of X, then any class in HnpX,Aq can be represented
by a U-small relative cycle.

The proof uses barycentric subdivision, a systematic procedure for decomposing simplices into
smaller ones:
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To explain this precisely, define the barycenter (or center of mass) of the standard n-simplex
∆n “ re0, . . . , ens to be the point

bn “

n
ÿ

i“0

1

n` 1
ei P ∆n ,

and the barycenter of a singular simplex σ : ∆n Ñ X to be the point bσ “ σpbnq in X (so b11∆n “ bn).

Now consider a convex subset K of some Euclidean space (e.g. a simplex). For each n, let An
denote the subgroup of the singular n chains in K generated by affine simplices σ : ∆n Ñ K,
meaning σp

ř

tieiq “
ř

tixi where xi “ σpeiq. Note that if the xi are not independent, then the
image of σ will be a lower dimensional simplex. For notational convenience, we write xx1, . . . , xny
for the map σ to distinguish it from its image rx0, . . . , xns.

Any point b in K defines a linear map b : An Ñ An`1, defined on affine simplices by

bxx0, . . . , xny “ xb, x0, . . . , xny.

Note that Bbσ “ σ ´ bBσ, that is Bb` bB “ 11, and so the map b is in fact a chain homotopy from
0 to 11. This in turn gives rise to a chain map S : A˚ œ and a chain homotopy T : A˚ œ from S
to 11, defined by S “ 11 and T “ 0 on 0-simplices, respectively, and inductively on any n-simplex σ
(for n ą 0) with barycenter b by

Sσ “ bSBσ and Tσ “ bp11´ TBqσ.

Indeed (supressing σ from the notation) we compute BS “ BbSB “ SB ´ bBpSBq “ SB ´ bSB2 “ SB
and BT “ Bbp11´ TBq “ p11´ bBqp11´ TBq “ 11´ bB ´ TB ` bBTB. But by induction, the last term
bBTB “ bp11´ S ´ TBq “ bB ´ bSB ´ bTB2 “ bB ´ S, and so

BT “ 11´ S ´ TB

as desired.

Now bootstrap ...
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5. Relation between π1 and H1

Theorem 5.1. If X is path connected, then H1pXq is the abelianization of π1pX, pq.
†

Proof. The function h : π1pX, pq Ñ H1pXq mapping rσs to σ is well defined, since any homotopy
from σ to σ1 yields a singular 2-simplex τ with Bτ “ p´ σ1 ` σ (by collapsing 0ˆ I in the domain
of the homotopy to a point; draw the picture), so σ “ σ1 (since p “ B(trivial 2-simplex)).

Furthermore, h is a homomorphism: For any loops σ, σ1 in X based at p, there is a singular
2-simplex τ with Bτ “ σ1 ´ σ ¨ σ1 ` σ (draw picture), and so σ ` σ1 is homologous to σ ¨ σ1.

Next we show that h is onto. For each x P X, choose a path
á
x from p to x, with reverse

à
x, where

á
p is the constant path at p. Then any path α : I Ñ X determines a based loop

á
α “

á
α0 ¨ α ¨

à
α1,

and so the homology class of an arbitrary cycle
ř

αi is the image of the homotopy class of
śá
αi.

Finally, we show that kerphq “ π1pX, pq
1. Since H1pXq is abelian, kerphq Ą π1pX, pq

1, so it
suffices to show that any rγs P kerphq is trivial modulo π1pX, pq

1. But working modulo π1pX, pq
1

allows one to rearrange the order of the factors in any decomposition of rγs as a product. The
hypothesis hprγsq “ 0 implies that when γ, viewed as a 1-cycle, is the boundary of some 2-chain
ř

τi. That is,

γ “ Bp
ÿ

τiq “
ÿ

pτi0 ´ τi1 ` τi2q

(also see NotesGluck/HermanSlides in my Papers/Notes/Books Folder)

6. The cohomology ring

6.1 Cohomology

6.2 Cup products

For any space X and any nonnegative integers p and q, we will define a linear map (i.e. group
homomorphism) cup product

Y : HppXq bHqpXq ÝÑ Hp`qpXq.

(or equivalently, a bilinear map Y : HppXq ˆHqpXq ÝÑ Hp`qpXq). The image of ab b is called
the cup product of a and b, denoted aY b or just ab. This product is associative, distributes over
addition (this is what bilinearity means), and is “graded” commutative, i.e. ab “ p´1qpqba. The
cohomology class 1 P H0, represented by the cocycle whose value on every 0-simplex is equal to 1,
acts as the identity.

To define the cup product, we first treat the case of simplicial homology, where it is most easily
defined on the cochain level CppXq b CqpXq Ñ Cp`qpXq. For technical reasons we initially order
all the vertices of X, inducing orderings of all the simplices, and then define

pabqrx0, . . . , xp`qs “ aprx0, . . . , xk, 0, . . . , 0sqbpr0, . . . , 0, xn´k, . . . , xnsq

† The abelianization of a group G is the quotient group G{G1, where G1 is the commutator subgroup of G (also
called its first derived subgroup) generated by all commutators rx, ys :“ xyx´1y´1 for x, y P G. Note that G1 is normal
in G since arx, ysa´1

“ raxa´1, aya´1
s. The natural projection p : G Ñ G{G1 is initial among all homomorphisms

from G to abelian groups, i.e. characterized by the universal property that for any homomorphism f : G Ñ A with
A abelian, there is a unique homomorphism g : G{G1 Ñ A such that f “ g ˝ p. In particular G1 Ă ker f , so G{G1 is
the largest abelian quotient of G. Note that if G has a presentation in terms of generators and relation, then G1 has
the same presentation with the added relations that all pairs of generators commute.
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The arguments of a and b on the right are called the front p-face and back q-face of the simplex
σ “ rx0, . . . , xp`qs, also written pσ and σq, so with this notation the definition becomes pabqpσq “
appσqbpσqq. Intuitively, we compute ab on a simplex σ by “cupping” our hands around sigma,
applying a with the left hand and b with the right, and then multiplying. Thus the name.

The coboundary maps δ : CnpXq Ñ Cn`1pXq behave like the derivative (from calculus) with
respect to the cup product. In particular, there is a product rule:

δpabq “ pδaqb` p´1qpapδbq (for a P Cp)

This can be seen by a straightforward calculation, if a bit tedious, recalling that by definition
δa “ aB. The reader should at least verify this when p “ q “ 1.†

It follows that if both a and b are cocycles, then so is a Y b, and if either one is a fortiori
a coboundary, then so is a Y b. Thus Y induces a product on cohomology, defined by ab “ ab
(i.e. pa ` Bpqpb ` Bqq “ ab ` Bp`q). The algebraic properties of Y follow easily from analogous
properties at the cochain level, except commutativity (which only occurs at the cohomology level,
and is harder to verify; see for example Theorem 3.14 in Hatcher).

Unfortunately, no such simple cochain level definition for the cup product in cellular homology
is known. For singular homology, however, we just define the front p-face and back q-face of a
singular simplex σ to be pσ “ σ ˝ fp and σq “ σ ˝ bq, where

fk, bk : ∆k Ñ ∆n

are the simplicial maps (i.e. unique “linear” extensions of maps f that send vertices to vertices,
i.e. fp

ř

tiei “
ř

tifpeiq) that send the vertices of ∆k (in order, i.e. e0, . . . , ek) to the first/last k
vertices of ∆n. Then proceed as in the simplicial case.

How to compute cup products

Here are two ways:

1) (simplicial complexes) By hand, from the definition. Here’s an example: X “ RP 2 with
triangulation a hexagon with opposite sides identified, all oriented counterclockwise, and an internal
concentric equilateral triangle with each of its vertices joined by three edges to the nearest three
vertices of the hexagon. We work over Z2 to avoid orientations. Looking at the chain complex
Z10 Ñ Z15 Ñ Z6, one can (fleshing out homework # 19) find generators for HnpRP 2q “ Z2 for
n “ 0, 1 and 2 to be any vertex, the sum of the three edges on the boundary of the hexagon, and
the sum µ of all the triangles. The “dual” generator of H1pRP 2q is given by intersecting with a
diameter x transverse to the triangulation, crossing through five triangles. For any choice of an
ordering for the vertices, we find that x intersects both the front and back faces of an odd number of
these five triangles, so evaluates to 1 on µ, so is nontrivial. Thus the cohomology ring is isomorphic
to the “truncated” polynomial ring Z2rxs{px

3q.

Maybe do another example: X “ T 2, say triangulated as a square with an internal concentric
square (plus diagonal), again with the vertices of the inner square joined with the three nearest
vertices of the outer square.

These examples should be illustrated with pictures . . .

2) (smooth manifolds) Differential Topology: Intersection pairing (via Poincaré duality), or
wedge products of forms (via the DeRham theorem).

There are probably other ways known to algebraic topology patricians.

† Evaluating the left side on r0123s gives δpabqr0123s “ pabqpBr0123sq “ pabqpr123s ´ r023s ` r013s ´ r012sq “
ar12sbr23s ´ ar02sbr23s ` ar01sbr13s ´ ar01sbr12s, and on the right, ppδaqb ´ apδbqqr0123s “ aBr012sbr23s ´
ar01sbBr123s “ par12s ´ ar02s ` ar01sqbr23s ´ ar01spbr23s ´ br13s ` br12sq which equals the left side.
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7. The basic theorems of algebraic topology

‚ Universal Coefficient Theorems (UCT) : relate homology and cohomology groups with
arbitrary coefficients to integral homology

‚ Kunneth Formulas : compute homology and cohomology of product spaces

‚ Hurewicz Theorem : relate homology and homotopy groups

‚ Whitehead Theorems : relate homology equivalence, “weak” homotopy equivalence, and
homotopy equivalence

‚ Poincaré and Leftshetz Duality : relate homology and cohomology of manifolds

‚ Freudenthal Suspension Theorem : (classical statement, 1937) for fixed k, the homotopy
groups of spheres, πn`kS

n, are independent of n for n sufficiently large (in particular, for n ě k`2).

In this section we carefully state these theorems, and give some proofs and applications.

6.1 Universal Coefficient Theorems

For any space X, abelian group G, and integer n, there exist split short exact sequences

‚ (homology) 0 Ñ HnpXq bGÑ HnpX;Gq Ñ Hn´1pXq ˚GÑ 0

‚ (cohomology) 0 Ñ ExtpHn´1pXq, Gq Ñ HnpX;Gq Ñ HompHnpXq, Gq Ñ 0

The default coefficients are Z, so HnpXq “ HnpX;Zq. Note: A ˚B is often written TorpA,Bq.

The functors b and Hom, and their “derived” functors ˚ and Ext, all map Ab ˆAb Ñ Ab,
where Ab is the category of abelian groups. They distribute over ‘ in both variables; b and ˚ are
commutative, while Hom and Ext are not. When dealing with finitely generated abelian groups A,
the operational definitions for b and ˚ are:

Ab Z – A , Zp b Zq – Zd and A ˚ Z “ 0 , Zp ˚ Zq – Zd
where d “ gcdpp, qq, and for Hom and Ext they are given by the following tables (where HompA,Bq
is the entry in the Hom table in row A and column B, etc.):

Hom Z Zq
Z Z Zq
Zp 0 Zd

Ext Z Zq
Z 0 0
Zp Zp Zd

Examples k1 When G “ Z and H˚pXq is finitely generated, UCT for cohomology becomes

HnpXq – FreepHnpXqq ‘ TorpHn´1pXqq

We provide a proof of the UCT in this case below.k2 The integral homology HnpKq of the Klein bottle K is Z for n “ 0, Z ‘ Z2 for n “ 1,
and zero otherwise. Thus the integral cohomology HnpKq is Z for n “ 0 or 1, Z2 for n “ 2, and
zero otherwise. For Zq coefficients, we have HnpK;Zqq – ExtpHn´1pKq,Zqq ‘HompHnpKq,Zqq so
setting d “ gcdp2, qq (which equals 2 or 0 according to whether q is even or odd),

H0pK;Zqq “ 0‘ Zq “ Zq
H1pK;Zqq “ 0‘ pZq ‘ Zdq “ Zq ‘ Zd
H2pK;Zqq “ p0‘ Zdq ‘ 0 “ Zd

and HnpK;Zqq “ 0 for n ą 3.
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Proof of the UCT for integral cohomology We begin with the definition of ExtpC,Zq for any
abelian group C.† First observe that for any short exact sequence

(1) 0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0

of abelian groups, the dual sequence

(1˚) 0 Ð A˚
f˚
ÐÝ B˚

g˚
ÐÝ C˚ Ð 0

is exact at B˚ (by the exactness of p1q at B and the universal property of quotient groups) and C˚,
but not necessarily at A˚. For example the dual of 0 Ñ Z ˆ2

ÝÝÑ ZÑ Z2 Ñ 0 is 0 Ð Z ˆ2
ÐÝÝ ZÐ 0 Ð 0,

which is not exact at the first Z.

Now for any abelian group C, choose a sequence p1q in which both A and B are free; such a
sequence exists since C is the quotient of a free group on any generating set. Then define:

ExtpC,Zq “ cokerpf˚q

This group can be viewed as the homology of p1˚q at A˚, so measures the inexactness of p1˚q.

To show ExtpC,Zq well defined, note (using a diagram chase) that for any other exact sequence

(2) 0 Ñ A1
f 1
ÝÑ B1

g1
ÝÑ C Ñ 0

with A1 and B1 free, there is a chain map τ from p1q to p2q that is unique up to chain homotopy.
Since chain maps induce homomorphisms on homology, it follows from the usual “universal mapping
property” argument that τ induces an isomorphism between cokerpf˚q and cokerpf 1˚q.

Examples ExtpZp,Zq “ Zp can be computed from the sequence 0 Ñ Z ˆp
ÝÝÑ Z Ñ Zp, while

ExtpZ,Zq “ 0 can be computed from 0 Ñ 0 Ñ ZÑ ZÑ 0.

Now to prove the UCT for a given space X, consider the split short exact sequence

0 Ñ Z˚ ãÑ C˚pXq
B
ÝÑ B˚ Ñ 0

of chain complexes (where Z˚ “ Z˚pXq and B˚ “ B˚pXq, with differentials o taken to be zero).
This yields a dual split short exact sequence, that on the nth level looks like

0 Ð Z˚n Ð C˚npXq
B˚

ÐÝ B˚n Ð 0 .

The associated long exact sequence is ¨ ¨ ¨ Ð B˚n
i˚n
ÐÝ Z˚n Ð HnpXq Ð B˚n´1

i˚n´1
ÐÝÝÝ Z˚n´1 Ñ ¨ ¨ ¨ where

ik : Bk ãÑ Zk are inclusions. It follows that there is a short exact sequence

0 ÝÑ cokerpi˚n´1q ÝÑ HnpXq ÝÑ kerpi˚nq ÝÑ 0.

Now cokerpi˚n´1q “ ExtpHn´1pXq,Zq (from the SES 0 Ñ Bn´1
in´1
ÝÝÝÑ Zn´1 Ñ Hn´1 Ñ 0) and

kerpi˚nq “ pHnpXqq
˚, which yields the UCT.

† The definition of ExtpC,Dq in general is obtained from this definition simply by replacing Z by D, and thus
the dual group X˚ “ HompX,Zq by HompX,Dq, and the dual f˚ : Y ˚ Ñ X˚ of any homomorphism f : X Ñ Y by
f˚ : HompY,Dq Ñ HompX,Dq (defined by f˚pφq “ φ ˝ f as usual).

For calculations in the D “ Z case, recall that if X and Y are free abelian of finite rank and f is represented with
respect to some choice of bases by the matrix A, then f˚ is represented with respect to the dual bases by AT .



28 ALGEBRAIC TOPOLOGY: HOMOLOGY AND COHOMOLOGY THEORY

6.2 Kunneth Formulas

For any spaces X and Y and integers n, there exist split short exact sequences:

‚ (homology) 0 ÝÑ pH˚X bH˚Y qn ÝÑ HnpX ˆ Y q ÝÑ pH˚X ˚H˚Y qn´1 ÝÑ 0

‚ (cohomology) 0 ÝÑ pH˚X bH˚Y qn ÝÑ HnpX ˆ Y q ÝÑ pH˚X ˚H˚Y qn`1 ÝÑ 0

where by definition, pH˚X bH˚Y qn “
À

p`q“npHpX bHqY q and similarly for H˚X ˚H˚Y , etc.

Example If K is the Klein bottle, then

H0pK ˆKq “ Z
H1pK ˆKq “ Z2 ‘ Z2

2

H2pK ˆKq “ Z2 ‘ Z2
2

H3pK ˆKq “ Z2

and HnpK ˆKq “ 0 for n ą 3.

6.3 Hurewicz Theorem

Recall the higher homotopy groups

πnpX, pq “ rpSn, sq, pX, pqs

which are honest groups for n ą 0, while π0pX, pq is just the “based” set of path components of
X. If X is path-connected, then we suppress p from the notation since the isomorphism type of
πnpX, pq is then independent of p. We say X is n-connected if πkpX, pq is trivial for all k ď n.
Thus 0-connected = path connected, 1-connected = path connected and with trivial fundamental
group), etc.

Now define the Hurewicz homomorphisms

hn : πnpXq ÝÑ HnpXq

sending rf s to f˚pωq, where ω is the “positive” generator of HnpS
nq.

Hurewicz Theorem. If X is path connected, then h1 : π1pXq Ñ H1pXq is the abelianization
homomorphism†, and if X is pn ´ 1q-connected for some n ą 1, then hn : πnpXq Ñ HnpXq is an
isomorphism.

Exercise As an application, show that Sn is pn ´ 1q-connected and that πnpS
nq – Z for all

n ą 0. Also (using the homotopy sequence of a fibration) show that π2pCPnq – Z for n ą 0.

6.4 J.H.C. Whitehead Theorems

Definition A map f : X Ñ Y is called an n-homotopy (resp. n-homology) equivalence if it
induces isomorphisms on πk (resp. Hk) for all k ă n, and an epimorphism on πn (rest. Hn). An
8-homotopy equivalence is also called a weak homotopy equivalence.

Whitehead Theorem 1. For any n pincluding 8q, a map is an n-homology equivalence if and
only if it is an n-homotopy equivalence.

Whitehead Theorem 2. Any weak homotopy equivalence between CW-complexes is a homotopy
equivalence.

† i.e. it is onto with kernel equal to the commutator subgroup of π1pXq
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6.5 Duality Theorems for Manifolds

For now, a compact m-manifold M will be said to be orientable if and only if HmpM, BMq – Z.

Poincaré Duality. If X is a closed, orientable m-manifold, then HkpXq – Hm´kpXq for all k.

Remark First stated without proof by Poincaré in 1893. The analogous theorem holds with
Z2-coefficients without the orientability hypothesis. Generalization (circa 1926):

Lefschetz Duality. If X is a compact, orientable m-manifold, then HkpXq – Hm´kpX, BXq and
HkpX, BXq – Hm´kpXq for all k.

Remark More generally HkpX,Y q – Hm´kpX,Zq for all k, for any decomposition BX “ Y YZ,
where Y and Z are disjoint unions of components of BX.

Exercises Use the theorems above to show k1 Any 1-connected closed 3-manifold Y is homotopy
equivalent to the 3-sphere. (It is now known via Perelman’s work that Y is in fact homeomorphic

to the 3-sphere.) k2 The boundary of any compact, orientable 3-manifold Y for which H1pY q

is finite is a union of 2-spheres. k3 Describe the homology of a simply-connected 4-manifold.k4 How much of the homology of a closed orientable m-manifold M is needed (working from the
bottom up) to determine all of its homology?

Sketch of a geometric proof of Poincaré duality For simplicity, assume M has a combinatorial
triangulation T ,† and let pC˚, δq denote its associated cochain complex (that can be used to compute
the cohomology of M). Note that C˚ has a natural basis consisting of the duals σ˚ of the simplices
σ in the triangulation; σ˚ assigns 1 to σ and 0 to all other simplices.

The idea is to construct a cell decomposition D dual to T , whose cellular chain complex pD, Bq
is isomorphic to pC˚, δq. In particular we will construct D and a natural isomorphism φ : C˚ Ñ D
of chain complexes (meaning Bφ “ φδ) mapping each dual k-simplex to an pm ´ kq-cell in D. It
follows that HkpMq “ HkpC˚, δq – Hm´kpD, Bq “ Hm´kpMq, which will prove Poincaré duality.
So what is this CW structure D on M dual to T , and what is the chain isomorphism φ?

Given simplices σ and τ in T , we write σ ă τ if σ is a face of τ , and then call τ a carrier of σ.
The dual bit pστ of σ in τ is the convex hull of the barycenters of all carriers of σ in τ , i.e. all the
simplices ω with σ ă ω ă τ . Draw the pictures when m ď 3. The dual cell pσ of any simplex σ in
T is the union of all its bits in all its carriers,

pσ “ Yτąσpσω.

Again draw some pictures for m ď 3.

It can be proved that if σ is a k-cell, then pσ is an pm´ kq-cell that intersects σ transversely in
one point (this uses the fact that T is combinatorial, otherwise pσ need not even be a manifold) and
that these dual cells fit together to give a CW structure on M (a particularly nice one since the
closed cells are all embedded). This is the dual cell decomposition D.

The key observation is that the boundary in pD, Bq of the dual cell of a k-simplex σ is the sum
(maybe with signs if we consider orientations?) of the dual cells of all its pk`1q-dimensional carriers

Bpσ “
ÿ

τk`1ąσ

pτ

† The “combinatorial” condition means the star of every vertex in T is a triangulation of the m-ball. Not all
triangulable manifolds have combinatorial triangulations (Edwards I think) but all smooth manifolds do. Perhaps
even more surprisingly, not all manifolds are triangulable (Kirby/Siebenmann/Manolescu I think).
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Draw some pictures when m “ 2 to show that this is plausible, although the proof is technical.
Now just define φpσ˚q “ pσ. Then Bφpσ˚q “ Bpσ “

ř

τ̂ “ φp
ř

τ˚q “ φδpσ˚q, as desired.

Some relevant pictures: T and its first barycentric subdivision T 1
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7.6 Freudenthal Suspension Theorem (for the case of spheres)

For a sketch of a quick differential topology proof, using the Pontrjagin-Thom construction, see
Francisco Lin’s posting at mathoverflow.net/questions/56435 :

At the top: The Freudenthal suspension theorem states in particular that the map

πn`kpS
nq Ñ πn`k`1pS

n`1q

is an isomorphism for n ě k ` 2. My questions is: What is the intuition behind the proof of the
Freudenthal suspension theorem?

Francesco’s answer: Maybe this differential topologic way of thinking the Freudenthal suspension
is much more intuitive. By Pontrjagin’s contruction you can identify πn`kpS

nq with equivalence
classes of framed submanifolds pN, νq of Sn`k. The image of this class under the Freudenthal
suspension homomorphism is just the framed submanifold pN, ν̃q, where we identify Sn`k with the
equator of Sn`k`1 and the frame ν̃ is obtained by ν just “adding” to ν the canonical normal frame
of Sn`k inside Sn`k`1. The fact that the map is an isomorphism for n ą k`1 can now be achieved
by general position arguments.

Maybe flesh this out ... ?


