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I Rings

§1. Basics

Assume familiarity with

Definition ring R, ring morphism f : R → S (and all refinements epi/mono/iso/endo/auto-
morphism), ker(f) and im(f) = f(R), subring S < R, ideal J C R, quotient ring R/J

Examples of rings: Z, Zn, Q, R, C,H, R[x], Mn(R), R× S
morphisms: “evaluation” R[x]→ R, f → f(a) (for fixed a ∈ R)

the “natural projection” R→ R/J, r 7→ r + J

ideals: the “trivial” ones 0 and R in any ring R, ker(f) C R for f : R→ S

Remarks i1 ker(f) = 0⇐⇒ f is 1-1 (i.e. f is a monomorphism)i2 If f : R→ S is a ring morphism, then

a) (First Isomorphism Theorem) R/ ker(f) ∼= f(R) (via the map sending r + ker(f) to f(r))

b) (Correspondence Theorem) J ↔ f(J) is a 1-1 corresp between the ideals in R that contain
ker(f), and the ideals in Im(f).

Proof i1 If ker(f) = 0, then f(x) = f(y) =⇒ f(x− y) = f(x)− f(y) = 0 =⇒ x− y = 0, i.e.
x = y. Thus f is 1-1. The converse is obvious.i2 a) Exercise. b) The inverse of J 7→ f(J) is the map sending any L C f(R) to f−1(L), the
full preimage of L under f :

ff−1(L) = L ⊂ holds in general, and ⊃ holds since L ⊂ f(R)

(s ∈ L =⇒ s = f(r), r ∈ R, i.e. r ∈ f−1(s) =⇒ s = f(r) ∈ ff−1(L))

f−1f(J) = J The inclusion ⊃ holds in general (for any function f), and ⊂ holds since ker(f) ⊂ J
(r ∈ f−1f(J) =⇒ f(r) = f(j) for some j ∈ J =⇒ f(r − j) = 0, i.e. r − j ∈ ker(f) ⊂ J =⇒ r ∈ J).

It remains to show J C R ⇐⇒ f(J) C f(R): (=⇒) f(r) ∈ f(R), f(j) ∈ f(J) =⇒ f(r)f(j) =
f(rj) ∈ f(J), (⇐=) r ∈ R, j ∈ J =⇒ f(rj) = f(r)f(j) ∈ f(J) =⇒ rj ∈ f−1f(J) = J .

Further notions in a ring R (treated in the first homework assignment)

a) sum and product of ideals A,B C R :

A+B = {a+ b | a ∈ A, b ∈ B}
AB = {a1b1 + · · ·+ anbn | ai ∈ A, bi ∈ B}

Both are ideals in R (exercise).

Example If R = Z, A = aZ and B = bZ, then A+B = gcd(a, b)Z and AB = abZ.
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b) special proper ideals J�|R maximal: J ⊂ K�|R =⇒ J = K

prime: (R commutative) ab ∈ J =⇒ a ∈ J or b ∈ J (for a, b ∈ R)
(in general) AB ⊂ J =⇒ A ⊂ J or B ⊂ J (for A,B C R)

c) special elements r ∈ R zero divisors: r 6= 0 and ∃ s 6= 0 with rs = 0 or sr = 0

nilpotent elements: rn = 0 for some n ∈ N

units (if R has 1): ∃ s ∈ R with rs = sr = 1 (a 2-sided inverse of r)
Two sided inverses are unique (s = srs′ = s′) so usually denoted r−1.

Remarks i1 As will be seen in the homework, A+ B is the smallest ideal containing both A
and B, A ∩B is largest contained in both, and AB ⊂ A ∩B (but not necessarily equal).i2 In a commutative ring R with 1, every maximal ideal is prime,† but not conversely (e.g. 0 C Z
is prime but not maximal; also see homework).i3 Any nonzero nilpotent element is a zero divisor, but not conversely. For example in Z12 we
have 2 · 6 = 0 , so both 2 and 6 are zero divisors. In this ring, 2 is not nilpotent (no power of 2
is divisible by 6) but 6 is (62 = 0). The set of all nilpotent elements in a ring is explored in the
homework.i4 In a ring with 1, the sets R◦ of all zero divisors and R· of all units are disjoint (exercise). R· is
a group under multiplication (exercise). For example, Mn(R)· (R a commutative ring) is the group
of matrices whose determinants are units in R; we explore this group in the homework, where you
are asked to show (among other things) that M2(Z2)· ∼= S3.

Definition Let R be a commutative ring with 1 6= 0. R is called an integral domain (or simply
domain) if it has no zero divisors (which means ab = 0 =⇒ a = 0 or b = 0, or equivalently ab = ac
and a 6= 0 =⇒ b = c). R is called a field if every nonzero element is a unit. Thus field =⇒ domain,
but not conversely (e.g. Z is a domain that is not a field).

Remarks i1 R is a domain ⇐⇒ {0} C R is prime (exercise)i2 R is a field ⇐⇒ R has no nontrivial proper ideals (exercise)i3 An ideal J�|R is prime ⇐⇒ R/J is a domain, and is maximal ⇐⇒ R/J is a field (homework,
using i2 and the correspondence theorem)

HW#1 (Arithmetic of Ideals) Let A and B be ideals in a ring R. You may assume that it has
been shown already that A+B and AB are ideals.

(a) Prove that A+B is the smallest ideal of R containing both A and B.

(b) Prove that AB ⊂ A ∩B.

(c) Prove that if R is commutative with 1 and A+B = R, then AB = A∩B, but that in general
equality may fail (give an example).

HW#2 (Prime/Maximal Ideals) Let R be a commutative ring with 1 6= 0.

†If J C R is maximal and ab ∈ J with a 6∈ J , then K = {j + ra | j ∈ J, r ∈ R} is an ideal (verify this) and so by
maximality must be all of R. Thus 1 = j + ra for suitable j, r, so b = jb+ rab ∈ J . Note: without 1 ∈ R, this may
fail; e.g. 4Z C 2Z is maximal but not prime.
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(a) Prove that a proper ideal J�|R is prime ⇐⇒ R/J is a domain, and is maximal ⇐⇒ R/J is
a field.

(b) Give another proof (different from the notes) that any maximal ideal in R is prime, using (a).

(c) Prove using (a) that (x) C Z[x] is prime but not maximal.

HW#3 (Nilpotence) Let N be the set of nilpotent elements in a ring R.

(a) Prove that if R is commutative, then N is an ideal in R which is contained in every prime
ideal in R. Hint: Use the binomial theorem to show closure under addition. (It can be shown
that N is in fact the intersection of all prime ideals in R; it is called the nilradical of R.)

(b) Show by example that N need not be an ideal if R is not commutative. (There is an easy
example in the ring of integer 2× 2-matrices.)

(c) Show that if R is commutative with identity 1, then any sum u + x, where u is a unit and
x ∈ N , is a unit. (Hint: first show that 1− x is a unit by factoring 1− xn for suitable n.)

HW#4 (Units) Recall that if R is a commutative ring with 1 6= 0, the group Mn(R)· consists of
all matrices A ∈Mn(R) with det(A) ∈ R·.

(a) List the elements in M2(Z2)·, and give an explicit isomorphism
M2(Z2)· → S3 (where S3 is the symmetric group of degree 3).

(b) Find the order of the group M2(Z4)·.
HW#5 Prove that every finite integral domain R is a field. (Hint: For any r 6= 0 in R, consider

the map R→ R, x 7→ rx)

Quadratic Integer Rings

Fix a “square free” integer d (i.e. d is not divisible by the square of any prime) and consider
the integral domain

Z[
√
d] = {a+ b

√
d | a, b ∈ Z}

which equals Z if d = 1, is a dense subset of R if d > 1,† and is a “lattice” in C if d < 0 (picture).

Remarks i1 Z[
√
d] is closely related to a classically studied ring Od of “quadratic integers”

(see page 229 in the text for the definition). In fact

Od =

{
Z[
√
d] when d ≡ 2 or 3 (mod 4)

Z[(1 +
√
d)/2] when d ≡ 1 (mod 4)

(Note that d 6≡ 0 (mod 4) since d is square free.) In particular, O−1 = Z[i], the Gaussian integers.i2 the expression a+ b
√
d for elts in Z[

√
d] is unique, i.e.

a+ b
√
d = a′ + b′

√
d =⇒ a = a′, b = b′

†This follows from a classical result of Oresme from the 14th century (proved using the “pigeon-hole” principle)
that for any irrational number r (in our case r =

√
d), the orbit of a point on the circle under all rotations by integer

multiples of 2πr is dense in the circle.
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since
√
d is irrational (because d is square free).

Define the algebraic norm N : Z[
√
d]→ Z by

N(a+ b
√
d) = |a2 − b2d|

or equivalently N(x) = |xx| where by definition

a+ b
√
d = a− b

√
d.

(Note: the absolute values are not needed when d < 0.)
If d < 0 then x is just the complex conjugate of x, so in this case

N(x) = |x|2,

the square of the length of x. This observation is useful for determining the units in Z[
√
d], and

more generally for factoring in Z[
√
d] (see below).

In general the map x 7→ x is an involution (i.e. an endomorphism of order two) on Z[
√
d] and

so N is “multiplicative”
N(xy) = N(x)N(y)

(proof: N(xy) = |xyxy| = |xyx y| = |xx||yy| = N(x)N(y)).
Beware: N is not additive, i.e. N(x+ y) need not equal N(x) +N(y).

Application Find Z[
√
d]·. Key observation:

x is a unit in Z[
√
d]⇐⇒ N(x) = 1

Proof: If x is a unit, then by hypothesis the complex number 1/x is in Z[
√
d] =⇒ N(x)N(1/x) =

N(1) = 1 =⇒ N(x) = 1. Conversely, N(x) = 1 =⇒ 1/x = x/(xx) = ±x/N(x) = ±x ∈ Z[
√
d], so x

is a unit.

So the units a+ b
√
d correspond to the solutions a, b to Pell’s Equation:

a2 − b2d = ±1

It follows that there are only finitely many units when d < 0 (homework).
In contrast, this equation can be used to find infinitely many units when d > 0. For example,

u = 1+
√

2 is a unit in Z[
√

2] since 12−12 ·2 = −1, and so the powers of u form an infinite family of
units (these are distinct since |u| 6= 1). You are asked in the homework to carry out an analogous
argument for d = 3, 5, 6 and 7.

HW#6 ia Show that Z[
√
d] has only finitely many units for each d < 0, and find them all. (Hint:

use the geometry of C)ib Find infinitely many units in Z[
√
d] for d = 3, 5, 6 and 7.
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§2. Principal Ideal Domains and Unique Factorization

For any subset S of a ring R, there is a unique smallest ideal in R containing S, namely the
intersection of all ideals containing S. This ideal is called the ideal generated by S, and is denoted
by (S). If S has only one element s, then (S) = (s) is called a principal ideal.

If R is commutative with 1, then can describe (S) explicitly by

(S) = {r1s1 + · · ·+ rnsn | ri ∈ R, si ∈ S}

(exercise; for ⊂ observe that any s ∈ S can be written as 1s). In particular the principal ideal
(s) = Rs = {rs | r ∈ R}.

Definition A principal ideal domain (PID) is a domain in which all ideals are principal.

Examples i1 Any field F is a PID: the only ideals are (0) and F = (1).i2 Z is a PID. Proof: Given J C Z, J 6= 0, choose a smallest positive element m ∈ J . Then m
divides every j ∈ J . (If not, some j = qm+ r with 0 < r < m. But then r = j − qm ∈ J =⇒⇐=).
Thus J = (m).i3 F [x] is a PID for any field F . Proof. Given J C F [x], J 6= 0, choose a non-zero polynomial f ∈ J
of smallest degree. Then any g ∈ J is a multiple of f , i.e. J = (f). (If not, some g = qf + r with
r 6= 0, deg(r) < deg(f), by the “division algorithm” – see below. But then r = g− qf ∈ J =⇒⇐=.)i4 Not all quadratic integer rings are PID’s (for d < 0, Od = PID ⇐⇒ |d| = 1, 2, 3, 7, 11, 19, 43, 67
or 163: very hard result of H.Stark 1967; unknown for d > 0 – even whether ∃ finitely many such
d’s). One approach is via “Euclidean norms”, generalizing i2 and i3 .

Definition A norm on a domain R is a function

N : R→ Z

satisfying N(0) = 0 and N(r) ≥ 0 for all r ∈ R; it is positive if N(r) > 0 for r 6= 0. The norm
N on R is Euclidean if it satisfies the “division algorithm” below, in which case the pair (R,N) is
called a Eucidean domain (ED).

Division Algorithm ∀ a, b ∈ R− 0, ∃ q, r ∈ R with r = 0 or N(r) < N(b) such that a = bq + r.
(Note: q, r need not be unique, cf. HW #7a below.)

Theorem 2.1 ED =⇒ PID

Proof Suppose (R,N) is a ED. Given 0 6= J C R, choose m ∈ J − 0 with N(m) minimal. Then
every j ∈ J is divisible by m. (If not, some j = qm + r with r 6= 0 and N(r) < N(m). But then
r = j − qm ∈ J =⇒⇐=). Thus J = (m).

Examples i1 (Z, | |) and (F [x],deg) are ED’s.i2 (Od, N)† = ED (and thus a PID) if and only if d is one of the numbers−11,−7,−3,−2,−1, 2, 3, 5,
6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 (Inkeri 1949, Chatland-Davenport 1950). ∃ examples, e.g.
O69, that are Euclidean but not wrt N (Clark 1994).

†Here N is the algebraic norm, N(a+ b
√
d) = |a2 − b2d|.
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The case d < 0 uses the geometry of N(x) = |x|2 (which is defined and multiplicative on all of
C). For example, if d = −1 (the Gaussian integers), then for a, b ∈ Z[i], let q = closest pt in Z[i] to
a/b. Then a/b = q + s where s := a/b− q, N(s) ≤ 1/2 (by geometry). Multiplying by b get

a = qb+ r

where r = sb, and N(r) = N(s)N(b) ≤ N(b)/2 < N(b). So (Z[i], N) is Euclidean (and thus a PID).

HW#7 Show that (a) (O−2, N) is Euclidean, while (b) (O−5, N) is not (hint: try to apply the
division algorithm to a = 1 +

√
−5, b = 2)

Challenge Show that O−5 is not a Euclidean domain (wrt any norm)

Remark (J. Green 1997) There is a characterization of PID’s in terms of norms: A domain R
is a PID ⇐⇒ ∃ a positive Dedekind-Hasse norm N on R, meaning that ∀a, b ∈ R, either

(1) b|a or (2) ∃ r 6= 0 in the ideal (a, b) with N(r) < N(b).

Divisor Theory in commutative rings R

Definition Let R be commutative with 1 6= 0, and a, b be non-zero elements of R. We sayia b divides a, written b|a, if a = rb for some r ∈ R, or equivalently in terms of ideals, (a) ⊂ (b).ib a, b are associates, written a ∼ b, if a|b and b|a, or equivalently, (a) = (b). For example the
associates of 1 are the units in R: (u) = R ⇐⇒ u ∈ R·. If R is a domain, then a ∼ b⇐⇒ a = ub
for some u ∈ R· (exercise).ic d is a greatest common divisor of a and b, written d = gcd(a, b), if d is a common divisor
of a and b, and any common divisor of a and b divides d, or equivalently (a), (b) ⊂ (d) and
(a), (b) ⊂ (c) =⇒ (d) ⊂ (c), i.e. (d) is the smallest principal ideal containing (a, b). Such an ideal
need not exist† and so gcd’s need not exist. Note however that if they exist, then any two are
associates, by ib .

Examples of gcd’s i1 In Z, the Euclidean Algorithm (repeated appl of the division algorithm)
finds d =gcd(a, b) quickly: Start with a > b. Then

a = � b+ r1

b = � r1 + r2

r1 = � r2 + r3
...

rn−2 = � rn−1 + rn

rn−1 = � rn

where the �’s indicate appropriate quotients, with remainders r1 > · · · > rn.

Claim: d = rn. Proof: Working up from the bottom we have

rn|rn−1 =⇒ rn|rn−2 =⇒ · · · =⇒ rn|r1 =⇒ rn|b =⇒ rn|a
†e.g. there is no smallest principal ideal in Z[

√
−5] containing (2, 1 +

√
−5) (exercise).
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and working down from the top c|a, b =⇒ c|r1 =⇒ c|r2 =⇒ · · · =⇒ c|rn.
Moreover, working up from the bottom we can efficiently find r, s ∈ Z such that gcd(a, b) =

ra + sb. Indeed the penultimate equation gives d = rn as a linear combination of rn−1, rn−2, and
the equation before then gives rn−1, and thus d, as a linear combination of rn−2, rn−3, etc. For
example if a = 28 and b = 10, then

28 = 2 · 10 + 8

10 = 1 · 8 + 2

8 = 4 · 2

so gcd(28, 10) = 2 = 10− 8 = 10− (28− 2 · 10) = −1 · 28 + 3 · 10.i2 Similarly in F [x], or any Euclidean domain, can use the division algorithm repeatedly to find
the gcd of any two elements, and to express it as a linear combination (with coefficients in the
domain) of the two elements. More generally:

Lemma 2.2 (gcd’s in PID’s) Let R be a PID. Then any two nonzero elements a, b have a gcd
which can be expressed as a linear combination of a and b with coefficients in R.

Proof The ideal (a, b) = (a) + (b) is principal, since R is a PID, so (a, b) = (d) for some d. Thus
(d) is the smallest principal ideal containing (a, b), i.e. d = gcd(a, b), and since d ∈ (a, b), it follows
that d is a linear combination of a and b.

Exercise Define the notion of least common multiple (lcm) and show that any two nonzero
elements a, b in a PID have an lcm.

Lemma 2.3 Let R be a PID and J be a nonzero ideal in R. Then J prime ⇐⇒ J maximal.

Proof (=⇒) By hypothesis J = (p) for some p 6= 0. Choose an arbitrary ideal (m) ⊃ (p). Claim
(m) = (p) or R. Well p ∈ (m) =⇒ p = rm for some nonzero r ∈ R =⇒ r or m ∈ (p) (since (p) is
prime). Case i1 r ∈ (p). Then r = ps some s ∈ R =⇒ r = rms =⇒ sm = 1 (since R is a domain)
=⇒ m ∈ R·, so (m) = R. Case i2 m ∈ (p). Then (m) ⊂ (p), so (m) = (p). Thus (p) is maximal.

(⇐=) If (m) maximal, then R/(m) is a field =⇒ R/(m) is a domain =⇒ (m) prime (by HW2b).

Definition A nonzero, nonunit element p in a domain R is calledi1 prime if p|ab =⇒ p|a or p|b.
Equivalently, in terms of ideals, ab ∈ (p) =⇒ a or b ∈ (p), i.e. the ideal (p) is primei2 irreducible if p = ab =⇒ a or b is a unit in R.
Since R is a domain, this means a|p =⇒ a is a unit or an associate of p, or in terms of ideals,
(p) ⊂ (a) =⇒ (a) = R or (a) = (p), i.e. the ideal (p) is maximal among proper principal ideals

Corollary 2.4 In a PID (e.g. in Z), a nonzero nonunit is prime ⇐⇒ it is irreducible

Proof This is immediate from 2.3 and the ideal characterization of the definitions.†

More generally for elements in a domain, prime =⇒ irreducible (HW8) but⇐= may fail (HW9).†

†Here’s another proof that does not use the ideal characterization of the definitions: Suppose p|ab. Since p is
irreducible, gcd(p, a) ∼ p or a unit =⇒ either p|a, and we’re done, or rp+ sa = 1 for some r, s (by Lemma 2.2), which
implies rpb+ sab = b, and so p|b.
†The situation is more complicated for rings that are not domains. For example in Zn, irreducible =⇒ prime

always, but prime =⇒ irreducible only sometimes (when n is a square?)
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HW#8 Show that in any domain, prime elements are always irreducible (cf. the proof of 2.3).

HW#9 Show 3 ∈ Z[
√
−5] is ia irreducible, but ib not prime.

(Hint: use the norm, and note that 9 = 32 = (2 +
√
−5)(2−

√
−5)).

Remarks i1 In Z[
√
d], the multiplicativity of the norm N , and the fact that N(x) = 1⇐⇒ x is

a unit, make N a useful tool in investigating questions of irreducibility and primality. In particular
these properties show that if N(x) is not the product of two smaller norms of elements in Z[

√
d]

(e.g. if N(x) is prime in Z), then x is irreducible in Z[
√
d].i2 Primes in Z need not remain prime in Z[

√
d]. For example 2 and 5 are not prime in Z[i],

since 2 = (1 + i)(1 − i) and 5 = (2 + 1)(2 − i), but 3 is, e.g. because N(3) is not the product of
smaller norms of elements in Z[i] (to see this, record some norms on the lattice to see a pattern).

Definition A unique factorization domain (UFD) is a domain R for which every element r which
is nonzero and not a unit can be “uniquely” factored into irreducibles:

(∃) r = p1 · · · pn for suitable irreducible pi’s

(!) this decomposition is unique up to associates, i.e. r = q1 · · · qk with qi irreducible =⇒ n = k
and (after renumbering) pi ∼ qi for all i.

Theorem 2.5 PID =⇒ UFD

Proof Let R be a PID and r be a nonzero, nonunit element of R. Note that by Corollary 2.4,
irreducible = prime in R.

(∃) Suppose some r cannot be factored into primes. In particular r is not prime, so it is
reducible: r = a1b1 with a1, b1 6∈ R·. Now at least one of a1 or b1 has no prime factorization
(since otherwise, r would have one), say a1. In the same way a1 = a2b2 where a2 has no prime
factorization and b2 6∈ R·, etc. This gives a strictly ascending sequence of ideals

(a1) $ (a2) $ (a3) $ · · ·

But this cannot be: The union ∪(ai) is an ideal so = (a) for some a, since R is a PID. Thus a lies
in some (an), which implies (an+1) ⊂ (a) ⊂ (an) , so (an+1) = (an), a contradiction.

(!) If p1 · · · pn = q1 · · · qk then p1 | q1 · · · qk =⇒ p1 | some qi (say q1 after reordering if necessary)
since p1 is prime, =⇒ p1 ∼ q1 since q1 is irreducible. We now cancel p1 and q1 (up to a unit
multiplier) and then proceed by induction.

Remarks i1 In this proof, showed PID satisfies the ascending chain condition (ACC) for ideals:

J1 ⊂ J2 ⊂ · · · =⇒ ∃n, Jn = Jn+1 = · · · ,

which is equivalent to the condition that every ideal is finitely generated (exercise). Any domain
with this property is called a Noetherian domain (named after Emmy Noether, who taught at Bryn
Mawr in the 1940’s and is buried in the Cloisters).
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i2 UFD 6=⇒ PID, e.g. Z[x] is a UFD (see §3) but not a PID, e.g. J = (2, x) is not principal.
(Proof: If J = (f) for some polynomial f , then 2 would be a multiple of f =⇒ f ≡ ±1 or ±2, by
degree considerations. But f = ±1 =⇒ (f) = Z[x] =⇒⇐=, since all polys in J have even constant
term, and f = ±2 =⇒ 2|x =⇒⇐=.)

Theorem 2.5 =⇒

Fundamental Theorem of Arithmetic Z is a UFD

Corollary (Euclid) ∃ infinitely many primes in Z

Proof If not, let p = largest prime. then p! + 1 leaves remainder of 1 upon division by any
prime, hence has no prime factorization =⇒⇐=

Remarks i1 UFD’s have gcd’s and lcm’s, namely

gcd(
∏
prii ,

∏
psii ) =

∏
p
min(ri,si)
i lcm(

∏
prii ,

∏
psii ) =

∏
p
max(ri,si)
i

(allowing ri, si = 0).i2 prime ⇐⇒ irreducible for elements in a UFD

Proof: (=⇒) HW#8 (⇐=) p irred, p|ab =⇒ ab = pc, some c. Writing a, b, c as products of
irreducibles, uniqueness shows p|a or p|b.

However ∃ nonzero prime ideals which are not maximal in some UFD’s (e.g. (x) C Z[x] is not
maximal, since (x) ( (2, x) C Z[x], or alternatively, since Z[x]/(x) ∼= Z is not a field)i3 Many interesting rings (e.g. imaginary quadratic rings Z[

√
−d] and cyclotomic rings Z[e2πi/n]

for large d, n) are not UFD’s (Cauchy-Lamé’s mistake in attempts on Fermat’s Last theorem was to
assume so) but most have unique prime factorization for ideals (commutative rings with 1 having
this property are called Dedekind domains)

HW#10 Show that Z[
√
−5] is not a unique factorization domain. (Hint: use homework #9)

HW#11 ia Show that Z[i] is a unique factorization domain.ib Explain why 10 = (3 + i)(3− i) = 2 · 5 does not contradict unique factorization in Z[i].ic (Library research) Describe (without proof) all the primes in Z[i].

§3. Polynomial Rings

Definition R be a commutative ring with 1 6= 0. The polynomial ring over R in one variable x
is defined by

R[x] = {
∑n

i=0 aix
n | ai ∈ R}

with addition and multiplication of polynomials defined in the usual way.† More generally, de-
fine polynomial rings R[x1, . . . , xn] in more variables in the “obvious” way, or inductively by
R[x1, . . . , xn−1][xn].

For f(x) =
∑n

i=0 aix
i with an 6= 0, define the degree deg(f) = n and call an the leading

coefficient of f . The value of f at any c ∈ R is f(c) :=
∑
aic

i ∈ R.

†∑
i aix

i +
∑

i bix
i =

∑
i(ai + bi)x

i and
∑

i aix
i ·

∑
j bjx

j =
∑

i,j aibjx
i+j .
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Remarks (exercises) i1 If R is a domain, then

ia deg(fg) = deg(f) + deg(g) ib R[x]· = R· ic R[x] is a domain.i2 In general the map R[x]→ R, f 7→ f(c) (for fixed c) is a ring morphism

Theorem 3.1 If F is a field then F [x] is a ED (and thus a PID and UFD by previous results)

Immediate from:

Division Algorithm If f, g are polynomials in R[x], where g is nonzero with invertible leading
coefficient (which is automatic if R is a field), then ∃ q, r ∈ R[x] with f = qg + r, where r = 0 or
deg(r) < deg(g).

Proof Suppose f and g have degrees n and k and leading coefficients an and bk ∈ R·, resp.
Can assume n ≥ k (else take q = 0 and r = f).

Induct on n. If n = 0, then f = a0, g = b0 so take q = a0b
−1
0 and r = 0. For n > 0, consider

f ′ = f − cg, where c = anb
−1
k xn−k, of degree < n. By the induction assumption f ′ = q′g + r for

suitable q′, r ∈ R[x] with r = 0 or deg r < deg g. Thus for q = q′ + c have f = qg + r.

HW#12 Let F be a field. ia Show that “irreducible” and “prime” are the same for polynomials
in F [x]. ib Prove that for f ∈ F [x], the quotient F [x]/(f) is a field if and only if f is irreducible.

HW#13 (quotients of Z[x]) Let f = x3 − 2x + 1 ∈ Z[x], and for any g ∈ Z[x], let g denote the
image of g in the quotient ring Z[x]/(f) (i.e. g = g + (f)). For p = 2x7 − 7x5 + 4x3 − 9x + 1 and
q = (x − 1)4, express each of the elements p, q, p+ q and pq in the form g for some polynomial g
of degree ≤ 2 (the existence of such a g follows from the division algorithm).

Another consequence of the division algorithm:

Theorem 3.2 Let R be a commutative ring with 1, and f be a nonzero polynomial in R[x] of
degree n. Thenia c ∈ R is a root of f (i.e. f(c) = 0) ⇐⇒ (x− c)|f , andib If R is a domain, then f has at most n roots in R.

Proof ia Div alg =⇒ f(x) = q(x)(x − c) + r with r ∈ F =⇒ f(c) = r. So f(c) = 0 =⇒ r =
0 =⇒ (x− c)|f . Conversely (x− c)|f =⇒ f(x) = q(x)(x− c) =⇒ f(c) = 0.ib Induct on n. If n = 1, then f(x) = ax + b (with a 6= 0) has at most one root since R is
a domain. (Indeed, c, d are roots =⇒ ac = ad =⇒ c = d.) If n > 1 and f has a root c then
f(x) = (x− c)q(x) where deg(q) = n− 1, by ia , and q has at most n− 1 roots (by the inductive
assumption). Since R is a domain, any root of f other than c must also be a root of q, which
completes the proof.

Corollary Any finite subgroup G of the multiplicative group R· of units in a domain R is cyclic.

Proof If G is not cyclic, then it is a product Cn × Cm × · · · of cyclic groups with n|m| · · · . Now
all n elements of Cn have order dividing n, as do some of the elements of Cm, so G has more than
n elements x satisfying the equation xn = 1. But this contradicts part ib of the theorem.
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Unique factorization in polynomial rings

Theorem 3.3 If R is a UFD, then so is R[x].†

Idea: Work in the UFD F [x], where F is the “field of fractions” of R:

Definition For any domain R , define the field of fractions of R to be

F (R) = {a/b | a, b 6= 0 ∈ R}/ ∼

where a/b ∼ c/d⇐⇒ ad = bc, with operations

a

b
+
c

d
=
ad+ bc

bd
and

a

b
· c
d

=
ac

bd
.

F (R) is a field containing R (via r 7→ r/1) to which any ring morphism f : R → K, where K is a
field, extends uniquely (draw the diagram). For example F (R) = R if R is a field (such as Zp for
prime p) and F (Z) = Q.

Gauss’ Lemma Let R be a UFD and F be its field of fractions. If f ∈ R[x] is reducible over F ,
then it is reducible over R. (Here, saying f is “reducible over F” means “reducible as an element
of F [x], and likewise for “reducible over R”.) Conversely, if f is reducible over R and is primitive
(meaning the only common factors of its coefficients are units) then it is reducible over F . Thus
the notions of reducibility over R and F are equivalent for primitive polynomials in R[x].

Example f = 2x2 + x− 6 = (85x−
12
5 )(54x+ 5

2) = (2x− 3)(x+ 2)

HW#14 Show that if R is not a field, then you can always find an example of a reducible
polynomial in R[x] that is irreducible in F [x]. Can you describe all such examples?

Prove Gauss’ Lemma using

Lemma If p is a prime element in a domain R, then p (viewed as a constant polynomial) is
also prime in R[x]

Proof Suppose p|fg with f = a0+a1x+ · · · , g = b0+b1x+ · · · . Suppose p - f and p - g. Choose
smallest i, j with p - ai, p - bj . The coefficient of xi+j in fg is (· · ·+ai−1bj+1)+aibj+(ai+1bj−1+· · · ).
But p divides the first and last terms =⇒ p|aibj =⇒ p|ai or p|bj =⇒⇐=. ∴ p|f or p|g.

Proof of Gauss First suppose that f = GH with G,H ∈ F [x]. If G,H are both already in R[x],
then just take g = G and h = H. Otherwise multiply by rs, where r and s are common multiples
of all the denominators in the coefficients of G and H, respectively, to get

rsf = g′h′

where g′ = rG and h′ = sH are in R[x]. Now any prime factor p of rs divides rsf = g′h′ and so
divides g′ or h′ (by the Lemma). An inductive argument then gives a factorization rs = r′s′ in R
for which r′ | g′ and s′ | h′, and so setting g = g′/r′ and h = h′/s′, both in R[x], we have f = gh.

Conversely, any reducible primitive f ∈ R[x] can be factored over R into a product polynomials
of positive degree (the only constant factors are units) =⇒ f reducible over F as well.

†False for UFD replaced by PID, e.g. R = Z
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Proof of 3.3 Any f ∈ R[x] factors into irreducibles over F by Theorem 3.1, giving a factorization
over R using Gauss’ Lemma, although the factors need not be irreducible over R. But pulling out
the gcd’s of the coefficients of each of these factors, we can write f = rf1 · · · fn where r ∈ R and the
fi are primitive irreducible polynomials in R[x]. Now factor r = p1 · · · pk into primes in R. Then

f = p1 · · · pk f1 · · · fn

is a factorization of f into irreducibles in R[x]. The uniqueness follows from uniqueness in F [x]
and in R.

Irreducibility Criteria

Cubic Criterion If R is a domain and f is a primitive polynomial in R[x] of degree ≤ 3, then
f is reducible over R⇐⇒ it has a root in F (R)

Indeed f reducible/R⇐⇒ reducible/F (R) (by Gauss’ Lemma, since f is primitive) ⇐⇒ f has
a linear factor (since n ≤ 3) ⇐⇒ f has a root in F (R) (by Theorem 3.2).

If R = Zp for prime p, then F (R) = R so the roots of f can be found by simply plugging in all
the elements of R. If there are none, then f is irreducible, and as an added bonus f can then be
used to produce a finite field with pdeg(f) elements, namely Zp[x]/(f) (see example i1 below).

More generally, if R is any UFD with R· finite (such as Z), then there are only finitely many
elements to check. Indeed the only possible roots are of the form r/s where r|a0 and s|an (this is
called the rational root test).†

Examples i1 The polynomial f(x) = x2 + x + 1 is irreducible in Z2[x] (since f(0) = f(1) =
1 6= 0). Thus F4 := Z2[x]/(f) is a field (see HW #12) with four elements, namely

F4 = {0, 1, x, x+ 1}

(all polys of deg < deg(f)) with the usual addition, but multiplication defined mod f . Thus for
example (x+ 1)2 = x2 + 2x+ 1 = x+ (x2 + x+ 1) = x. Another way to say this: working mod f
means f = 0, i.e. x2 = x+ 1, so x2 + 2x+ 1 = x2 + 1 (since 2 = 0) = (x+ 1) + 1 = x.

Note: it is convenient to use “base 2” notation an · · · a0 (where the ai = 0 or 1) for the element
anx

n + · · · + a0 of Z2[x] or its residue class in F4. In particular x = 10 and x + 1 = 11. Addition
and multiplication are carried out in the usual way, but working mod 2 and at the end reducing
mod x2 + x + 1 = 111. For example the calculation (x + 1)2 = x above becomes 112 = 101 = 10
(since 101 ≡ 10 + 111 (mod 2)).i2 The polynomial f(x) = 2x3 + x + 1 is irreducible in Z[x] since f(±1/2) 6= 0. We only need to
look at ±1/2 by the rational root test since these are the ratios of the divisors ±1 of a0 = 1 by the
divisors ±2 of an = 2.

HW#15 Use the cubic criterion to show

(a) x2 + 1 is irreducible in Z3[x]. Then use this to explicitly construct a field F9 with 9 elements
and to write down its multiplication table. Use base 3 notation an · · · a0 (where the ai = 0, 1
or 2) for the residue class of anx

n + · · ·+ a0 in F9, as above.

(b) x3 + 6x+ 12 is irreducible in Z[x].

†Proof: f(r/s) = 0 =⇒ 0 = snf(r/s) = anr
n + · · ·+ a0s

n ≡r a0s
n and ≡s anr

n =⇒ r|a0, s|an.
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Eisenstein Criterion Let R be a domain and f(x) = anx
n + · · · + a0 ∈ R[x] be primitive. If ∃

prime ideal P in R such that an 6∈ P, ai ∈ P for i < n, and a0 6∈ P 2, then f is irreducible over R.
[Special case: R = Z. If some prime p divides a0, . . . , an−1, but p - an and p2 - a0, then f irred/Z.]

Examples i1 x3 − 9x2 + 6x− 3 is irred/Z (p = 3)i2 The pth-cyclotomic polynomial (for p prime)

φp(x) :=
∏

ζ∈C : ζp=1
ζk 6=1 for 0<k<p

(x− ζ) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1

is irreducible/Q, and∴ /Z by Gauss’ lemma. (In fact it’s irreducible for nonprime p as well, cf. §13.6
in Dummit and Foote.) Can’t apply Eisenstein directly, but the trick is to substitute y = x− 1 to
get a related polynomial

ψp(y) := φp(y + 1) =
(y + 1)p − 1

y
= yp−1 + pyp−2 +

(
p

2

)
yp−3 + · · ·+ p

which is irreducible (by Eisenstein) =⇒ φp is irred (any factorization of φp gives one for ψp).

Proof of Eisenstein The natural morphism R→ R/P , a→ ā := a+P , extends to a morphism
R[x]→ (R/P )[x],

f = anx
n + · · ·+ a1x+ a0 7→ f̄ = ānx

n + · · ·+ ā1x+ ā0.

Note that R/P is a domain since P is prime.
Now suppose f is reducible over R, i.e. ∃ nonconstant (since f is primitive) polynomials h, g ∈

R[x] with f = gh. But then f̄ = ḡh̄ = ānx
n in (R/P )[x] =⇒ ḡ and h̄ are monomials (since R/P is

a domain) =⇒ constant terms in ḡ, h̄ are 0̄ =⇒ const terms in g, h are in P =⇒ a0 ∈ P 2 =⇒⇐=.
∴ f is irreducible.

HW#16 Prove using Eisenstein’s criterion that (a) x3 + 6x+ 12 and
(b) x4 + x3 + x2 + x+ 1 are irreducible in Z[x].

Kronecker’s algorithm for factoring over Z (or equivalently over Q)

Fix a primitive polynomial f ∈ Z[x]. We describe a slow but foolproof algorithm due to
Kronecker for factoring f into irreducible polynomials. Note that if f is not primitive, then f = d ·h
where d > 1 is an integer and h is primitive, and so f is factored by factoring d into primes (which
can be slow) and applying the algorithm to h.

The idea is to search for a factor g of f of smallest possible degree s, which evidently must be
less than or equal to deg(f)/2. Once g is found, we have f = g · f/g and f/g can be factored by
reapplying the algorithm.

• (s = 1) Linear factors are found using the rational root test.

• (s > 1) We assume f has no factors of degree < s, and look for a factor g of degree s.

13



Key observations:

1) g|f =⇒ g(k)|f(k) for all k ∈ Z

2) (Lagrange interpolation) g is determined by its values on any s+ 1 integers a0, . . . as.

So use 2) to find the finitely many polynomials whose values on each ai is a divisor of bi = f(ai).
By 1), these are the only candidates for factors of degree s; check if any of them divide f .

We elaborate on 2):

Lagrange interpolation To arrange that g(ai) = bi (for 0 ≤ i ≤ s) set g =
∑s

i=0 bigi where

gj(x) =
∏
i 6=j

x− ai
aj − ai

.

(Note that deg(gj) = s and gj(ai) = δij .) To see that g is unique, suppose that h(ai) = bi for some
h of degree ≤ s. Then g − h has s+ 1 roots (the ai’s) so g = h by Theorem 3.2a.

In practice, finding g(x) = csx
s + · · · + c0 amounts to solving the system of s + 1 equations

g(ai) = bi in the s + 1 unknowns c0, . . . , cs, or equivalently the matrix equation Ac = b where
A = (aji ) (numbering the rows and columns from 0 to s). The solution is then c = A−1b. (Note that
A is a Vandermonde matrix, cf. Exercise 27 in §14.6 in Dummit-Foote, which is always invertible.)
Thus computing A−1 allows one to quickly find the g’s for many different choices of b’s, as is
required in Kronecker’s algorithm.

Example Factor the polynomial f(x) = x5 + x3 − x2 − 1.

• (s = 1) We find the linear factor x− 1 using the rational root test. Thus f(x) = (x− 1)h(x),
where h(x) = x4 + x3 + 2x2 + x+ 1, and using the rational root test again we find that h(x)
has no linear factors.

• (s = 2) We look for quadratic factors g(x) = c2x
2 + c1x+ c0 of h by interpolation with inputs

a0 = −1, a1 = 0 and a2 = 1. Thus we must solve Ac = b for c, where

A = (aji ) =

1 −1 1
1 0 0
1 1 1

 c =

c0c1
c2

 b =

b0b1
b2


and b0 = ± 1 or 2, b1 = ±1, and b2 = ± 1, 2, 3 or 6, the divisors of h(−1) = 2, h(0) = 1 and
h(1) = 6, respectively. We compute A−1, and then find (possibly after some false starts, as
there are 64 possibilities for c to check) a solution c = (1, 0, 1)t = A−1(2, 1, 2)t that corresponds
to a factor x2 + 1 of h with h(x) = (x2 + 1)(x2 + x+ 1).

Thus
f(x) = (x− 1)(x2 + 1)(x2 + x+ 1)

is the factorization of f into irreducibles.

HW#17 Factor (a) x5 + x2 − x − 1 and (b) 2x5 − 6x4 + 5x3 + 3x2 − 8x + 2 as products of
irreducible polynomials in Z[x].
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II Vector Spaces

§1. Basics

Definition Let F be a field. A vector space over F (or F -vector space) consists of an additive
abelian group V and an operation F ×V → V , (α, v) 7→ αv (called scalar multiplication) satisfying

V1) (α+ β)v = αv + βv and α(v + w) = αv + αw

V2) (αβ)v = α(βv) V3) 1v = v (where 1 is the multiplicative identity in F )

for all α, β ∈ F and v, w ∈ V . The elements of F and V are called scalars and vectors, respectively.
Elementary properties, such as

α0 = 0 = 0v for all α ∈ F, v ∈ V ,

where the first two 0’s are the zero vector, and the last is the zero scalar, are easily verified (exercise).

Examples i1 Rn is a real vector space; similarly Fn is an F -vector space for any field F . Also
Mn(F ) = {n× n-matrices/F} (verify this).i2 The set C[0, 1] of continuous functions [0, 1] → R is a real vector space using the usual
addition and scalar multiplication of functions.i3 If F is a subfield of E, then E is a vector space over F .

Definition A function T : V → W between F -vector spaces is called a homomorphism (or an
F -linear transformation or linear map) if

T1) T (v + w) = T (v) + T (w) T2) T (αv) = αT (v)

for all α ∈ F and v, w ∈ V .† Compositions of linear maps are linear (exercise). Have the usual
mono, epi, iso, endo and auto refinements. A monomorphism is also called an embedding. Spaces
V,W are isomorphic, written V ∼= W , if ∃ an isomorphism V →W . For example Mn(R) ∼= Rn2

.

Definition A nonempty subset U of a vector space V is called a subspace, denoted U < V , if
it is closed under addition and scalar multiplication. Clearly U is then a vector space w.r.t. the
induced operations. It is easy to show that intersections of subspaces are subspaces.

Two important subspaces associated to any linear map T : V →W are its kernel and image:

kerT = {v ∈ V : T (v) = 0} < V and ImT = {T (v) : v ∈ V } < W.

(The reader should verify that these are indeed subspaces.) Easily prove T monic ⇐⇒ kerT = {0}
and T epic ⇐⇒ ImT = W .

Also of great importance are “eigenspaces” associated with “eigenvalues” of an endomorphism
T : V → V : A scalar λ is called an eigenvalue of T if ∃ v 6= 0 in V with T (v) = λv, and the set
Vλ = {v ∈ V | T (v) = λv} (which includes the 0 vector) is called the λ-eigenspace of T . Vectors in
Vλ are called eigenvectors for λ.

HW#18 Show that the map T : Mn(R) → Mn(R) that sends a matrix A to its transpose AT is
linear. Find all its eigenvalues (assuming n > 1) and identify their associated eigenspaces.

HW#19 Show that any eigenspace Vλ of an endomorphism T : V → V is a subspace of V , and
that any two distinct eigenspaces Vλ and Vµ of T intersect trivially (i.e. only in the zero vector).

†Note that (1) and (2) ⇐⇒ the single condition T (αv + w) = αT (v) + T (w).
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Ways to construct new vector spaces from old:

Quotient Spaces Start with U < V . Then the additive quotient group

V/U = {v + U : v ∈ V }

(with addition (v + U) + (w + U) = (v + w) + U) can be made into a vector space with scalar
multiplication defined by α(v+U) = (αv) +U . (Verify that this is well defined and that the vector
space axioms hold.) This is called the quotient space of V by U . The natural projection

p : V → V/U, v 7→ v + U

is linear (check this). It satisfies the usual universal property† which can be used to prove the usual
isomorphism theorems (as in group and ring theory).

HW#20 Give a direct proof (without appealing to the universal property of quotient spaces) of
the First Isomorphism Theorem: If T : V →W is linear, then V/ ker(T ) ∼= Im(T ). In other words,
write down an explicit map V/ ker(T ) → Im(T ) (using the notation v for v + ker(T ) to simplify
your notation) and then prove that it is a well-defined isomorphism.

Spaces of Homomorphisms Start with two F -vector spaces V,W . Define

Hom(V,W ) = {all F -linear maps V →W}.

This becomes an F -vector space in its own right with respect to the operations (S + T )(v) :=
S(v) + T (v) and (αT )(v) := α(T (v)) (check this).

Avery important special case (when W = F ) is the dual space of V

V ∗ = Hom(V, F ) = {all F -linear maps V → F}.

The elements of V ∗ are often called linear functionals on V . Note that any linear map T : V →W
induces a linear map T ∗ : W ∗ → V ∗, called the dual or adjoint of T , given by T ∗(f) = f ◦T . Much
more about this later; see for example HW#21, 23, 25, 26 and 28.

Examples i1 The projection R2 → R, (x, y) 7→ x is an element of (R2)∗, as are any maps of
the form (x, y) 7→ ax+ by for a, b ∈ R.i2 The trace and determinant of matrices can be viewed as maps

tr, det : Mn(R)→ R.

Then tr is in Mn(R)∗, while det is not. (Do you see why?)i3 The map

I : C[0, 1]→ R , f 7→
∫ 1

0
f(x)dx

is in C[0, 1]∗, since I(λf + g) = λI(f) + I(g).

†For any linear T : V →W with U ⊂ ker(T ), ∃! linear S : V/U →W satisfying T = S◦p (namely S(v+U) = T (v)).
Furthermore ker(S) = ker(T )/U and Im(S) = Im(T ).
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Remark We will see below that any vector space V can be embedded in its dual space V ∗ (in
fact V ∼= V ∗ when V is “finite dimensional”), but there is generally no natural way to find such an
embedding. However there is a natural embedding V → V ∗∗ given by v 7→ ev, where ev(f) := f(v).
Think of ev as “evaluation at v”.

HW#21 Show that the map e : V → V ∗∗, v 7→ ev where ev(f) = f(v), does indeed map V to V ∗∗

(i.e. that ev is a linear map V ∗ → F ), and that it is an embedding (i.e. an injective linear map).

Direct Sums The direct sum of two F -vector spaces U, V is the vector space

U ⊕ V = {(u, v) : u ∈ U, v ∈ V }

with componentwise operations. If U and V happen to be subspaces of another space W , then can
also consider their sum,

U + V = {u+ v : u ∈ U, v ∈ V }

which is a subspace of W .

HW#22 Show that if U and V are subspaces of a vector space W satisfying (a) U ∩V = {0} and
(b) U + V = W , then U ⊕ V ∼= W .

§2. Linear combinations, bases and dimension

Fix a vector space V , and let S be an arbitrary set of vectors in V .

Definition The span of S, denoted 〈S〉, is the smallest subspace of V containing S, i.e. the
intersection of all subspaces of V containing S. More constructively 〈S〉 can be described as the
set of all (finite) linear combinations of elements in S, meaning vectors of the form α1v1 + · · ·αkvk
where the αi’s are scalars and the vi’s are vectors in S. We say that V is finitely generated if
V = 〈S〉 for some finite subset S of V .

We say that an ordered list (v1, . . . , vn) of finitely many vectors in V , possibly with repetitions,†i1 spans V i2 is (linearly) independent in V i3 is a basis for V

according to whether each vector in V can be expressed as a linear combination of the vectors in the
list in i1 at least one way, at most one way, or i3 exactly one way, respectively. Thus to say that
the list spans V means that for each v ∈ V , there must exist scalars αi such that v =

∑
αivi. To say

that the list is independent means that if such scalars exist for any given v, then they are unique;
this is easily seen to be equivalent to the statement that the assumption α1v1 + · · ·αnvn = 0 forces
all the αi’s to be zero, which is how one usually proves that a given list of vectors is independent.
To say that the list is a basis means that it spans V and is independent, that is, each v ∈ V is
uniquely expressible in the form v =

∑
αivi.

Remarks i1 These notions generalize to infinite lists of vectors, still only allowing finite linear
combinations (or equivalently infinite linear combinations with all but finitely many coefficients
equal to zero). We will show below that every vector space V has a (possibly infinite) basis, that
all bases for V have the same (possibly infinite) size, which we call the dimension of V .

†The importance of the ordering will become clear when we discuss coordinates below.
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i2 Why are bases important? By definition, they provide unique expressions for the vectors in
V , thus giving these vectors “coordinates” (see below), but they can also be used to describe linear
maps T : V →W . Indeed T is uniquely determined by its values on a basis (v1, v2, . . . ) for V since

T (
∑
αivi) =

∑
αiT (vi)

by linearity. Furthermore, this equality can be used to define T if it is a priori only defined on the
basis. In other words, for any list (w1, w2, . . . ) of vectors in W , there exists a unique linear map
T : V →W for which T (vi) = wi, given by T (

∑
αivi) =

∑
αiwi. This bears repeating:

Linear maps are uniquely determined by their values on a basis.

More on this below.

Our next order of business is to prove that bases exist. But before doing so, here is a homework
problem to illustrate how one checks that a list of vectors forms a basis. Let V be a vector space
that has a finite basis B = (v1, . . . , vn). Then there is an associated dual basis B∗ = (v1, . . . , vn)
(note the superscripts) for its dual space V ∗ characterized by

vi(vj) = δij :=

{
0 if i 6= j

1 if i = j
.

HW#23 Prove that the functionals vi do indeed form a basis for V ∗, and that any f ∈ V ∗ can be
expressed uniquely in this basis as f =

∑
i f(vi)v

i.

Now for some theory. First observe that bases can be characterized as either “minimal” spanning
or “maximal” independent lists, and that this will allow us to establish their existence :

Lemma 2.1 Let V be a vector space.ia Any minimal spanning list 1 or maximal independent list 2 of vectors in V forms a basis for V .ib If V is finitely generated, then any finitespanning list S of vectors in V can be shrunk to a basis,
and any finite independent list I can be extended to a basis (necessarily finite by 2.3 below). In
particular, any finitely generated vector space has a finite basis.

Proof ia Let (v1, v2, . . . ) be a minimal spanning list of vectors in V , and suppose some (finite)
linear combination

∑
αivi = 0. If some αj 6= 0, then vj can be written in terms of the other vi’s,

indeed vj =
∑

i 6=j(−α
−1
j αi)vi, so dropping vj from the list leaves a smaller spanning list =⇒⇐=.

Thus all the αi’s = 0, so (v1, v2, . . . ) is independent, therefore a basis.
If (v1, v2, . . . ) is a maximal independent list, then prepending any v ∈ V to this list gives a

dependent list (v, v1, v2, . . . ). Thus ∃ scalars α, α1, . . . , not all zero, with αv + α1v1 + · · · = 0.
In particular α 6= 0 since (v1, v2, . . . ) is independent, so v =

∑
(−α−1αi)vi lies in the span of

(v1, v2, . . . ). Thus (v1, v2, . . . ) is both independent and spans V , so is a basis.ib For the first assertion, shrink S to a minimal spanning list, and apply ia . For the second,
choose any finite basis B for V , and let J be a maximal independent extension of I inside the
concatenated list IB. Then for any vector v in B that is not in J , the list Jv is dependent, so v is
in the span of J . Thus J spans V , so is a (finite) basis extending I.

i.e. no sublist spans 2ı.e. no superlist is independent
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Remark The conclusion of 2.1b with “finite” omitted holds for arbitrary vector spaces; this
requires delicate work using Zorn’s Lemma – a form of “transfinite” induction – which we omit.
Thus in fact every vector space has a basis (proved above for finitely generated vector spaces).

Now that we know that bases always exist, we would like to show that they all have the same
size. There are various ways to do this; we choose one that focuses on an interplay between the
notions above and linear maps between vector spaces. In particular, spanning and independent
lists can be used to characterize when such maps are onto or one-to-one, as follows :

Lemma 2.2 A linear map T : V →W of vector spaces is onto if and only if it carries spanning
lists in V to spanning lists in W , and is one-to-one if and only if it carries independent lists
in V to independent lists in W . Thus T is an isomorphism if and only if it carries bases to
bases. Furthermore, if T : V → V with V is finitely generated (this last hypothesis is necessary)
then T is onto if and only if it is one-to-one.

Proof Let B = (v1, v2, . . . ) be any list of vectors in V , with image TB = (Tv1, T v2, . . . ) in W .
Then T onto ⇐⇒ ∀w ∈W, ∃ scalars αi such that T (

∑
αivi) = w ⇐⇒ ∀w ∈W, ∃ scalars αi such

that
∑
αiT (vi) = w (since T is linear)⇐⇒ TB spans V . Similarly T one-to-one⇐⇒ ker(T ) = {0}

⇐⇒ [T (
∑
αivi) = 0 =⇒

∑
αivi = 0] ⇐⇒ [

∑
αiT (vi) = 0 =⇒ all αi = 0] ⇐⇒ TB is independent.

To prove last statement, recall that V has at least one finite basis, by 2.1b. Let B be a smallest
such, with say n vectors. If T is onto, then TB spans V , so is in fact a basis (otherwise it could be
shrunk to one with < n vectors). Thus TB is independent, so T is one-to-one. Conversely, if T is
one-to-one then TB is independent. If TB were in fact a basis, then it would span W , so T would
be onto and we’d be done. So we must show TB is indeed a basis. But if its not, then it could
be extended to a basis C with > n vectors by 2.1b, and one could then construct an linear map
V → V that was onto but not one-to-one (sending the first n vectors in C to their corresponding
vectors in B, and the rest of the vectors in C to zero). Thus TB is a basis, and we’re done.

The next result is arguably the most important theoretical result in linear algebra :

Theorem 2.3 All bases for a vector space V have the same size, called the dimension of V and
denoted dim(V ). In particular V cannot have both a finite and infinite basis.

Proof We first prove the last statement. If V had a finite basis B, say with n vectors, and an
infinite basis C, then as in the previous proof, we could construct a linear map V → V that is onto
but not one-to-one (sending the first n vectors in C to their corresponding vectors in B, and the
rest of the vectors in C to zero). But this contradicts Lemma 2.2. In fact this same argument for
finite bases B and C with |B| < |C| proves the first statement for finitely generated vector spaces;
the nonfinitely generated case again requires Zorn’s Lemma.

Corollary 2.4 Let V be a finite dimensional vector space. ia U � V =⇒ dim(U) < dim(V ).ib Any spanning list or independent list of exactly dim(V ) vectors in V is a basis for V .

Proof By 2.1b, any basis B for U extends it to a (larger since U 6= V ) basis C for V . Then
dim(U) = |B| < |C| = dim(V ), proving ia . ib is immediate from Lemma 2.1b.

Next we prove one of the most quoted theorems in elementary linear algebra. It concerns the
nullity and rank of a linear transformation T : V →W , defined by

null(T ) := dim(ker(T )) and rk(T ) := dim(Im(T )) .
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Theorem 2.5 (rank+nullity theorem) If T : V →W is linear, then dim(V ) = rk(T ) + null(T ).

Proof Choose a basis B = (v1, . . . , vn) for V that extends one (v1, . . . , vk) for ker(T ) (so k ≤ n).
Then we claim C = (T (vk+1), . . . , T (vn)) is a basis for Im(T ); this would prove the theorem, since
n = (n − k) + k. To see this we must show two things: i1 C is independent and i2 C spans
W . For i1 we have

∑
i>k αiT (vi) = 0 =⇒ T (

∑
i>k αivi) = 0 =⇒

∑
i>k αivi =

∑
i≤k αivi (for

some αi for i ≤ k) =⇒ all αi = 0, since B is independent. For i2 , any w ∈ Im(T ) is T (v) for
some v =

∑
αivi ∈ V (since B spans V ). Thus w = T (

∑
αivi) =

∑
αiT (vi) =

∑
i>k αiT (vi) since

T (vi) = 0 for i ≤ k. This completes the proof.

Corollaries Let U and V be finite dimensional F -vector spaces.i1 If U < V , then dim(V/U) = dim(V )− dim(U).i2 In general we have dim(U ⊕ V ) = dim(U) + dim(V ).i3 If U, V < W , then dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V ).i4 Any n homogeneous linear equations/F in k > n variables has nontrivial solutions.

Proof For i1 , apply the theorem to the natural projection V → V/U . i2 and i3 are homework.
For i4 , rewrite any system of linear equations

a11x1 + · · ·+ a1kxk = 0

...

an1x1 + · · ·+ ankxk = 0

as a single matrix equation Ax = 0, where A = (aij), x = (x1, . . . , xk)
T ∈ F k and 0 = (0, . . . , 0)T ∈

Fn. Now view the solutions to the system as the kernel of the linear map A : F k → Fn sending
x to Ax. We must show null(A) > 0. But rk(A) ≤ n (by the corollary to theorem 2.1) and so
null(A) = k − rk(A) ≥ k − n > 0.

HW#24 Prove i2 and i3
As another application we revisit the dual space V ∗ of a finite dimensional vector space V .

Recall from HW #23 that if B = (v1, . . . , vn) is any basis for V , then there is an associated dual
basis B∗ = (v1, . . . , vn) for V ∗, characterized by vi(vj) = δij . It follows that (for finite dimensional

spaces) V ∼= V ∗ (via the map vi 7→ vi) and in particular

dim(V ) = dim(V ∗).

Now for any subspace U of V , define the annihilator U◦ of U to be the subspace of V ∗ consisting
of all functionals which vanish on U . You should verify that this is a subspace.

HW#25 Prove that dim(V ) = dim(U) + dim(U◦). (Hint: Extend a basis A for U to a basis B for
V , and use this to define an linear map V → V ∗ that sends the vectors in A to their duals in B∗,
and the vectors in B −A to zero.)

HW#26 Let T : V → W be a linear map between finite dimensional vector spaces. Prove that
ker(T ∗) = (ImT )◦ and deduce that rk(T ) = rk(T ∗) (this is in disguise the “row rank = column
rank” theorem from linear algebra (see HW#28 below).
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§3. A brief introduction to homological algebra

The rank+nullity theorem (Theorem 2.2 above) can be recast in a more abstract setting, as
follows: Let

0 −→ U
S−→ V

T−→W −→ 0

be a short exact sequence, meaning a sequence of linear transformations in which S is 1-1, T is
onto, and Im(S) = ker(T ). Then

dim(V ) = dim(U) + dim(W ).

To prove this result, apply the rank+nullity theorem to T , noting that U ∼= Im(S) = ker(T ) and
W = Im(T ). Alternatively, one can construct an isomorphism V ∼= U ⊕W and then deduce the
result from HW23 (exercise).

Conversely, Theorem 2.2 follows from this result since T : V → W gives rise to a short exact
sequence 0→ ker(T ) ↪→ V → Im(T )→ 0 where the map V → Im(T ) “is” T (i.e. sends x to T (x)).

More generally consider any sequence of linear transformations

· · · −→ Vk−1
Tk−1−→ Vk

Tk−→ Vk+1 −→ · · · .

This is called a chain complex if Tk ◦ Tk−1 = 0 (i.e. Im(Tk−1) ⊂ ker(Tk)) for all k. If for some k we
have ker(Tk) = Im(Tk−1, then the sequence is said to be exact at Vk, and it is an exact sequence if
it is exact at each Vk.

HW#27 Show that a sequence

· · · → 0→ U
S→ V → · · ·

is exact at U if and only if S is 1-1, and

· · · → V
T→W → 0→ · · ·

is exact at W if and only if T is onto (so if · · · → 0 → V
T→ W → 0 → · · · is exact, then T is an

isomorphism). This explains the terminology “short exact sequence” above.

Digression Chain complexes in simplicial and smooth topology

An important integer invariant of any finite chain complex V : 0→ V1 → V2 → · · · → Vn → 0 is
its Euler characteristic

χ(V) =

n∑
k=1

(−1)k dim(Vk).

It is an easy consequence of the rank+nullity theorem that the Euler characteristic of any exact
chain complex is zero.

Remark There is a subtler measure of inexactness associated with any chain complex V, namely
the quotient spaces

Hk(V) := ker(Tk)/Im(Tk−1).

These are generally called the homology groups of the complex (where the word “group” refers to
the additive structure).
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§4. Coordinates

Coordinate vectors

Let V be a finite dimensional vector space. For any chosen basis B = (b1, . . . , bn), each vector
v ∈ V can be written uniquely as v =

∑n
i=1 αibi (with αi ∈ F , the field of scalars) so record this as

a column vector

vB =

α1
...
αn


called the coordinate vector for v with respect to B. The map v → vB is then an isomorphism
V → Fn. Note that the ith coordinate of vB is bi(v), where B∗ = b1, . . . , bn is the basis of V dual
to B, i.e. vTB = (b1(v), . . . , bn(v)).

Coordinate matrices

Let T : V → W be linear. For any bases B = (b1, . . . , bn) and C = (c1, . . . , ck) for V and W ,
respectively, the coordinate matrix for T with respect to B and C is the k × n matrix whose jth

column is (Tbj)C (writing Tv for T (v))

TCB = ((Tb1)C , . . . , (Tbn)C),

or equivalently, using the dual basis C∗ = (c1, . . . , ck), whose ijth entry is ci(Tbj). This matrix
represents T in the following sense

TCB vB = (Tv)C .

(Check on a basis.) The map T 7→ TCB is an isomorphism Hom(V,W )→Mk×n(F ). When V = W
and B = C, we write TB for TBB, the coordinate matrix for T : V → V w.r.t. the basis B.

Composition U
S→ V

T→W becomes matrix multiplication

(T ◦ S)CA = TCBSBA

w.r.t. bases A,B,C for U, V,W .

Change of basis

The coordinate matrix for the identity map I : V → V, I(v) = v w.r.t. two bases B,B′ satisfies

IB′BvB = vB′ .

Thus multiplication by IB′B effects the change of basis for coordinate vectors from B to B′ in V .
Clearly I−1B′B = IBB′ .

Now if T : V → W is linear, and C,C ′ are bases for W , then the change of basis formula for
coordinate matrices is

TC′B′ = IC′CTCBIBB′ .

When V = W , B = C and B′ = C ′, that is when T is an endomorphism of a vector space V with
basis B, this becomes

TB′ = PTBP
−1,

where P = IB′B. In this case we say TB and TB′ are similar, or to emphasize that P should have
entries in the field F of scalars, that they are similar over F .
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Remark In general, two square matrices A,B are similar, written A ∼ B, if ∃ invertible matrix
P such that

A = PBP−1.

The discussion above shows that if A is a coordinate matrix for an endomorphism T of a finite
dimensional vector space (with respect to some basis), then the similarity class of A is the exactly
the set of all possible coordinate matrices for T .

One of the central problems in linear algebra is to find the “simplest” possible matrix similar
to a given one, or equivalently, to find bases w.r.t. which a given transformation is in the simplest
possible form. More on this below.

HW#28 Show that if T : V → W is a linear transformation between finite dimensional vector
spaces, then for any bases B and C for V and W , with dual bases B∗ and C∗ for V ∗ and W ∗,

T tCB = T ∗B∗C∗ .

That is, the coordinate matrix of the dual of a transformation is the transpose of its coordinate
matrix, w.r.t. dual bases. Then deduce using HW#26 that the “row rank” (= dimension of the
row space) and “column rank” (= dimension of the column space) of any matrix are equal.
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III Modules

§1. Basics

The notion of an R-module is a generalization of the notion of a vector space in which the field
of scalars is replaced by any ring R with 1.

Definition A left R-module is an abelian group (M,+) with scalar multiplication R×M →M
satisfyingi1 (r + s)m = rm+ sm and r(m+ n) = rm+ rni2 (rs)m = r(sm)i3 1m = m

for all r, s ∈ R and m,n ∈M .† Similarly define right R-module.
An R-module homomorphism (or R-linear map) is a map f : M → N of R-modules satisfying

f(rm + n) = rf(m) + f(n). As usual it follows that f(0) = 0. The kernel of f is the subset
ker(f) = f−1(0) of M , which equals {0} ⇐⇒ f is 1-1 (exercise).

Examples i1 R = field F . R-modules= F -vector spaces, R-linear maps = F -linear maps,
submodules = subspaces. So this is just vector space theory.i2 R = Z. Z-modules = abelian groups (scalar mult = repeated +), Z-linear maps = group
homomorphisms, submodules = subgroups. So this is just abelian group theory.i3 R = F [t]. Let T : V → V be an endomorphism of an F -vector space V . Want to understand
T . Concoct an F [t]-module VT whose structure tells us all about T . In particular, VT is additively
the same as V , but the scalars are enlarged from F to include all of F [t], acting by f(t) ·v := f(T )v,
where the polynomial f(T ) in T represents an element of End(V ). For example if f(t) = t2−3t+1,
then f(T ) = T 2 − 3T + I, which maps any v ∈ V to T 2v − 3Tv + Iv = T (T (v))− 3T (v) + v.

The set of all linear maps M → N is denoted HomR(M,N). It is an abelian group ((f+g)(m) :=
f(m) + g(m)), and in fact an R-module ((rf)(m) := r(f(m))) if R is commutative. If M = N ,
write EndR(M) for HomR(M,M).

HW#29 It is a fact that HomZ(Zm,Zn) ∼= Zk for some k. Find k in terms of m and n, and prove
it. (If you want to get a feel for this, experiment with some small values of m and n.)

Other basic notions

i1 Submodules K is a submodule of M , written K < M , means K is a subset of M that is
closed under all the operations: 0 ∈ K and m,n ∈ K, r ∈ R =⇒ rm+ n ∈ K.

Examples: (1) M, {0} < M ; say M is simple if these are its only submodules, (2) kernels and
images of homomorphisms, and (3) ideals in R (noting that R itself is an R module)i2 Quotient modules M/K = set of cosets m+K of K in M with operations (m+K)+(n+K) =
(m+n)+K and r(m+K) = (rm)+K. Get the usual universal property for the canonical projection
M →M/K, and all the isomorphism theorems that follow from it.

†Alternatively think of scalar multiplication as a “ring action” on M , i.e. a ring homomorphism R → End(M),
where End(M) is a ring (under + and composition ◦) of endomorphisms of the additive group M .
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i3 Direct sums M ⊕N = {(m,n) : m ∈M,n ∈ N}, and more generally

M1 ⊕M2 ⊕ · · · = {(m1,m2, . . . ) : mi ∈Mi with only finitely many nonzero mi’s}.

Write Mn for M ⊕· · ·⊕M (n-copies) and M∞ for M ⊕M ⊕· · · (countably infinitely many copies).

§2. Special kinds of modules

Free modules

Definition A subset B of a module M is a basis for M if every element in M can be written
uniquely as a finite linear combination of elements in B; we then say that M is free on B. A module
is called a free module if it has a basis. (The zero module M = {0} is considered to be free on ∅.)

It is not hard to show that an R-module M is free (on some B ⊂M) iff either of the following
conditions is satisfied:i1 M is isomorphic to a direct sum of copies of R (e.g. R,R2, . . . )i2 (universal mapping property) Any function from B to an R-module N extends uniquely to
an R-linear map M → N .

Remarks i1 All modules over a field (i.e. vector spaces) are free.i2 (without proof) Free modules over any commutative ring R with 1 have a well-defined dimension
(= size of basis), also called the rank of the module. This need not be true if either R has no 1 or
is not commutative. For example for R = Z∞ (the direct sum of a countable number of copies of
Z, commutative but with no 1), or R = End(Z∞) (noncommutative with 1), we have R ∼= R⊕R.

Torsion modules

Definition An element m in an R-module M is called a torsion element if rm = 0 for some
nonzero r ∈M , and M is called a torsion module if all of its elements are torsion elements. (Thus
the zero module is torsion, so both torsion and free).

Examples i1 If R is a domain, then torsion R-modules are never free.i2 If R is a field, then there are no non-zero torsion R-modules.i3 Zn is a torsion Z-module for all n > 0, since k ∈ Zn =⇒ nk = 0. In fact any finite abelian
group A of order n is a torsion module: na = 0 ∀a ∈ A. So are some infinite abelian groups, for
example Zn1 ⊕ Zn1 ⊕ · · · for any infinite sequence n1, n2, . . . of positive integers.i4 The F [t]-module VT (defined above) is torsion if dim(V ) = n < ∞. To see this, one must
prove that for all v ∈ V , there is a nonzero “scalar” f(t) ∈ F [t] such that f(t)v = f(T )v = 0.
In fact, there is a single polynomial m(t) ∈ F [t] with m(T )v = 0 for all v ∈ V . This is because
End(V ) ∼= Mn(F ) is n2-dimensional, and so the powers I, T, T 2, . . . , Tn

2
are dependent. Thus

∃αi ∈ F with
∑n2

i=0 αiT
i = 0, so take f(t) =

∑n2

i=0 αit
i.

Remark The set
{f ∈ F [t] : f(T ) = 0}

is an ideal in F [t], and so it has a unique monic generator mT (t) since F [t] is a PID (where “monic”
means the leading coefficient is 1). This is called the minimal polynomial of T , and finding it is one
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of the most useful computations in linear algebra. The famous Cayley-Hamilton Theorem asserts
that the characteristic polynomial

cT (t) = det(tI − T ) †

(which is easy to compute) is a multiple of mT , which often gives a starting point for finding mT .
It is also a fact that every root of cT is a root of mT . This will be proved in §3 below, but for now
we use it to calculate mT where T is the endomorphism of R3 given by multiplying by the 3 × 3
matrix with rows (−1, 10,−2), (−1, 6,−1) and (−2, 10,−1). (Answer: t2 − 3t+ 2).

HW#30 Compute the characteristic and minimal polynomials of the endomorphism of R3 given
by multiplying by the 3× 3 matrix which has 1’s in the four corners and 0’s elsewhere.

Cyclic Modules

Henceforth, assume R is a commutative ring with 1 6= 0.

Definition Let M = R-module, S = subset of M . The submodule 〈S〉 generated by S is the
smallest submodule of M containing S, or constructively,

〈S〉 = {
∑
risi : ri ∈ R, si ∈ S}.

For example, if M is free on B, then M = 〈B〉. Say M is finitely generated if M = 〈S〉 for some
finite S ⊂M , and cyclic if M = 〈m〉 (i.e. 〈{m}〉) for some m ∈M .

Proposition M is a cyclic R-module ⇐⇒ M ∼= R/J for some J C R.

Proof (=⇒) Given M = 〈m〉, the linear map

R→M, r 7→ rm

is onto with kernel some ideal J C R, so M ∼= R/J .

(⇐=) Given M ∼= R/J , note that R/J = 〈1 + J〉, so M is also cyclic.

Remark It follows that there is (up to isomorphism) only one nonzero free cyclic R-module,
namely to R viewed as a module over itself. All other cyclic R-modules are isomorphic to R/J for
some nonzero ideal J in R, so are torsion (annihilated by any nonzero r in J).

HW#31 (Schur’s Lemma) Let M and N be simple R-modules (recall that this means they have
no nontrivial proper submodules) and f : M → N be a nonzero R-linear map. Show that (a) f is
an isomorphism, and (b) if M = N and R is commutative, then f is multiplication by a scalar, i.e.
∃ r ∈ R such that f(x) = rx for all x ∈ M . (Hint for (b): Consider the cyclic submodule 〈x0〉 for
any nonzero x0 ∈M .)

†Recall from basic linear algebra that this is the polynomial whose roots are the eigenvalues of T . Here the
determinant of a transformation is defined to be the determinant of its coordinate matrix w.r.t. any basis. (Exercise:
this is independent of the choice of basis.)
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§3. Modules over a PID

Theorem 3.1 (Structure of Finitely Generated Modules over a principal ideal domain R) If M
is a finitely generated R-module, then ∃ a unique nonnegative integer r (called the rank of M) and
a unique decreasing sequence of nonzero proper ideals J1 ⊃ J2 ⊃ · · · ⊃ Jk in R (called the invariant
factors of M) such that

M ∼= R/J1 ⊕ · · · ⊕R/Jk ⊕Rr.

The proof relies on the following technical but very useful result, whose proof will be given at
the end of this section:

Lemma 3.2 If U is a submodule of a free R-module V of rank n, where R is a PID, thenia U is free of rank ` ≤ n.ib There exists bases (u1, . . . , u`) for U and (v1 . . . , vn) for V , and nonzero scalars r1, . . . , r` with
each ri dividing ri+1, such that each vi = rivi.

Uniqueness (not proved here): The ideals 〈r1〉 ⊃ · · · ⊃ 〈rm〉 are uniquely determined by U and V .

Proof (of 3.1 from 3.2) Choose generators x1, . . . , xn for M . Then there is an epimorphism Rn →M
sending ei to xi for i = 1, . . . , n, where (e1, . . . , en) is the standard basis for Rn.

Write V for Rn and U the kernel of this map, so M ∼= V/U . By Lemma 3.2, there exists another
basis B = (v1, . . . , vn) for V and nonzero scalars r1, . . . , r` for some ` ≤ n with r1|r2| · · · |r` such
that (r1v1, . . . , r`v`) is a basis for U . Thus

M ∼= V/U = Rn / 〈r1v1〉+ · · ·+ 〈r`v`〉 ∼= R/J1 ⊕ · · · ⊕ R/J` ⊕Rr

where Ji = 〈ri〉 C R and r = n− `.† Now throw out the ri’s that are units (at the beginning) and
shift the numbering to get M ∼= R/J1 ⊕ · · · ⊕R/Jk ⊕Rr with R ) J1 ⊃ J2 ⊃ · · · ⊃ Jk, as desired.
The uniqueness follows from uniqueness in 3.1.

Examples i1 (R = Z) Every finitely generated abelian group is isomorphic to

Zn1 ⊕ · · · ⊕ Znk
⊕ Zr

for unique integers ni > 1 with n1| · · · |nk (the invariant factors) and r ≥ 0 (the free rank).i2 (R = F [t], F = field) Recall that M = VT (= an F -vector space V with scalar multiplication
t · v = T (v) for some given T ∈ End(V )) is a torsion F [t]-module. Thus it has rank zero, and so
there exist unique nonconstant monic polynomials f1| · · · |fk, each fi dividing fi+1, such that

VT ∼= F [t]/〈f1〉 ⊕ · · · ⊕ F [t]/〈fk〉. (∗)

The fi’s are called the invariant factors of T .

†The last isomorphism is induced via the first isomorphism theorem from the map Rn → R/J1 ⊕ · · ·⊕ R/J`⊕Rr

sending x to (α1 + J1, . . . , α` + J`, α`+1 . . . , αn) where αi = vi(x), the ith coordinate of xB .
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Rational Canonical Form

What does the cyclic module F [t]/〈f〉 for a given nonconstant polynomial

f(t) = tn + an−1t
n−1 + · · ·+ a1t+ a0

look like? As a vector space over F , it is finite dimensional with basis B = (1̄, t̄, t̄2, . . . , t̄n−1).
(Indeed, B spans by the division algorithm, and is independent since

∑n−1
i=0 αit̄

i = 0̄ in the quotient
implies f(t) |

∑n−1
i=0 αit

i, whence all αi = 0 since deg(f) = n.) The coordinate matrix in this basis
for the linear map corresponding to multiplication by t, called the companion matrix of f , is

Cf =



0 0 0 0 −a0
1 0 0 0 −a1
0 1 0 0 −a2
...

... · · ·
...

...
...

0 0 1 0 −an−2
0 0 0 1 −an−1


.

Examples Ct2−3t+1 =

(
0 −1
1 3

)
, Ct3−t2−5t+2 =

0 0 −2
1 0 5
0 1 1

 .

Carrying these bases over to V via the isomorphism (∗) above shows that ∃ basis B for V with
TB = Cf1 ⊕ · · · ⊕ Cfk where ⊕ denotes block sum.

Definition A matrix of the form Cf1 ⊕ · · · ⊕ Cfk where the fi are monic polynomials in F [x]
with f1| · · · |fk is said to be in rational canonical form (RCF).

Example Since t2 − 3t+ 1 divides t3 − t2 − 5t+ 2 (with quotient t+ 2)

Ct2−3t+1 ⊕ Ct3−t2−5t+2 =


0 −1 0 0 0
1 3 0 0 0
0 0 0 0 −2
0 0 1 0 5
0 0 0 1 1


is in rational canonical form.

Theorem 3.1 shows that any T ∈ End(V ) has a coordinate matrix in rational canonical form,
and that this matrix is uniquely determined by T . It is called the rational canonical form of T , and
is denoted RT . When V = Fn, so End(V ) is the space Mn(F ) of n× n matrices over F , this says:

Corollary 3.3 Any A ∈ Mn(F ) is similar to a unique matrix RA in rational canonical form.†.
Thus matrices A,B ∈Mn(F ) are similar over F if and only if Ra = RB.

In fact RA is independent of the field F , as long as F contains the entries of A (although not hard
to prove, we do not do so here). This has a striking consequence: Any pair of square matrices with
entries in a field are similar over that field if and only if they are similar over any larger field.

† This similarity is over F , meaning that there is an invertible matrix P with entries in F such that PAP−1 = RA
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Exercise Investigate how to compute RA (see e.g. Dummit-Foote). For n ≤ 3, the following
two facts (assigned as homework below) show that RA is determined by the minimal polynomial
mA and characteristic polynomials cA:

im mA is equal to the largest (last) invariant factor of A, andic cA is the product of all the invariant factors of A.

HW#32 Prove im and ic . (Hint: Show that the minimal and characteristic polynomials of a block
sum are the least common multiple and product, respectively, of the corresponding polynomials of
the summands, and also show that mCf

= cCf
= f for any polynomial f . Then use 3.3.)

From this, we can deduce the following results stated in §2:

Corollary 3.4 Fix a square matrix A over a field with minimal polynomial mA and characteristic
polynomial cA = det(tI − A) (whose roots are the eigenvalues of A). Then mA divides cA (this is
the Cayley-Hamilton theorem) and cA divides some power of mA (so each irreducible factor of cA
is a factor of mA, and in particular every root of cA is a root of mA).

Examples i1 Let A =

2 −2 14
0 3 −7
0 0 2

 , B =

0 −4 85
1 4 −30
0 0 3

 , and C =

2 2 1
0 2 −1
0 0 3

 .

Direct computation shows that cA = cB = cC = (t− 2)2(t− 3). It follows by Corollary 3.4 that the
only possibilities for the minimal polynomials are (t− 2)(t− 3) and (t− 2)2(t− 3). By evaluating
these polynomials at A,B,C we find that

mA = (t− 2)(t− 3) and mB = mC = (t− 2)2(t− 3).

Thus the invariant factors of A are t− 2 and (t− 2)(t− 3) = t2 − 5t+ 6, while B and C both have
(t− 2)2(t− 3) = t3 − 7t2 + 16t− 12 as their only invariant factor, and so

RA = Ct−2 ⊕ Ct2−5t+6 =

2 0 0
0 0 −6
0 1 5

 RB = RC = Ct3−7t2+16t−12 =

0 0 12
1 0 −16
0 1 7

 .

In particular A 6∼ B ∼ C.i2 What are the possible RCF’s over Q (resp. C) for matrices with characteristic polynomial
p(t) = t5 − t4 + 2t3 − 2t2 + t− 1 = (t− 1)(t2 + 1)2? Note that these matrices must be 5× 5 since
deg(p) = 5. Well, p factors into irreducibles over Q as `q2 where ` = t − 1 and q = t2 + 1, and
over C as ``2+`

2
− where `± = t± i (so q = `+`−). For convenience set c := `q = t3 − t2 + t− 1 and

f± := `±c, so the minimal polynomia/Q (resp.C) must be either c or p (resp. c, f± or p). Thus the
invariant factors/Q (resp.C) must be either q, c or just p (resp. q, c, `±, f∓ or just p) . Hence the
possible RCF’s/Q (resp. C) are Cq ⊕ Cc or Cp (resp. C`± ⊕ Cf∓ or Cp). For practice, write these
out as 5× 5 matrices.

HW#33 Find all possible rational canonical forms for matrices/Q, and then for matrices/C, with
characteristic polynomial (t4 − 1)(t2 + 1).
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Jordan Canonical Form

There is another useful canonical form for matrices which arises from the “primary” version of
the Structure Theorem 3.1, which is derived from the following:

Chinese Remainder Theorem If I and J are ideals in a commutative ring R with 1 such that
R = I + J , then R/(I ∩ J) ∼= R/I ⊕R/J .

Proof Since R = I + J , 1 = i+ j for some i ∈ I and j ∈ J . It follows that the natural projection
p : R→ R/I⊕R/J sending r to (r+I, r+J) is surjective (since any (s+I, t+J) ∈ R/I⊕R/J is p(r)
where r = ti+sj; indeed r+I = sj+I = s(1−i)+I = s+I and r+J = ti+J = t(1−j)+J = t+J)
with kernel I ∩ J . Now apply the first isomorphism theorem.

Remark When R is a PID, I = (r) and J = (s) for some r, s ∈ R, and I + J = R means that r
and s are coprime, so I ∩ J = (rs). The isomorphism R/(rs)→ R/(r)⊕R/(s) (from the theorem)
is onto, so for any a, b ∈ R, there exists an x ∈ R unique up to multiples of rs for which

x ≡ a (mod r) and x ≡ b (mod s)

i.e. x leaves remainders of a and b upon division by s and t respectively. Whence the name
“remainder” theorem.

Using the Chinese Remainder Theorem, the structure theorem can be rephrased as follows:

Structure Theorem (Primary Form) If V is a finitely generated module over a principal ideal
domain R, then V is isomorphic to a direct sum of finitely many modules of the form R or R/(pn),
where p is prime in R and n > 0. (The pn’s are called the elementary divisors of V , and are unique,
as is the number r of copies of R, called the rank. The rank is zero if and only if V is torsion.)

Applying this to the torsion F [t]-module VT (see Ex. i3 , p.24 and Ex. i2 , p.27) we see that

VT ∼= F [t]/〈pn1
1 〉 ⊕ · · · ⊕ F [t]/〈pnk

k 〉. (∗∗)

where the pi are irreducible monic polynomials and the ni > 0.
An important special case arises when the pi’s are all linear, i.e. when cT factors into linear

factors (which is always the case for example when F = C by the fundamental theorem of algebra)

cT = (t− λ1)n1 · · · (t− λk)nk .

The λi are the eigenvalues of T . We can then analyze the action of t on each summand F [t]/((t−λ)n)
with respect to the basis (b0, . . . , bn−1), where bi = (t − λ)i. (This is even better suited to the
situation at hand than the basis 1, t, . . . , tn−1 we used to get the rational canonical form.) Clearly
(t − λ)bi = bi+1 (where we set bn = 0 for convenience) or equivalently tbi = λbi + bi+1 and so the
corresponding coordinate matrix for t is the n × n matrix Jλ,n with λ’s on the diagonal, 1’s right
below the diagonal, and 0’s elsewhere. For example

J2,3 =

2 0 0
1 2 0
0 1 2

 .

This is called a Jordan block. Any matrix which is a block sum of Jordan blocks is said to be in
Jordan canonical form.
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It follows from (∗∗) that there exists a basis B for V such that

TB = Jλ1,n1 ⊕ · · · ⊕ Jλk,nk
.

This is called a Jordan canonical form of T , also denoted JT .

Corollary 3.6 If A is a square matrix with entries in a field F whose characteristic polynomial
factors into linear factors, then A is similar over F to a matrix JA in Jordan canonical form
(unique up to the order of its Jordan blocks). The total number of appearances in JA of any given
eigenvalue λ of A (i.e. root of cA) is the multiplicity of λ as a root of cA, and the size of the largest
associated Jordan block is the multiplicity of λ as a root of mA. (To prove the last statement, note
that the minimal and characteristic polynomials of a Jordan block Jλ,n are both equal to (t−λ)n.)

Examples The Jordan canonical forms of matrices A,B,C in the example above (page 29) are

JA = J2,1 ⊕ J2,1 ⊕ J3,1 =

2 0 0
0 2 0
0 0 3

 and JB = JC = J2,2 ⊕ J3,1 =

2 0 0
1 2 0
0 0 3

 .

HW#34 Find all possible Jordan canonical forms for complex matrices whose characteristic poly-
nomial is (t4 − 1)(t2 + 1).

HW#35 Show that any square matrix over any subfield of C is similar to its transpose. (This is
true for matrices over any field, but we need to know more about fields before we can prove it.)

HW#36 Let F be any field. Show A ∈ Mn(F ) is diagonalizable (meaning similar to a diagonal
matrix) if and only if mA is a product of distinct linear factors.†

We conclude this chapter with the proof of Lemma 3.2, from which the Structure Theorem 3.1
for finitely generated modules over a PID followed. Recall the statement: If U is a submodule of a
free R-module V of finite rank n, where R is a PID, then (a) U is free of some rank ` ≤ n, and (b)
there exists a basis v1, . . . , vn for V and nonzero scalars r1, . . . , r` (unique up to associates), each
dividing the next, such that r1v1, . . . , r`v` is a basis for U .

Proof Assume U 6= 0; the case U = 0 is trivial. Fix any basis (e1 . . . , en) for V with dual basis
(e1, . . . , en) for V ∗ = HomR(V,R) (the theory of dual vector spaces carries over to free modules).
This identifies V with Rn in the usual way. Now view V ⊂ Fn, where F denotes the field of
fractions of R. This allows us to define the rank of U to be the dimension of the subspace of Fn

generated by U , which clearly agrees with the usual notion of rank if U were known to be free.
Thus once we show U is free, it will follow that ` := rk(U) ≤ n.

To analyze the structure of U , pick f ∈ V ∗ so that the ideal f(U) C R is maximal among all
ideals of the form g(U) for g ∈ V ∗ (so f(U) 6= 0 since U 6= 0). Such an f exists since R is a PID,
and therefore Noetherian. Since R is a PID, we have f(U) = (r1) for some nonzero r1 ∈ R. Choose
u1 ∈ U such that r1 = f(u1).

Remark The maximality of (r1) =⇒ r1|h(u1) for any h ∈ V ∗ for which h(U) ⊂ (r1).

†Another interesting result along these lines is: two diagonalizable matrices A,B in Mn(F ) are simultaneously
diagonalizable (meaning ∃ a single invertible matrix P such that both PAP−1 and PBP−1 are diagonal) if and only
if AB = BA. This is left as an exercise for the ambitious reader!
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Claim i1 u1 = r1v1 for some v1 ∈ V (and so f(v1) = 1 by the linearity of f)i2 V ∼= Rv1 ⊕ ker(f) and i3 U ∼= Ru1 ⊕ ker(f |U)

Proofs i1 It suffices to show that r1 divides each coordinate ei(u1) of u1 in V = Rn. If not, then
r1 - s1 := ej(u1) for some j. Then (r1) ( (r1, s1), which can be written as (d) for some d = ar1+bs1.
But then setting h = af + bej ∈ V ∗ we have h(u1) = ar1 + bs1 = d. Thus (r1) ( (d) ⊂ h(U), so
r1|d by the Remark above, i.e. (d) ⊂ (r1). Thus (r1) = (d), a contradiction.i2 Let v ∈ V . Set a = f(v). Then writing v = av1 + (v − av1) shows that v ∈ Rv1 + ker(f).
Also if v ∈ Rv1 ∩ ker(f) then v = rv1 for some r =⇒ 0 = f(rv1) = rf(v1) = r · 1 = r =⇒ r = 0, so
v = 0. Thus Rv1 + ker(f) = V and Rv1 ∩ ker(f) = 0, which proves V ∼= Rv1 ⊕ ker(f).i3 Let u ∈ U . Then f(u) = ar1 for some a ∈ R. Writing u = au1 + (u − au1) shows that
Ru1 + ker(f |U) = U . Also, if u ∈ Ru1 ∩ ker(f |U), then u = ru1 for some r =⇒ 0 = f(ru1) =
rf(u1) = r · r1 =⇒ r = 0 (since R is a domain and r1 6= 0) so v = 0. Thus Ru1 ∩ ker(f |U) = 0, so
U ∼= Ru1 ⊕ ker(f |U).

We now use induction to complete the proof of Lemma 3.2, and thus Theorem 3.1.ia Induct on ` = rk(U). If ` = 0, then U = 0 and we are done. For ` > 0 we have rk(ker(f |U)) <
rk(U) (since u1 ∈ U does not lie in the span of ker(f |U))) and so by the inductive assumption
ker(f |U) is free of rank < `. It follows by claim i3 that U is free of rank ≤ `.ib Induct on n = rk(V ). The result is trivial if n = 0. For n > 0, part (a) implies that ker(f)
is free of rank n− 1 (by claim i2 ). By the inductive assumption ∃ basis v2, . . . , vn for ker(f) and
nonzero scalars r2, . . . , rk, each dividing the next, such that r2v2, . . . , rkvk is a basis for ker(f |U).
It remains to show r1|r2. But consider g ∈ V ∗ defined by

g(v1) = g(v2) = 1

g(vi) = 0 for i > 0.

We have r1 = g(r1v1), so (r1) ⊂ g(U). The maximality of (r1) implies that (r1) = g(U), and so
r1|g(r2v2) = r2, as desired.

For the uniqueness statement, see for example Lang’s Algebra Chapter XV.2.

For the reader’s convenience, we reprint here the statement of the key

Lemma 3.2 If U is a submodule of a free R-module V of rank n, where R is a PID, thenia U is free of rank ` ≤ n.ib There exists bases (u1, . . . , u`) for U and (v1 . . . , vn) for V , and nonzero scalars r1, . . . , r` with
each ri dividing ri+1, such that each vi = rivi.

Uniqueness (not proved here): The ideals 〈r1〉 ⊃ · · · ⊃ 〈rm〉 are uniquely determined by U and V .
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IV Field Theory

§1. Basic Notions

Recall that a field F is a commutative ring with identity 1 (6= 0) for which each nonzero element
has a multiplicative inverse. We say that F is algebraically closed if every polynomial in F [x] has a
root in F ; for example C is algebraically closed,† but Q and Zp are not (exercise: show the latter).
The most basic invariant of a field is its “characteristic”:

Definition The characteristic ch(F ) of a field F is the additive order of 1 ∈ F if that order is
finite, and zero otherwise (i.e. when 1 has infinite order). For example ch(F ) = 0 for any subfield
F of C, and for p prime, ch(Zp) = ch(Zp[x]/(f)) = p for any irreducible polynomial f ∈ Zp[x].

Lemma 1.0 ch(F ) is either 0 or a prime number.

Proof If ch(F ) = p 6= 0 with p = ab, then 0 = p · 1 = (a · 1)(b · 1) (by the distributive property) so
either a · 1 = 0 or b · 1 = 0. The minimality of p =⇒ either a = p or b = p, so p is prime.

The subfield P of F generated by 1 is called the prime subfield of F . It is contained in any
other subfield of F , and is uniquely determined up to isomorphism by the characteristic of F ,
indeed isomorphic to Zp when ch(F ) = p 6= 0 and to Q when ch(F ) = 0 (exercise).

Extension Fields

If F is a subfield of a larger field E, then we call E an extension field of F , denoted E/F (not
to be confused with quotients objects) or by writing E right above F with a vertical line between
them. The extension is proper means E ) F . The usual perspective in field theory is to analyze the
structure of a field by studying its extension fields, in contrast to group theory where one analyzes
the structure of a group by studying its subgroups.

Any extension of F inside E (including F or E itself) is called an intermediate field of the
extension E/F . These play a central role in “Galois Theory”.

An important positive integer associated with an extension E/F is its degree, denoted deg(E/F )
(or sometimes |E : F | or |E/F |). This is the dimension of E when viewed as a vector space over F :

deg(E/F ) := dimF (E).

We say that E/F is a finite extension if deg(E/F ) is finite; our focus here will be on finite extensions
inside the complex numbers C. The following general result is fundamental and easy to prove:

Theorem 1.1 (Multiplicativity of Degree) If K is an intermediate field of an extension E/F
with E/F and F/K finite, then E/F is finite with deg(E/F ) = deg(E/K) deg(K/F ).

Proof Let e1, . . . , ep and k1, . . . , kq be bases for E/K and K/F , respectively. Then the set of all
products eikj (for 1 ≤ i ≤ p and 1 ≤ j ≤ q) is a basis for E/F (straightforward verification).

Algebraic and Transcendental Elements

Let E/F be a field extension. An element α ∈ E is said to be algebraic over F if it is the root
of a nonzero polynomial f ∈ F [x], and is otherwise said to be transcendental over F . Note that in
the former case, α is also algebraic over any larger subfield K of E, since F [x] ⊂ K[x].

†This is the Fundamental Theorem of Algebra, which surprisingly is most easily proved using Analysis and Topology
(although see https://kconrad.math.uconn.edu/blurbs/fundthmalg/fundthmalglinear.pdf). We do not prove it here.
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Examples i1 Any α ∈ F is algebraic over F . Indeed it is the root of x− α ∈ F [x].i2 The complex numbers
√

2, 3
√

2 and i are all algebraic over Q (roots of x2− 2, x3− 2 and x2 + 1
respectively), while e and π are transcendental over Q.†

Notation For any α ∈ E, write F [α] and F (α) for the smallest subring and subfield (respectively)
of E containing F and α, obtained by adjoining α to F . Then F [α] = {f(α) | f ∈ F [x]} is a subset
F (α) = {f(α)/g(α) | f, g ∈ F [x], g(α) 6= 0} = {r(α) : r ∈ F (x)}. In fact the inclusion F [α] ⊂ F (α)
is an equality if and only if α is algebraic :

Theorem 1.2 Let α be an element in an extension field E of a field F .ia If α is algebraic over F , then it is a root of a unique monic irreducible polynomial mα/F ∈ F [x]
called the minimal polynomial of α over F . This polynomial divides any other polynomial in F [x]
that has α as a root. Furthermore F (α) = F [α] ∼= F [x]/〈mα/F 〉. We define the degree of α over F ,
denoted deg(α/F ), to be the degree of its minimal polynomial over F .ib If α is transcendental over F then F (α) properly contains F (α). In fact F (α) is isomorphic
to the field F (x) of rational functions in one variable x, identifying α with x, and thus identifying
F [α] with the polynomial ring F [x]. In this case we say that α has infinite degree over F .

Proof Consider the “evaluation” ring homomorphism eα : F [x]→ E mapping f to f(α).

If α is algebraic, then ker(eα) = {f : f(α) = 0} is a nonzero ideal in the F [x], so equal to
〈mα〉 for a unique monic polynomial mα, since F [x] is a PID. Furthermore, mα is irreducible, since
mα = fg =⇒ mα(α) = 0 = f(α)g(α) =⇒ f(α) = 0 or g(α) = 0 =⇒ f or g is an associate
of mα (by i2 in Theorem 1.1a). Now recall that in a PID, irreducible = prime (for elements)
and prime = maximal (for ideals). Thus (mα) is maximal, so by the first isomorphism theorem
Im(eα) = F [α] ∼= F [x]/ ker(eα) = F [x]/〈mα/F 〉 is a field. Therefore F [α] = F (α).

If α is transcendental, then ker(eα) = 0 =⇒ F [α] ∼= F [x] (by the first isomorphism theorem,
which in this case carries α to x) and so F (α) ∼= F (x), the field of fractions of F [x].

Remarks i1 That F [α] is a field when α is algebraic (since it = F (α) in that case) is surprising.
For example this implies that 3

√
2 is invertible in the ring Q[ 3

√
2]; see if you can find the inverse.i2 The degree of the minimal polynomial of α ∈ E depends in general on the field F ⊂ E. For

example
√

2 ∈ R has degree 2 over Q (with minimal polynomial m√2/Q = x2 − 2) and degree 1

over R (with m√2/R = x−
√

2). For another interesting example, let a and b be any pair of distinct
cube roots of 2 (there are three of them). Then a has degree 3 over Q (ma/Q = x3 − 2) and degree
2 over Q(b) (with ma/Q(b) = x2 + bx+ b2); you should convince yourself that a 6∈ Q(b).

Corollary 1.3 Let α be an element in an extension field E of a field F .ia If α is algebraic over F , then F (α) is a finite extension of F with basis 1, α, α2, · · · , αn−1, where
n = deg(α/F ). Thus deg(F (α)/F ) = deg(mα/F ) = deg(α/F ) = n.ib If E/F is finite, then deg(α/F ) divides deg(E/F ).

Proof ia : By Theorem 1.2a, F (α) = F [α] ∼= F [α]/(mα/F ), which has basis 1, α, · · · , αn−1over F .

For ib , multiplicativity (Theorem 1.1) gives deg(E/F ) = deg(E/F (α)) deg(F (α)/F ), and the last
factor equals deg(α/F ) by part ia .

†For e this follows from elementary calculus (see e.g. Appendix 16 in Simmons’ Calculus with Analytic Geometry)
but for π the proof is much more difficult. Surprisingly, it is not known whether e + π or eπ are algebraic or
transcendental, or even whether either is irrational !
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HW#37 Show that if α1, . . . , αk all lie in an extension field of F and are algebraic over F , then
d := deg(F (α1, . . . , αk)/F ) ≤ p :=

∏k
i=1 deg(αi/F ), but d need not divide p.

Simple Extensions

Definition A proper field extension E/F is simple if E is obtained from F by adjoining a single
element, i.e. E = F (α) for some α ∈ E − F . We call α a primitive element for the extension.

Two types of simple extensions F (α)/F are of special interest: quadratic extensions, when
α2 ∈ F , and cyclotomic extensions, when αn = 1 for some n > 1. That is, a quadratic extension of
F is the result of adjoining the square root of some element a ∈ F −F 2 (where F 2 := {x2 | x ∈ F}),
written F (

√
a), while a cyclotomic extension is the result F (u) of adjoining a root of unity u 6∈ F .

Example The fields Q(
√

7), Q(e2πi/7)), Q(i), Q(
√

2 +
√

3) are all simple extensions of Q. The
first is quadratic, the second is cyclotomic, the third is both quadratic and cyclotomic (the only
such), and the fourth is neither (by Lemma 1.4a below and multiplicativity of degree).

Quadratic extensions, and more generally iterated quadratic extensions (the result of a sequence
of extensions quadratic extensions F = F0 ⊂ F1 ⊂ · · · ⊂ Fn = E) will feature prominently in the
next section. Thus E/F is iterated quadratic means E = F (

√
a1, . . . ,

√
an) where a1 ∈ F − F 2,

a2 ∈ F (
√
a1)− F (

√
a1)

2, and so forth.

Lemma 1.4 ia E/F is quadratic ⇐⇒ deg(E/F ) = 2.ib E/F is iterated quadratic =⇒ deg(E/F ) = 2n (but not conversely).

Proof ia =⇒: If E = F (
√
a) where a ∈ F − F 2, then m√a/F = x2 − a, so deg(E/F ) = 2 by

Corollary 1.3a. ia ⇐=: If deg(E/F ) = 2 then E has an F -basis of the form (1, α), so deg(α/F ) = 2
by 1.3b. Thus mα/F = x2 +bx+c for some b, c ∈ F , so E = F (

√
b2 − 4c). Part ib =⇒ follows fromia =⇒ and the multiplicativity of degree; we omit the proof ib ⇐= fails , which is a bit harder.

Algebraic Extensions

Definition A field extension E/F is algebraic if every α in E is algebraic over F , and otherwise
(i.e. when E has at least one element transcendental over F ) the extension is transcendental.

Theorem 1.5 Every finite extension E/F is algebraic (but not conversely†).

Proof For any α ∈ E, the list 1, α, α2, . . . , αk is linearly dependent over F for any k > deg(E/F ),
i.e. a0 + a1α+ · · ·+ akα

k = 0 for suitable ai ∈ F not all zero. Thus f(x) := a0 + a1x+ · · ·+ akx
k

has α as a root, so α is algebraic over F .

Corollary 1.6 ia If α is algebraic over F , then F (α)/F is algebraic.ib If α and β are algebraic over F , then F (α, β)/F is algebraic.†

Proof For ia , Corollary 1.3 shows F (α)/F is finite, so algebraic by Theorem 1.5. Similarly forib , it is enough by Theorem 1.4 to show F (α, β)/F is finite. But F (α, β) ⊃ F (α) ⊃ F , and each
intermediate extension is finite by 1.3 (the first since β is algebraic over F , so certainly over F (α)).
Thus F (α, β)/F is finite by multiplicativity (Theorem 1.1).

† Think about what Cor 1.5b says in simple terms: If α and β are algebraic over F , then so is any algebraic
expression in α and β. For example, since

√
2 and

√
3 are both algebraic over Q, so are

√
2 +
√

3,
√

6,
√

6(1−
√

8/3),
etc. (although finding their minimal polynomials is a nontrivial matter). This =⇒ that the set Q of all complex
numbers algebraic over Q is an algebraic field extension of Q, showing the failure of the converse of Theorem 1.4.
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Quadratically Closed Fields

Before moving on, we define two more notions related to quadratic extensions. A field E is said
to be quadratically closed (QC) if it has no quadratic extensions, i.e. E = E2, so every element of
E has a square root in E. For example C is QC :

√
reiθ = ±

√
reiθ/2. For any field F inside a QC

field E, there is a unique smallest QC subfield E
√
F of E containing F , namely the intersection of

all QC intermediate fields of the extension E/F . This field, called the quadratic closure of F inside
E, has the following useful characterization:

Lemma 1.7 If E/F is an extension with E quadratically closed, then E
√
F is the union of all

iterated quadratic extensions of F inside E. In particular, E
√
F is an algebraic over F , and each of

its elements has degree a power of 2 over F .

Proof The stated union is indeed a field (as the union of any two iterated quadratic extensions
F (
√
a1, . . . ,

√
an) and F (

√
b1, . . . ,

√
bk) lies in another one F (

√
a1, . . . ,

√
an,
√
b1, . . . ,

√
bk)), and it

clearly lies inside any QC subfield of E containing F . Thus it equals E
√
F by definition. The last

statement follows from Lemma 1.4b and Corollary 1.3b

Remark It can be proved (without too much difficulty) that the field E
√
F is independent up

to isomorphism of the choice of the QC extension field E of F , so can be denoted simply by
√
F .

The special case
√
Q ⊂ C is particularly nice (and relevant to the applications below). For example

this field of C is invariant under conjugation – simply because the conjugate of a square root is the
square root of the conjugate – a property not shared by all subfields of C (e.g. Q( 3

√
2 e2πi/3)).

§2. Application: Geometric Constructions

In this section we prove the impossibility of performing certain classical constructions, where
the only tools allowed are a straightedge and compass. These results, established in nineteenth
century, settled a number of problems dating back thousands of years to the Greeks.

Fix a set S of two or more complex numbers, which we call S-points. Given two S-points a, b
we call the line L(a, b) through a and b an S-line, the circle C(a, b) centered at a and through b
an S-circle, and any S-line or S-circle an S-curve. Let S′ denote the set of all intersection points
between pairs of distinct S-curves; the S′-points and S′-curves are said to be “constructible in one
step” from S. This gives a nested sequence S = S0 ⊂ S1 ⊂ S2 ⊂ · · · of subsets of C, where each
Sn = S′n−1, so consists of all points constructible in n steps from S. Thus the union S = ∪∞n=0Sn is
the set of all points constructible in a finite number of steps from S. Note that S′ = S.

Remark It is assumed that the compass we are using is “collapsible”, meaning it collapses when
lifted from the page. However, the following argument, which we call “Euclid’s trick”, shows that
this is as good as having a rigid compass. More precisely: For any circle C centered at a point p, the
circle Cq of the same size centered at any other point q (the transfer of C to q) can be constructed
from {p, q} using only a collapsible compass and straightedge. For if q lies outside C, then for any
s ∈ C(p, q)∩C(q, p) and t ∈ C ∩C(q, p), we have Cq = C(q, r) for any r ∈ C(p, q)∩C(s, t). If q lies
on or inside C, then first transfer C to a point well outside of C (whose construction may require
the straightedge and arbitrarily many uses of the collapsible compass) and then back to q.

HW#38 Show that the line L⊥p perpendicular to any S-line L through any S-point p is an S2-line,
and hence that the line L

‖
p parallel to L through p is an S4-line. Also show that the line bisecting

the angle formed by two S-lines is also an S4-line.
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Now specialize to the case when S is just the two-element set K := {0, 1}. Thus the set

K := ∪n≥0Kn

consists of all points in C constructible from 0 and 1, a.k.a. the constructible numbers. In the figure
below the two blue dots form K0, the four red dots are the additional points −1, 2 and 1/2±(

√
3/2)i

in K1, and K2 consists of all 179 points where the blue and green lines and circles intersect. The
number of points in each Kn is of course finite, but (probably) grows doubly exponentially in n.

�������

Note that each Kn is conjugation invariant (meaning z ∈ Kn =⇒ z̄ ∈ Kn) since K is, so K is
as well. In fact K has many other wonderful properties, summarized by the remarkable:

Theorem 2.1 The set K of constructible numbers is the quadratic closure
√
Q of the rationals

inside C, or equivalently (by Lemma 1.7) the union of all iterated quadratic extensions of Q. In
particular, K is algebraic over Q, and each of its elements has degree a power of 2 over Q.

In practical terms, the first statement says that a complex number is constructible if and only if
it can be expressed by a formula using only integers, the algebraic operations +, −, ·, ÷ and the
extraction of square roots. Thus for example the golden ratio (1 +

√
5)/2 is constructible, as is its

square root. The second statement gives a necessary (but not sufficient) condition for a complex
number to be constructible, as we’ll see in the applications below.

Proof of the Theorem It suffices to show that the set K has the following two properties:ia K is a quadratically closed field (so K ⊃
√
Q).ib K lies in a union of iterated quadratic extensions of Q (so K ⊂

√
Q).

The first property ia is straightforward from “standard” constructions, and is left to the reader:

HW#39 Show that K is closed under addition, multiplication, inversion (for nonzero elements),
and taking square roots, i.e. if a 6= 0 and b are in K then so are a+ b, ab, a−1 and

√
a. †

For ib consider the fields Qn := Q(Kn) obtained by adjoining all the numbers in Kn to Q.
Note that Qn is conjugation invariant, since Kn is. We show by induction (starting with Q0 = Q)

† Hint: First recall how these operations are defined geometrically, e.g. to multiply two complex numbers, you
multiply their lengths (a.k.a. norms) and add their angles (a.k.a. arguments). Then use HW#38 and Euclid’s trick
to help carry out the constructions. For

√
a when a is a positive real number, note that the circle C(i(a+ 1)/2,−i)

intersects the real axis at ±
√
a.
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that Qn is an iterated quadratic extension of Q, whence K = ∪Kn ⊂ ∪Qn as desired. So assume
this is true for some n. It suffices to show that any z ∈ Kn+1 lies in a quadratic extension of Qn.

By definition z lies in the intersection of two Kn-curves. The key observation is that any such
curve is the zero set of a polynomial in Qn[z, z̄] of degree 1 (for lines) or 2 (for circles), where zz̄ is
the unique quadratic term in the latter case. In particular

L(a, b) = {z ∈ C | (z − a)/(b− a) ∈ R} = {z ∈ C | `ab(z, z̄) = 0}

and

C(a, b) = {z ∈ C | |z − a| = |b− a|} = {z ∈ C | qab(z, z̄) = 0}

where `ab(z, z̄) = (b̄− ā)z− (b− a)z̄+ (āb− ab̄) and qab(z, z̄) = zz̄− āz− az̄+ (ab̄+ āb− bb̄), which
both lie in Qn[z, z̄] since Qn is a conjugation invariant field.

It follows that the intersection point p of any two nonparallel Kn-lines lies in Qn (not extended)
by solving for z̄ in one equation and substituting in the other to give a single linear equation in
z with coefficients in Qn for p. Also the intersection points p, q of a Kn-line and Kn-circle lies
in a quadratic extension of Qn, since solving for z̄ in the linear equation and substituting this in
the quadratic equation gives a single quadratic equation in z with coefficients in Qn whose roots
are p and q. And finally the intersection points of two Kn-circles lies in a quadratic extension of
Qn, since replacing one of the quadratic equations by its difference from the other reduces to the
previous case. This completes the proof.

Corollary 2.2 The cube cannot be doubled (with a straightedge and compass).

Proof If it could, then 3
√

2 ∈ K, but deg( 3
√

2/Q) = 3 =⇒⇐=.

Corollary 2.3 The circle cannot be squared.

Proof If it could, then π ∈ K, but deg(π/Q) =∞ (i.e. π is transcendental) =⇒⇐=.

Corollary 2.4 Not all angles can be trisected. For example, a 60◦ angle cannot be trisected.

Proof If it could, then c = cos 20◦ ∈ K. But c is a root of the polynomial 8x3 − 6x − 1†, which
is irreducible (substituting y = 2x gives y3 − 3y − 1, which is irreducible by Eisenstein’s criterion)
and so equal to mc(x). Thus deg(c/Q) = 3 =⇒⇐=.

While we’re on the subject, the ancient Greek problem of identifying which regular n-gons
are constructible remains open! For example there are only 31 known odd values of n for which
constructions are known to exist (this follows from a remarkable theorem of Gauss and Wantzel
that the n-gon is constructible ⇐⇒ n is a power of 2 times a product of distinct Fermat primes, i.e.
primes of the form 22

n
+ 1, of which only 5 are known: 5, 3, 17, 257 and 65537). Here is a ”simple”

warm-up problem in this subject; you have the tools to solve it (maybe with a little help from the
internet when n = 5, but without using the Gauss-Wantzel theorem).

HW#40 Show that a regular n-gon can be constructed for 3 ≤ n ≤ 6, but not for n = 7.

†This follows from the triple angle formula cos 3θ = 4 cos3 θ − 3 cos θ, which in turn follows by equating the real
parts of the identity cos 3θ + i sin 3θ = (cos θ + i sin θ)3
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THE NOTES THAT FOLLOW ARE VERY ROUGH AND NEED REVISION ...

§3. The Isomorphism Extension Theorem

Recall that any nonzero field morphism g : E → E′ is automatically one-to-one since its kernel
is a proper ideal in E, and therefore trivial. When E and E′ both lie in a possibly larger field (for
example C) and g fixes some field F ⊂ E ∩ E′ pointwise (i.e. g(x) = x for all x ∈ F ), then g is
called an F -embedding, and in particular an F -isomorphism if it is also onto. Any F -isomorphism
E → E is called an F -automorphism of E. The following simple result is extraordinarily useful:

Lemma 3.1 (Root Lemma) If F , E and E′ are subfields of some larger field with F ⊂ E ∩ E′,
and g : E → E′ is an F -embedding, then g maps the roots in E of any polynomial f ∈ F [x] to roots
of f in E′. Thus any F -automorphism of E permutes the roots in E of any polynomial in F [x].

Proof If f(e) = 0 for e ∈ E, then since g is an F -morphism, f(g(e))) = g(f(e)) = g(0) = 0.

The Galois group of a field extension E/F is the group

Gal(E/F ) = {F -automorphisms of E}

under composition. This group will be featured in our study of polynomial equations below. A
crucial ingredient in that study is the following:

Theorem 3.2 (Isomorphism Extension Theorem) Fix an isomorphism f : F → F ′ between two
subfields F and F ′ of a field E. Let p ∈ F [x] be irreducible with p′ the corresponding irreducible
in F ′[x],† and a and a′ be arbitrarily chosen roots in E of p and p′, respectively. Then f can be
extended uniquely to an isomorphism F (a) → F ′(a′) carrying a to a′. In particular, applying this
result to id : F → F : For any two roots a and b in E of the same irreducible polynomial in F [x],
there is a unique F -isomorphism F (a)→ F (b) mapping a to b.

Proof Recall from Theorem 1.2a that each element of F (a) can be written uniquely as p(a) for
some polynomial p of degree less than deg(a/F ). It is now a routine exercise to show that the map
sending p(a) to p′(a′), where a′ = f(a), is the desired isomorphism.

§4. Separability and the Primitive Element Theorem

For simplicity, we henceforth work entirely inside the field of complex numbers C. Thus by
the fundamental theorem of algebra, every (complex) polynomial of degree n has exactly n roots
(counting multiplicities), i.e. every f(x) ∈ C[x] factors in C[x] into linear factors.

Definition A complex polynomial of degree n is said to be separable if it has n distinct complex
roots, i.e. if it factors into distinct linear factors in C[x]. For example x2 − 1 = (x + 1)(x − 1) is
separable, whereas x2 − 2x+ 1 = (x− 1)2 is not.

Lemma 4.1 If F is a subfield of C and f ∈ F [x] is irreducible, the f is separable.

Proof Let a be any root of f in C. Then by Theorem 1.1a, f is (up to a constant multiple) the
minimal polynomial of a over F . If a was a multiple root of f , meaning f(x) factors over C as

†If p(x) = p0 + p1x + · · · , then by definition p′(x) = p′0 + p′1x + · · · where p′i = f(pi). The map F [x] → F ′[x]
sending p to p′ is easily seen to be an isomorphism that carries irreducibles to irreducibles.
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(x − a)2g(x), then a would also be a root of the derivative f ′(x) = (x − a)(2g(x) + (x − a)g′(x)).
By Theorem 1.1a, f divides f ′. But this is impossible since f ′ is nonzero (this is where F ⊂ C is
used) of degree less than deg f . Thus a is a simple root of f .

Definition A field extension E/F is simple if E is obtained from F by adjoining a single element,
i.e. E = F (e) for some e ∈ E. If this is the case then e is called a primitive element for the extension.

Theorem 4.2 (Primitive Element Theorem) All finite extensions inside C are simple.

Proof By induction, it suffices to show that any algebraic extension E = F (a, b) of a field F ⊂ C
can be written as F (a + bc) for some c ∈ F . In fact this is true for any c 6= (a′ − a)/(b′ − b),
where a′ and b′ are roots of ma/F and mb/F . For then we easily show b ∈ F (a + bc) =: K
(or equivalently mb/K is linear) whence a ∈ K as well (since c ∈ F ) as follows: Consider the
polynomial p(x) = ma/F (a + (x − b)c) ∈ E[x]. Clearly b is a common root of p and mb/F , in fact
their only common root by the choice of c, so mb/K divides both of these polynomials. But if mb/K

were not linear, then it would have another root (by Lemma 4.1) which would provide another
common root of p and mb/F . Thus mb/K is linear, and we’re done.

Remark Theorem 4.2 can also be deduced from a more general theorem of Artin (by the same
name) characterizing arbitrary finite simple extensions E/F as those having only finitely many
intermediate fields between F and E. These intermediate fields will play a big role in what follows.

Corollary 4.3 If E/F is a finite extension inside C, then any embedding F ↪→ C extends to an
embedding E ↪→ C.

Proof By the Primitive Element Theorem 4.2, E = F (c) for some c, and so the result follows from
the Isomorphism Extension Theorem 3.2.

§5. Normal Extensions

Definition For any subfield F of C and polynomial f ∈ F [x], the field obtained from F by
adjoining all the roots r1, . . . , rn of f is called the splitting field of f over F , denoted Ff . It consists
of all evaluations h(r1, . . . , rn) for rational functions h in n variables over F , and depends on both
f and F .† A field extension E/F inside C is normal if E is the splitting field of some polynomial
over F , that is, if E = Ff for some f ∈ F [x].

Example The extension Q(
√

2)/Q is normal (since Q(
√

2) = Qx2−2) whereas Q( 3
√

2)/Q is not
(this will follow from Theorem 5.1c below, since Q( 3

√
2) does not contain 3

√
2e2πi/3).

Here are the properties that we will need about normal extensions:

Theorem 5.1 Let E/F be normal (with both fields in C as usual ). Then

ia Any F -embedding g : E ↪→ C is in fact an F -automorphism of E.

ib If K is any “intermediate field” K lying between F and E, then E/K is normal.

ic If p ∈ F [x] is irreducible and has at least one root in E, then all of its roots lie in E. Furthermore,
there exists an F -automorphism of K carrying any one root of p onto any other root of p.

†For example if f(x) = x2 + 1, then Qf = Q(i), whereas Rf = Cf = C.
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Proof By hypothesis E = F (r1, . . . , rn), where r1, . . . , rn are the roots of some polynomial f ∈ F [x],
or explicitly (as noted above)

E = {p(r1, . . . , rn) | p ∈ F [x1, . . . , xn]}.

By the Root Lemma 3.1, g permutes the ri’s, and so p(E) = E. This proves part ia ). Part ib is
obvious, since E = Ef/K .

For ic , suppose p has a root a ∈ E, and let b be any other root of p. By Theorem 3.2, there is an
F -isomorphism F (a)→ F (b) carrying a to b, which extends using Corollary 4.3 to an F -embedding
g : E ↪→ C. Since E/F is normal, g(E) = E (by part a) and so b = g(a) ∈ E, which also proves
the last statement in c).

Corollary 5.2 If E/F is normal of degree n, then the Galois group Gal(E/F ) has order n, and
can naturally be viewed as a subgroup of the symmetric group Sn.

Proof By the Primitive Element Theorem 4.2, E = F (c) for some c ∈ E. Let m denote the
minimal polynomial of c over F . Thus n = deg(m). By Theorem 5.1c, E contains all the roots
c1, . . . , cn of m (with say c1 = c), and for each ci there exists gi ∈ Gal(E/F ) with gi(c) = ci, which
is unique since c generates E over F . By Lemma 3.1, there are no other elements in Gal(E/F ).
Thus |Gal(E/F )| = n. We view Gal(E/F ) < Sn by how its elements permute the roots of m.

Examples i1 Gal(Q(
√

2)/Q) ∼= C2
∼= S2 generated by

√
2 7→ −

√
2.i2 Gal(C/R) ∼= C2

∼= S2 generated by complex conjugation.i3 Gal(Q(
√

2,
√

3)/Q) ∼= C2 × C2 < S4, consisting of the four Q-automorphisms
√

2 7→ ±
√

2 ,√
3 7→ ±

√
3. (elaborate)

Remark If one works in fields other than C (in particular those of characteristic p 6= 0) then the
extensions E/F that we call “Galois” are usually called “normal”, and “Galois” then means normal
and separable, the latter meaning me/F is separable (i.e. has no multiple roots in any extension of
F ) for every e ∈ E. (Note that all extensions inside C are separable by Lemma 4.1.)

§6. Galois Theory

Fix a Galois extension E/F . Let F denote the set of all intermediate fields of the extension,
and G the set of all subgroups of its Galois group.

Fundamental Theorem of Galois Theory (FTGT) For any Galois extension E/F and with F
and G, there is a natural inclusion reversing bijection

F = F(E/F ) G = G(E/F )

Fixer

FixedField

defined as follows: For each K ∈ F , let K ′ ...

§7. Galois Theory over Q (following John Stillwell)
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Fix a monic polynomial f(x) = xn + cn−1x
n−1 + · · · + c1x + c0 in Q[x] of degree n. By the

fundamental theorem of algebra, f has exactly n complex roots r1, . . . , rn counting multiplicities,
i.e. f(x) factors as f(x) = (x− r1) · · · (x− rn). Evidently the coefficients c0, . . . , cn−1 all lie in the
splitting field

Qf := Q(r1, . . . , rn)

of f , obtained from Q by adjoining all the roots of f .† Conversely, we seek a formula for the roots
ri built up from the coefficients ci using only the field operations +,−, · and ÷, and the extraction
of roots. We call such a formula a radical formula for the roots of f . The quadratic formula is
a general radical formula that works for all polynomials of degree n = 2, and there are similar
formulas for n = 3 and 4. We will show below that there are no such formulas for n ≥ 5.

Definition A field extension E/F is an elementary radical extension if E = F ( p
√
b) for some

p ≥ 2 and b ∈ F that is not a perfect pth power, i.e. E = F (a) for some a ∈ E − F satisfying
ap ∈ F . If p is prime and E contains either all of the pth roots of b (recall that there are exactly p
of them in C), or exactly one (namely a), then we call E/F a special elementary radical extension.
In general, any extension obtained by a finite sequence of elementary radical extensions is called a
radical extension.

Definition A polynomial f ∈ Q[x] is solvable if Qf lies in some radical extension of Q. Thus
the solvability of f means the existence of a radical formula for its roots.

Our goal is to show:

Galois’ Theorem There exist nonsolvable polynomials f ∈ Q[x].

The input from group theory is:

Definition A group G is solvable if there is a filtration G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = 1 by normal
subgroups such that Gi/Gi+1 is abelian for all i.

Definition The Galois group of an extension E/F is the group Gal(E/F ) of all automorphisms
of E that fix F pointwise. The Galois group Gal(f) of a polynomial f ∈ Q[x] is Gal(Qf/Q).

Here are the key facts needed to prove Galois’ theorem:

• If f is an irreducible polynomial of degree n over Q, then Gal(f) ∼= Sn.

• Sn is not solvable for n ≥ 5.

§8. Computing Galois groups of a separable polynomial f ∈ K[x]

We view Galf as a group of permutations of the roots of f . For polynomials of small degree, it is
therefore useful to recall what the proper nontrivial subgroups of Sn are for small n. In particular:

• For S3, there are two C2’s and A3 = C3.

• For S4, there are nine C2’s, four C3’s, three C4’s, four V4’s, four S3 ’s, three D8’s, and A4.

†Indeed they are ± the elementary symmetric polynomials in the roots: ck = (−1)n−kek(r1, . . . , rn) where
ek(r1, . . . , rn) =

∑
1≤i1<···<ik≤n ri1 · · · rik . Special cases are c0 = (−1)nr1 · · · rn and cn−1 = −(r1 + · · ·+ rn).
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Two important notions: A subgroup of Sn is transitive if for all 1 ≤ i, j ≤ n, some element in the
subgroup maps i to j. The discriminant of a polynomial f , with roots r1, . . . , rn, is

∆f =
∏
i 6=j

(ri − rj).

Note that ∆f lies in K.

Here are some general results about a separable polynomial f ∈ K[x] of degree n:

1. f is irreducible iff Gal(f) is a transitive subgroup of Sn.

2. Gal(f) ⊂ An iff ∆f is a square in K.
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