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Real Analysis I was a rigorous treatment of single variable calculus. We began with a study
of the real numbers R, sequences of real numbers and their limits (given precisely in terms of
the ε-N definition), Cauchy sequences (and the fact that they converge), and various kinds
of subsets X of R (open, closed, bounded, compact and connected). We discussed continuity
(via the ε-δ definitions, and also in terms of sequences and open sets) and uniform continuity
of functions f : X → R, proving the Extreme and Intermediate Value Theorems, and studied
the notions of differentiability and Riemann integrability of functions.† After proving the Mean
Value Theorem, we established the Fundamental Theorem of Calculus, relating these notions.

Real Analysis II will treat the “rest” of calculus: infinite series, sequences and series of
functions (including power series and Fourier series), a little Lebesgue integration theory, a
glimpse of functional analysis, some multivariable calculus, and some applications. But first,
just for fun, we revisit the “popcorn function” P : R→ R from Real Analysis I, given by

P(x) =

{
1/q if x is rational, x = p/q in lowest terms with q > 0

0 if x is irrational .

P is continuous exactly at the irrationals I, i.e. CP = I, raising the question of whether there
exist ‘complementary’ functions Q, with CQ = Q. The answer is “no”, as first proved by Vito
Volterra at the age of 21:

Volterra’s Theorem (1881). If f, g : R → R are functions with Cf and Cg dense, then
Cf ∩ Cg is nonempty (in fact dense).

Proof. We will show that Cf ∩ Cg ∩ I 6= ∅ for any open interval I. Let ε > 0 and p ∈ I ∩ Cf .
Then for some closed interval J ⊂ I about p, the image f(J) lies in an interval of length ε,
written diam f(J) ≤ ε. Now choosing q ∈ int(J) ∩ Cg, there is a closed interval K ⊂ J about
q such that diam g(K) ≤ ε. Applying this argument repeatedly for ε = 1, 1/2, 1/3, . . . yields a
nested sequence of closed intervals In ⊂ I such that diam f(In) < 1/n and diam g(In < 1/n. It
follows that f and g are both continuous on the nonempty intersection I1 ∩ I2 ∩ I3 ∩ · · · . �

1. Convergence of sequences of functions Exercises 17 (2, 3, 7–9)

What does it mean for a sequence of functions fn :X → R to converge to a function f :X → R,
written fn → f? There are many inequivalent ways to define this notion. The two most
important are pointwise convergence fn−→p f meaning fn(x)→ f(x) for each x ∈ X, i.e.

for all x ∈ X and ε > 0, ∃N : n ≥ N =⇒ |fn(x)− f(x)| < ε ,

and uniform convergence fn−→u f meaning

for all ε > 0, ∃N : n ≥ N =⇒ |fn(x)− f(x)| < ε for all x ∈ X.
The difference is that for uniform convergence the N may be chosen independent of x, while
for pointwise convergence it may depend on x. Thus uniform convergence implies pointwise
convergence, but not conversely, as we shall see.

† Recall that f is integrable on [a, b] if and only if [a, b] − Cf has measure zero, where Cf denotes the set of
points where f is continuous.
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Geometrically, fn−→u f means that given any ε > 0, the entire graph of fn lies within an
ε-width band about the graph of f for all sufficiently large n. This condition can be restated
analytically using the notion of the sup norm

‖g‖ = supx∈X |g(x)|

of a function g :X → R; if X is compact and g is continuous, this is just the maximum value of
|g| on X, but in general it might be infinite. Since the (vertical) distance between the graphs of
fn and f is ‖fn − f‖, it follows that

fn−→u f ⇐⇒ ‖fn − f‖ −→ 0 .

Examples i1 The power functions fn(x) = xn (where unless otherwise stated, we assume
the domain and codomain are both R) do not converge pointwise, since for example fn(2) = 2n

diverges. But their restrictions gn = fn|[0, 1] converge pointwise to the function

g(x) =

{
0 if 0 ≤ x < 1

1 if x = 1 ,

This convergence is not uniform since ‖gn − g‖ −→ 1 (draw the picture). Note that the gn’s
are all differentiable, whereas g is not even continuous. This shows that the pointwise limit of a
sequence of continuous functions need not be continuous, and the same is true for differentiable
functions. What about (Riemann) integrable functions? Well, the gn’s above and their limit g
are all integrable, but consider the following example.i2 Enumerate Q = {q1, q2, . . . }, and set Qn = {q1, . . . , qn}. The characteristic functions χQn are
all integrable on any closed interval, and converge pointwise to the nonintegrable characteristic
function χQ. This shows that the pointwise limit of a sequence of integrable functions need not

be integrable.† But even if it is integrable, its integral need not be the limit of the integrals of the
functions in the sequence; you are asked to give such an example in HW 17.2 . Hint: Use bump
functions with integral 1 that are supported on small intervals.

Continuity and integrability behave better under uniform convergence, but differentiability
still misbehaves a bit:

1.1 Theorem Let fn :X → R converge uniformly to f :X → R.

a) If the fn are continuous, then so is f .

b) If the fn are integrable on [a, b], then so is f , and
∫ b
a fn →

∫ b
a f .

c) If the fn are differentiable, then f need not be, and even if it is, the sequence f ′n of derivatives
need not converge to f ′. However, if the fn are differentiable and converge to f , and in addition
f ′n converges uniformly to some function, then f is differentiable and f ′n−→u f ′.

Remark In Morgan’s text, 1.1a is Theorem 17.3 and 1.1b generalizes Theorem 17.5. In HW
17.9 you are asked to prove the first part of 1.1c by producing an example; we won’t prove the
last part here.

Proof. a) (the “ε/3 argument”) Given ε > 0, choose n so that |fn(x) − f(x)| < ε/3 for all
x ∈ X, i.e. ‖fn − f‖ < ε/3. Now for any p ∈ X, there is a δ > 0 such |fn(x)− fn(p)| < ε/3 for

† Replacing χQn by suitable bump function, with n peaks of height 1 at the points in Qn, shows that the
pointwise limit of a sequence of continuous (even differentiable) functions need not be integrable.
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any x ∈ X ∩ (p− δ, p+ δ), since fn is continuous, and so for any such x,

|f(x)− f(p)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(p)|+ |fn(p)− f(p)|
< ε/3 + ε/3 + ε/3 = ε

by the triangle inequality. Thus f is continuous at p, and thus at every point in X.

b) First we show that f is integrable. Let (Pn, P
∗
n) be a sequence of partition-sample pairs

of [a, b] for which |Pn| → 0. It suffices to show that the sequence Rn = R(f, Pn, P
∗
n) is Cauchy.

But we know that the corresponding sequence Rmn = R(fm, Pn, P
∗
n) converges for each m, since

fm is integrable, and the uniform convergence fm−→u f shows that |Rmn −Rn| < ε for m large
enough so that ‖fm − f‖ < ε/2(b− a), and the result follows from the triangle inequality.

Now that we know that f is integrable, we compute∣∣∣∣∫ b

a
fn −

∫ b

a
f

∣∣∣∣ =

∣∣∣∣∫ b

a
(fn − f)

∣∣∣∣ ≤ ∫ b

a
‖fn − f‖ −→ 0

to show that
∫ b
a fn →

∫ b
a f . �

Example fn(x) = x2 + ex
2
/n converge pointwise but not uniformly to f(x) = x2, since

limn→∞ e
x2/n = 0 for any given x while limx→∞ e

x2/n =∞ for any given n. But when restricted
to [0, 1], the convergence becomes uniform (since on [0, 1], ‖fn − f‖ ≤ e/n→ 0). Thus

lim
n→∞

∫ 1

0
(x2 + ex

2
/n) dx =

∫ 1

0
lim
n→∞

(x2 + ex
2
/n) dx =

∫ 1

0
x2 dx = 1/3.

Remark Although pointwise convergence fn−→p f does not imply uniform convergence in
general, it does provided the functions fn are nice enough, for example equicontinuous, meaning
for every ε > 0, there is a δ > 0 that can be chosen independent of n such that |x− y| < δ =⇒
|f(x) − f(y)| < ε. In particular, this implies that the fn are uniformly continuous, but it is
stronger than that. An instance of this is explored in HW 17.8.

2. The Lebesgue theory Exercises 18 (2, 5, 9)

As noted above, the Riemann integral does not behave well for pointwise convergent sequences
of functions, but the more general Lebesgue integral does. It is defined for a wider class of
functions than the Riemann integral, the (Lebesgue) measurable functions, and gives the same
answer when integrating a Riemann integrable function. The measurable functions include,
for example, the characteristic function χQ of the rationals, and more generally χS for any
(Lebesgue) measurable set S. Changing the values of any measurable function on a measure
zero subset of its domain produces another measurable function with the same integral, so in
particular, measurable functions need not be bounded. We also allow infinite valued integrals and
integrals over unbounded domains, and thus include the improper integrals studied in calculus.

Measurable sets Given an arbitrary subset S of R, consider a cover of S by countably
many intervals. This cover has a total length (the possibly infinite sum of the lengths of all its
intervals) and the infimum of the total lengths of all such covers is called the outer measure of S,
denoted µ∗(S). We say that S is measurable if µ∗(A) = µ∗(A∩S) +µ∗(A−S) for every A ⊂ R,
and in that case we define the measure µ(S) of S to be its outer measure. It can be shown that
the measurable sets include all open and closed sets, but there are many others. If one assumes
the “axiom of choice”, however, then there do exist non-measurable sets. There are analogous
definitions for subsets of Rn. See the Wikipedia articles on Lebesgue measure and the Vitali set
for more details.
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Measurable functions and the Lebesgue integral A function f : X → R is measurable
if X is measurable and f−1(U) is measurable for every open subset U of R, cf. the Wikipedia
article on Measurable functions.

Now given any function f : X → R, where X ⊂ R, let R+ be the region above X and below
the graph of f , and R− be the region below X and above the graph of f . Then it can be shown
that f is measurable if and only if both R+ and R− are measurable sets. In that case the
(Lebesgue) integral of f over X is defined by∫

X
f := µ(R+)− µ(R−)

Another way of explaining this (see Wikipedia’s article on Lebesgue integration) is that the
Riemann integral computes (or attempts to compute) this signed measure by partitioning the
domain, thus adding it up “by vertical columns”. In contrast, the Lebesgue integral computes
it by partitioning the codomain, thus adding it up “by horizontal rows”. In particular, if f is
non-negative (i.e. f(x) ≥ 0 for all x ∈ X) then∫

f dµ =

∫ ∞
0

f∗(t) dt

where f∗(t) = µ(R∩ {y = t}), and the right hand side is an improper Riemann integral.

Properties of the Lebesgue integral There are many useful theorems that specify when
one can switch the order of taking limits, integrating and differentiating. Below are two of the
most important ones, stated without proof but with examples to illustrate their application.
The first concerns interchanging limits and integration.

2.1 Lebesgue’s Dominated Convergence Theorem(DCT)Let fn :X → R be a pointwise
convergent sequence of measurable functions that are dominated by a measurable function g
(meaning |fn(x)| < g(x) for all n and all x ∈ X) for which

∫
X g is finite. Then

lim
n→∞

∫
X
fn =

∫
X

lim
n→∞

fn.

Examples k1 (Morgan 18.1) Compute lim
n→∞

∫ 2

1
x2−sinnx/n dx.

Solution The integrands are dominated on [1, 2] by x3, since | sinnx| ≤ 1, so by the DCT

lim
n→∞

∫ 2

1
x2−sinnx/n dx =

∫ 2

1
( lim
n→∞

x2−sinnx/n) dx =

∫ 2

1
x2 = 5/3.

i2 (Morgan 18.3) Compute lim
n→∞

∫ 1

0

1

nx
dx.

Solution The DCT does not apply here: If the integrands were dominated on [0, 1] by some
function with finite integral, then we would compute

lim
n→∞

∫ 1

0

1

nx
dx =

∫ 1

0
( lim
n→∞

1

nx
) dx =

∫ 1

0
0 = 0,

but this is wrong. Indeed from Calculus I, we compute∫ 1

0

1

nx
dx = lim

a→0

1

n
log x

∣∣∣∣1
a

= ∞

and so in fact lim
n→∞

∫ 1

0

1

nx
dx =∞.
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The second theorem we state concerns the process of writing integrals of measurable functions
f : X → R of two variables (so X ⊂ R2) as iterated integrals.

2.2 Fubini’s Theorem (FT) If f : X → R is non-negative valued, then
∫∫
Xf can be com-

puted as an iterated integral in either order. (This first statement is also known as Tonelli’s
Theorem.) The same is true for arbitrary f provided

∫∫
X |f | is finite.

Thus if one can show
∫∫
Xf is finite by estimating |f | and/or integrating using either order of

integration, then one can evaluate it using whichever order of integration is more convenient.

Example k1 (Morgan 18.4) Compute

∫ 10

0

∫ π/3

0
xy cosxy2 dx dy : Noting that∫ 10

0

∫ π/3

0
|xy cosxy2| dx dy <

∫ 10

0

∫ π/3

0
xy dx dy = (10π/3)2 < ∞

we compute∫ 10

0

∫ π/3

0
xy cosxy2 dx dy =

∫ π/3

0

∫ 10

0
xy cosxy2 dy dx =

∫ π/3

0

1

2
sin 100x

= − 1

200
cos 100x

∣∣∣∣π/3
0

=
1

400
+

1

200
=

3

400
.

i2 (Morgan 18.5) Compute

∫ 1

0

∫ 1

y

x2

y2
e−x

2/y dx dy , for homework.†

i3 We will use Fubini’s Theorem to show that the double integral I =
∫∫
S |f |, where S is the

unit square [0, 1]× [0, 1] and

f(x, y) =


x2 − y2

(x2 + y2)2
for (x, y) 6= (0, 0)

0 for (x, y) = (0, 0)

is infinite. Set Ixy =
∫ 1
0

∫ 1
0 f dx dy and Iyx =

∫ 1
0

∫ 1
0 f dx dy. Since f(x, y) = −f(y, x), we have

Ixy = −Iyx. If I were finite, then Fubini’s Theorem would imply Ixy = Iyx, and so both Ixy and
Iyx would be zero. But a direct calculation shows Iyx = π/4 :∫ 1

0
f(x, y) dy =

∫ 1

0

(x2 + y2)− 2y2

(x2 + y2)2
dy =

∫ 1

0

1

x2 + y2
dy +

∫ 1

0

−2y2

(x2 + y2)2
dy

=

∫ 1

0

1

x2 + y2
dy +

∫ 1

0
y
d

dy

(
1

x2 + y2

)
dy (now integrate by parts)

=

∫ 1

0

1

x2 + y2
dy +

(
y

x2 + y2

∣∣∣∣y=1

y=0

−
∫ 1

0

1

x2 + y2
dy

)
=

1

x2 + 1

and so Iyx =

∫ 1

0
1/(x2 + 1) dx = tan−1 x

∣∣∣∣1
0

= π/4.

Morgan states one other such theorem (Leibnitz’s Theorem) that specifies when one can
interchange derivatives with integrals, but we will not discuss that here.

† Be careful with the bounds of integration when switching the order of integration! Also note that this is an
improper integral, since the integrand is undefined when y = 0. If one wishes to avoid this, the integrand can be
redefined arbitrarily along the x-axis without changing the integral (since the x-axis has measure zero in R2).
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3. Infinite Series Exercises 19 (2, 4, 6, 8, 12)

An infinite series is a sum of the numbers in an infinite sequence a1, a2, a3, . . .∑∞
n=1 an = a1 + a2 + a3 + · · ·

The numbers an are referred to as the terms of the series. From this series we form the sequence

Ak :=
∑

n≤k an = a1 + · · ·+ ak

of partial sums. Thus A1 = a1, A2 = a1 + a2, A3 = a1 + a2 + a3, etc. The series is said to
converge or diverge according to whether Ak converges or diverges. If Ak does converge, say to
A, then we say that the series converges to A, and simply write

∑∞
n=1 an = A. Sometimes we

also write
∑∞

n=1 an =∞ to mean that the series “diverges to ∞”, i.e. that Ak →∞.

When considering convergence or divergence of a series, we may shorten the notation
∑∞

n=1 an
to
∑
an. This is because for any p and q,∑

n≥p an converges ⇐⇒
∑

n≥q an converges

although these “tails” of the original series will likely converge to different numbers. Two
important special types of series are the positive ones, for which the terms an are eventually
positive (“eventually” meaning “for all sufficiently large n”), and the alternating ones, for which
the terms eventually alternate in sign.

There is one very basic test for divergence of a general series:

3.1 Divergence Test If the terms in a series do not converge to zero, then the series
diverges.

You are asked to prove (the contrapositive) of this in the homework: If a series converges,
then its terms converge to zero.† Here’s an example:

∑
n diverges (to ∞) since n 6→ 0 . But be

careful, the converse need not be true, e.g. 1/n→ 0 but
∑

1/n diverges, as explained below.

Another important property of infinite series is “linearity”, which follows immediately from
the analogous properties of sequences:

3.2 Proposition If
∑
an = a and

∑
bn = b, then

∑
(an + bn) = a+ b and

∑
can = ca.

Examples k1 (geometric series) Any series
∑
an for which there is a number r (the ratio)

such that ran = an+1 is called a geometric series. Thus a general geometric series is of the form

a+ ar + ar2 + · · · =
∑∞

n=0 ar
n

If |r| ≥ 1 (and a 6= 0) then this series diverges (by 3.1), but if |r| < 1 then it converges to
s = a/(1−r) (“first term over 1 minus the ratio”). The informal proof is to note that s−rs = a,
and then solve for s. The precise proof, starting with sn − rsn = a − ar+1, then solving for sn
and taking the limit, is spelled out in Morgan’s text. An example is

1

10
+

1

100
+

1

1000
+ · · · = 1/10

1− 1/10
= 1/9

which shows .111 · · · = 1/9.

i2 (p-series) For any p > 0, the p-series is
∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+ · · ·

† You may use the following consequence of the fact that Cauchy sequences converge: A series converges if
and only if its sequence of partial sums is Cauchy . This is the basis for many proofs in this subject.
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which is known diverge if p ≤ 1 but converge if p > 1 to a value known as ζ(p). The function
ζ : (1,∞)→ R can be extended to a complex function ζ : C−{1} → C called the Riemann zeta
function, which leads to the famous “Riemann Hypothesis” whose solution is worth a million
dollars. The values ζ(p) for p even are known precisely (.g. ζ(2) = π2/6 and ζ(4)π4/90) but
other values of ζ(p) are not so simple.

The case p = 1 is everybody’s favorite divergent series, the harmonic series:

1 + 1
2 + 1

3 + 1
4 + · · ·

Why does it diverge? Here’s one very simple way to see this: add the terms up in groups as
indicated below:

1 + 1
2 + (13 + 1

4) + (15 + 1
6 + 1

7 + 1
8) + (19 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16) + · · ·
taking the first two by themselves, then the next two as a group, then the next four, eight, etc.,
doubling the size of the group at each stage. Each group clearly adds up to more than 1/2, so
the total sum is more than 1 + 1/2 + 1/2 + 1/2 + 1/2 + · · · = ∞. There’s a fancier way to do
this, and all the p-series at once, using the “integral test” for convergence. This is the first of
several important test we learn about in calculus.

Convergence Tests for Positive Series

Throughout this subsection, assume that the series
∑
an is positive. Recall that this means

an > 0 for all sufficiently large n.

3.2 Integral Test If there is a continuous, decreasing, positive, real-valued function f defined
on some positive ray (a,∞) such that f(n) = an for all sufficiently large n, then

∑
an converges

if and only if the improper integral
∫∞
a f converges (i.e. is finite).

Give the picture proof.

For example if p > 0, then applying this test to the function fp(x) = x−p for x ∈ (1,∞) gives
the p-series result stated above. Indeed, if p 6= 1 then∫ ∞

1
x−p dx =

1

1− p
x1−p

∣∣∣∣∞
1

=

{
1/(p− 1) if p > 1

diverges if p < 1

and if p = 1 we have ∫ ∞
1

1

x
dx = log x

∣∣∣∣∞
1

= ∞ .

For the next two tests we compare
∑
an with any other positive series

∑
bn whose convergence

or divergence we know.

3.2 Comparison Test a) If
∑
bn converges and bn ≥ an for all n, then

∑
an converges.

b) If
∑
bn diverges and bn ≤ an for all n, then

∑
an diverges.†

Proof. Note that b) follows from a) by interchanging the two series. For a), let Ak =
∑

n≤k an
and Bk =

∑
n≤k bn be the sequences of partial sums for

∑
an and

∑
bn. Since

∑
bn converges,

the sequence Bk is Cauchy. Since Cauchy sequences converge, it suffices to show Ak is Cauchy,
and this follows since |A` −Am| ≤ |B` −Bm| for any ` and m. �

3.3 Limit Comparison Test If an/bn approaches a positive finite limit c (i.e. 0 < c <∞)
then

∑
an converges if and only if

∑
bn converges.

The proof is essentially the same as the proof of 3.2, and is left for the reader.

† In both parts, one may replace “all n” by “all sufficiently large n”.
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Examples k1 Since n2 + 1 > n2, we have 1/(n2 + 1) < 1/n2, and so
∑

1/(n2 + 1) converges
by comparison with

∑
1/n2 (which is a convergent p-series, for p = 2).

i2 What about
∑

1/(n2−1)? One can still compare this with
∑

1/n2, but not directly. Instead,
use the limit comparison test: (1/(n2))/(1/(n2−1)) = (n2−1)/n2 → 1, so

∑
1/(n2−1) converges

since
∑

1/n2 does.

i3 By a similar argument as in k2 , if p(x) and q(x) are polynomials of degrees a and b,
respectively, then

∑
p(n)/q(n) converges if b ≥ a+ 2, and diverges if b < a+ 2, by comparison

with p-series for p = b− a.

Convergence Tests for Alternating Series

3.4 Alternating Series Test If the absolute values of the terms in an alternating series∑
an form a decreasing sequence converging to zero, then

∑
an converges.

Proof. Let A1, A2, A3, . . . denote the sequence of partial sums of
∑
an. Since the an’s alternate

in sign and decrease in absolute value, the even sequence A2, A4, A6, . . . is monotonic – say
increasing – while A1, A3, A5, . . . is decreasing. Since an → 0, it follows that A1, A2, A3, . . . is
Cauchy, and so

∑
an converges. �

Example The alternating harmonic series
∑∞

n=1(−1)n−1/n. In fact, it converges to log 2
(give a picture proof).

4. Absolute Convergence Exercises 20 (1, 3, 5, 7, 9, 10)

Definition An infinite series
∑
an is said to converge absolutely if the corresponding series

of absolute values
∑
|an| converges.

It is shown below that all absolutely convergent sequences converge, but the converse may
fail. For example the alternating harmonic series

∑
(−1)n/n converges, but not absolutely. Such

a sequence – convergent but not absolutely – is said to be conditionally convergent.

4.1 Theorem Every absolutely convergent sequence converges.

Proof. If
∑
|an| converges, then its sequence of partial sums is Cauchy. Now the difference of

any two such partial sums is an upper bound for the absolute value of the difference of the
corresponding partial sums of

∑
an, by the triangle inequality. Thus the latter sequence is

Cauchy, and so
∑
an converges. �

Rearrangeing series

Given a series
∑
an and a bijection σ : N → N, there is an associated series

∑
aσ(n) whose

terms are the same, just in a different order. Such a series is called a rearrangement of the
original one, and might diverge even if the original one converges. For example the series

1− 1 + 1
2 −

1
2 + 1

2 −
1
2 + 1

3 −
1
3 + 1

3 −
1
3 + 1

3 −
1
3 + · · ·

with partial sums 1, 0, 12 , 0,
1
2 , 0,

1
3 , 0,

1
3 , 0,

1
3 , 0, . . . converges to 0, but its rearrangement

1− 1 + 1
2 + 1

2 −
1
2 −

1
2 + 1

3 + 1
3 + 1

3 −
1
3 −

1
3 −

1
3 + · · ·

with partial sums 1, 0, 12 , 1,
1
2 , 0,

1
3 ,

2
3 , 1,

2
3 ,

1
3 , 0, . . . diverges by oscillation. A series is said to

converge unconditionally if all its rearrangements converge to the same value.
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It is known that a series converges unconditionally if and only if it converges absolutely. Here
we prove the “only if ” part, and also a surprising fact about conditionally convergent sequences:

4.2 Riemann’s Rearrangement Theorem

a) Rearrangements of absolutely convergent series will always converge, and to the same limit.

b) Conditionally convergent series can be rearranged to converge to any prescribed limit, or to
diverge to ±∞, or to diverge by oscillation.

Proof. a) Let
∑
an be an absolutely convergent series converging to A, with partial sums Ak,

and
∑
bn be a rearrangement of

∑
an, with partial sums Bk. We must show that

∑
bn converges

to A. Given ε > 0, choose k so that for all m > k,∑
n≥k
|an| < ε/2 and |Am −A| < ε/2

Now choose m, ` with k < ` < m such that {an |n ≤ k} ⊂ {bn |n ≤ `} ⊂ {an |n ≤ m}. Then
|B` −Am| < ε/2. Indeed, the first k terms in Am appear in B`, while every term in B` appears
in Am. Thus B` − Am is the sum of some of the terms in

∑
n>k an, which is less than ε/2 in

absolute value, since
∑

n≥k |an| < ε/2. It follows that

|B` −A| ≤ |B` −Am|+ |Am −A| ≤ |B` −Am|+ ε/2 < ε,

by the triangle inequality, and so
∑
bn = A. The proof of b), which is sketched in Morgan, is

left to the reader. �

We conclude with two important tests for absolute convergence, the first of computational
value, and the second of more theoretical value:

4.3 Theorem Given a series
∑
an, set

ρ = lim |an+1/an| and r = lim sup n
√
|an|

Note that ρ need not exist, but r always exists.

a) (Ratio Test) The series converges absolutely if ρ < 1, and diverges if ρ > 1. If ρ = 1 or the
limit doesn’t exist, the test fails, and the series might converge absolutely, converge conditionally,
or diverge.

b) (Root Test) The series converges absolutely if r < 1, and diverges if r > 1. If r = 1 the
test fails, and the series might converge absolutely, converge conditionally, or diverge.

The proofs of a) and b) are similar, so we prove b), leaving a) for homework. First suppose

r < 1, and choose s with r < s < 1. Then for sufficiently large n we have n
√
|an| < s, so |an| < sn.

But then the absolute convergence of the series follows by comparting it to the geometric series∑
sn. If r > 1 then the terms in the series do not go to zero, and so it diverges. �

5. Power Series Exercises 21 (1, 2, 3, 5)

Just like infinite numerical series, an infinite series of functions is a sum
∑
fn of the functions

in an infinite sequence f1, f2, f3, . . . of functions (all defined on the same domain). It is said
to converge pointwise or uniformly according to whether the corresponding sequence of partial
sums Fk =

∑
n≤k fn converges pointwise or uniformly, and to converge absolutely if

∑
|fn|

converges (pointwise or uniformly). The most quoted test for convergence in this setting is the

9
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5.1 Weierstrass M-test If ‖fn‖ ≤ Mn, where Mn > 0 and
∑
Mn converges, then

∑
fn

converges uniformly.

Proof. For each x in the commond domain of the fn’s, the numerical series
∑
fn(x) converges to

some f(x) by comparison with
∑
Mn. Thus

∑
fn converges pointwise to f , and the convergence

is uniform since

‖f −
∑

n≤k fn‖ = ‖
∑

n>k fn‖ ≤
∑

n>kMn −→ 0

as k →∞. �

Example
∑

(sinnx)/np converges uniformly for any p > 1 since |(sinnx)/np| ≤ 1/np and∑
1/np converges for all p > 1.

We now specialize from general series of functions
∑
fn to power series, in which the terms

are monomials fn(x) = anx
n. Thus a power series is just an infinite polynomial∑

anx
n = a0 + a1x+ a2x

2 + · · · .

A function that is defined by a convergent power series is called a real analytic function. As we
will see below, any real analytic function is C∞ (i.e. all its derivatives of all orders exist), but
not conversely, i.e. there exist C∞ functions that are not analytic.

We first establish a basic property of power series :

5.2 Radius of Convergenece Every power series
∑
anx

n has a unique radius of convergence
R ∈ [0,∞], such that the series converges absolutely for all |x| < R and diverges for all |x| > R.†

Furthermore, the series converges uniformly on any compact subset of (−R,R).

Examples The radius of convergence of
∑
xn/n

Proof of 5.2. Suppose the series converges at x = r. If we can show this implies absolute
convergence for |x| < |r|, then the first statement in 5.1 will follow where R = sup{r ∈
R |
∑
anr

n converges}. But convergence at x = r =⇒ anr
n → 0, so |anrn| ≤ 1 for sufficiently

large n. Thus for |x| < |r|,

|anxn| = |anxnrn/rn| ≤ |x/r|n

and so
∑
anx

n converges absolutely by comparison with the convergent geometric series
∑
|x/r|n.

To prove the series converges uniformly on compact subsets of (−R,R), it suffices to show it
does so on [−P, P ] for any P < R : The series converges at any Q for P < Q < R, so |anQn| → 0,
whence |anQn| ≤ 1 for sufficiently large n. Thus for |x| ≤ P ,

|anxn| ≤ |anPn| ≤ |anPnQn/Qn| ≤ (P/Q)n

and so
∑
anx

n converges uniformly on [−P, P ] by the Weierstrass M -test, comparing it with
the convergent geometric series

∑
(P/Q)n. �

From 5.2 and Theorem 1.1b (the integral and limit can be exchanged for uniformly convergent
sequences of functions), it follows that any power series can be integrated term by term:

5.3 Corollary If
∑
anx

n has radius of convergence R > 0 and [a, b] ⊂ (−R,R), then∫ b

a

∑
anx

n dx =
∑∫ b

a
anx

n dx =
∑ anx

n+1

n+ 1

∣∣∣∣b
a

† Thus the interval of convergence of the series is either (−R,R), [−R,R), (−R,R] or [−R,R].
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Example The geometric series
∑∞

n=0 x
n converges iff x < 1, so has radius of convergence

R = 1. Thus for any b < 1 we can compute∫ b

0
(1 + x+ x2 + · · · ) dx = x+

x2

2
+
x3

3
+ · · ·

∣∣∣∣b
0

= b+
b2

2
+
b3

3
+ · · ·

But also note that the integrand on the left hand side is a geometric series converging to 1/(1−x),
and so the left hand side equals log 1/(1− b). For example if b = 1/2 or 2/3, then we obtain the
series expansions

log 2 =
1

2
+

1

8
+

1

24
+ · · · log 3 =

2

3
+

4

18
+

8

81
+ · · ·

Now there is a nice formula for the radius of convergence R of any power series :

5.4 Formulas for R (Hadamard’s Root Formula) The radius of convergence of
∑
anx

n is

R = lim sup |an|−1/n

which is just 1/ρ for the ρ from the root test for
∑
an.

(Ratio Formula) A simpler formula, often easier to calculate but not always applicable, is R =
limn→∞ |an/an+1| (if that limit exists). This is just 1/r for the r from the ratio test for

∑
an.

Proof. Set r̄ = lim sup |an|−1/n and ρ̄ = lim |an/an+1| (if it exists). For any fixed x, set r =

lim sup |anxn|1/n and ρ = lim |an+1x
n+1/anx

n| (if it exists). Thus r = |x|/r̄ and ρ = |x|/ρ̄, so
r < 1 ⇐⇒ |x| < r̄ and ρ < 1 ⇐⇒ |x| < ρ̄. By the root (resp. ratio) test, the series converges
absolutely at x if |x| < r̄ (resp. |x| < ρ̄) and diverges if |x| > r̄ (resp. |x| > ρ̄). By definition,
this shows that R = r̄, and R = ρ̄ (if the latter exists). �

Hadamard’s formula has an important consequence with regard to two series associated with
a given one

∑
anx

n, its derived series
∑
nanx

n−1, and its antiderived series
∑
anx

n+1/(n+ 1),
obtained respectively by differentiating and anti-differentiating the original series term by term.

5.5 Corollary Let
∑
anx

n be a power series with radius of convergence R. Then the derived
and antiderived series of

∑
anx

n also have radius of convergence R, and converge in (−R,R) to
the derivative f ′ and antiderivative

∫
f of the analytic function f represented by

∑
anx

n. Thus
any power series can be differentiated and antidifferentiated term by term without changing the
radius of convergence, which implies in particular that real analytic functions are C∞.

Proof. Multiplying the derived series by x yields another series
∑
nanx

n with the same radius
of convergence (since the former converges at x = a, say to b, if and only if the latter converges
at x = a to ab) which we compute by Hadamard’s formula to be

lim sup |nanxn|−1/n = lim sup |anxn|−1/n = R

since n−1/n = 1 (e.g. by L’Hôpital’s Rule). Thus the derived series has radius of convergence R.

Now the derived series converges to some function g on (−R,R). Fix any x ∈ (−R,R) and
choose P so that −R < P < x. It was shown above that g can be integrated term by term, so∫ x

P
g = f(x)− f(P )

Taking derivatives of both sides with respect to x (using the Fundamental Theorem of Calculus
for the left side) shows that g(x) = f ′(x).

Repeating the argument above for the antiderived series in place of the original series shows
that both have the same radius of convergence, and that the former converges to

∫
f . �
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One consequence of all this is Taylor’s explicit formula for the terms in the power series
expansion of a real analytic function :

5.6 Taylor’s Theorem If f(x) =
∑
anx

n is a real analytic function, then an = f (n)(0)/n!,

where f (n) denotes the nth derivative.

Proof. Differentiating n times gives f (n)(x) = n!an+[(n+1)!/1!]an+1x+[(n+2)!/2!]an+2x
2+· · · ,

and so f (n)(0) = n!an. Now divide by n! �

6. Fourier Series Exercises 22 (3, 4, 5) and 24 (1)

DID NOT TEX UP NOTES FROM THE REST OF THE SEMESTER ...
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