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0 Introduction

Euclidean Spaces Rn

• (norm) ‖x‖ = (x21 + · · ·+ x2n)1/2

• (distance) d(x, y) = ‖x− y‖ (the standard metric on Rn)

• (continuity) Let X ⊂ Rn and Y ⊂ Rk. Then f : X → Y is continuous if ∀ a ∈ X and
ε > 0, there exists δ > 0 such that

x ∈ X, d(x, a) < δ =⇒ d(f(x), f(a)) < ε.

• (topological equivalence) If f : X → Y is continuous and has a continuous inverse, then
it is called a homeomorphism and we say X and Y are homeomorphic, written X ∼= Y .

Examples: � ∼= © via x 7→ x/‖x‖, © � ∞ � 	 (explain why), annulus ∼= “twisted”
annulus � Möbius strip (explain why), torus ∼= � w/ identifications � sphere, etc.

HW #1 Partition the capital alphabet into homeomorphism classes.

General Topology

Study of topological spaces – a generalization of subsets of Rn – up to homeomorphism.
Important examples include balls and spheres

Bn = {x ∈ Rn | ‖x‖ ≤ 1} Sn−1 = {x ∈ Rn | ‖x‖ = 1},

surfaces (the torus, Klein bottle, Möbius strip . . . ), 3-dimensional spaces (the 3-sphere S3,
the 3-torus T 3, Poincaré’s dodecahedral space, . . . ) and wilder things (e.g. the long line, the
Cantor set, Antoine’s necklace, Alexander’s horned sphere)

Algebraic Topology

Study of topological properties of spaces using algebra, via “functors”

Topology
π−→ Algebra

assigning an algebraic object π(X) (a group, ring, vector space etc.) to each topological
space X, and a homomorphism f∗ : π(X) → π(Y ) to each map f : X → Y (satisfying
(idX)∗ = idπ(X) and (f ◦ g)∗ = f∗ ◦ g∗)

Example Poincaré’s fundamental group π1(X) is a group associated with any space X
which measures the “1-dimensional holes” in X. Its elements are represented by loops in X.
Facts: π1(B

2) = 0, π1(S
1) = Z.
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Eight Famous Theorems (proved using topology)

f(x)

x

r(x)

• in analysisi1 Brouwer Fixed Point Theorem Any map Bn f→ Bn has a fixed point.

Proof (sketch) If f has no fixed points, then the ray from f(x) through x intersects Sn−1

in a unique point which we call r(x). This defines a continuous function r : Bn → Sn−1

which is the identity on Sn−1, that is idSn−1 = r ◦ i where i : Sn−1 → Bn is the inclusion
map. This violates the Intermediate Value Theorem when n = 1, and the functoriality of π1
when n = 2 (since this would imply idZ = (idS1)∗ = (r ◦ i)∗ = r∗ ◦ i∗ = 0). For n > 1, one
must use a generalization of the fundamental group. In any case one reaches a contradiction.

i2 Picard Theorem Any nonconstant analytic function f : C → C assumes all but possibly
one value.

• in algebrai3 Fundamental Theorem of Algebra Any complex polynomial p : C→ C has a root.

i4 Nielsen-Schreier Theorem Any subgroup of a free group is free.

• in geometry/topology

i5 Hairy Ball Theorem Any tangent vector field on S2 must vanish somewhere.
(You can’t comb the hair on a porcupine) Note: the result generalizes to Sn for even n.

i6 Borsuk-Ulam Theorem Any map f : Sn → Rn must identify a pair of antipodal points

An interpretation for n = 2: at any given time, there exists at least one pair of antipodal
points on the earth’s surface with identical temperature and humidity level.

An application for n = 3: The “Ham Sandwich Theorem” asserts that any three bounded
convex subsets H,C,B of R3 (ham, cheese and bread) can be simultaneously bisected with
a plane (cut with a knife). To prove this, first identify R3 with R3 × {1} in R4. Apply
Borsuk-Ulam to the map S3 → R3 that sends x to the vector whose three coordinates are
the volumes of the parts of H, C and B, respectively, on the same side of x⊥ as x, where x⊥

is the subspace of R4 perpendicular to x. Then f(x) = f(−x) means that the plane x⊥ ∩R3

does the job. (Challenge question: Why did we identify R3 with R3×{1} and not R3×{0}?)

i7 Euler’s Theorem The Euler characteristic χ(P ) ( = v− e+ f ) of the boundary surface S
of any convex polyhedral solid in R3 is equal to 2.

Proof (sketch) Choose a maximal tree T and its dual graph G in S. Then G is a tree. Now
use the observations that χ(tree) := v−e = 1 (proved by induction) and χ(S) = χ(T )+χ(G).

i8 Classification of Surfaces Every closed, connected, orientable surface is homeomorphic to
a “multiholed torus” (draw pictures)
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1 Metric Spaces

Definition 1.1 A metric on a set X is a function d : X ×X → R satisfying

M1) (positivity) d(x, y) > 0 if x 6= y, d(x, x) = 0

M2) (symmetry) d(x, y) = d(y, x)

M3) (4 inequality) d(x, y) + d(y, z) ≥ d(x, z).

The pair (X, d) is called a metric space; usually suppress d from the notation.

Examples i1 Rn with the standard metric, or any subset with the restricted metric.i2 The Hilbert space `2 = the set of all square summable infinite sequences x = (x1, x2, . . . )
(meaning x21 + x22 + · · · <∞) with metric d(x, y) = ‖x− y‖ where ‖x‖ = (x21 + x22 + · · · )1/2.

If X is a metric space, then the set

Br(x) = {y ∈ X | d(x, y) < r}

where x ∈ X and r > 0 is called an open ball in X of radius r and center x.

Definition 1.2 A function f : X → Y between metric spaces is continuous if ∀x ∈ X
and ε > 0, there exists δ > 0 such that d(x, y) < δ =⇒ d(f(x), f(y)) < ε, or equivalently
f(Bδ(x)) ⊂ Bε(f(x)).

Key Observation Continuity can be defined without referring to the metric, using the
notion of “open sets” defined as follows.

Definition 1.3 A subset U of a metric space is open if every point in U is the center of
some open ball lying entirely inside U .

HW #2 Prove that any open ball in a metric space is open.

Proposition 1.4 A function f : X → Y between metric spaces is continuous if and only if
f−1(V ) is open in X for every open subset V of Y .

Proof (=⇒) x ∈ f−1(V ) =⇒ f(x) ∈ V =⇒ Bε(f(x)) ⊂ V (for some ε since V is open)
=⇒ f(Bδ(x)) ⊂ Bε(f(x)) (some δ since f is continuous at x) =⇒ Bδ(x) ⊂ f−1(V ), and so
f−1(V ) is open.

(⇐=) Given ε > 0, any x ∈ X lies in the subset f−1(Bε(f(x)) of X. Since the ball
Bε(f(x) is open in Y (by HW#2), its preimage f−1(Bε(f(x)) is open in X, and so contains
Bδ(x) for some δ > 0. This means f(Bδ(x)) ⊂ Bε(f(x)), so f is continuous.

Remarks 1.5 a) The intersection of finitely many open sets in a metric space X is open
(at each point in the intersection, take the min of the radii needed for each of the sets), as
is the union of arbitrarily many open sets. So are X and ∅. It follows that U ⊂ X is open
⇐⇒ U is the union of a (possibly empty) collection of open balls (⇐= uses HW #2).
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b) Different metrics may give rise to the same open sets. For example, for each real
number p ≥ 1, the norms

‖x‖p = (
∑
|xi|p)1/p (for any real p ≥ 1) and ‖x‖∞ = max |xi|

induce metrics dp and d∞ on Rn, all with the same open sets (d2 is the standard metric, and
d∞ is called the sup metric). To prove this, it suffices to show that for any p, q ∈ [1,∞] and
any ball B for dp, there is a concentric ball B′ for dq such that B′ ⊂ B.

HW #3 Describe the open balls in the metrics d1, d2, d3 and d∞ on R2. Prove using pictures

that these metrics have the same open sets. (Hint: it suffices to show each ball in one metric
centered at a ∈]br2 contains a ball centered at a in the other metric.) Explain why d1/2,
defined in the same way, is not a metric. (Hint: find one example in which one of the axioms
M1) 2) or 3) fails.)

HW #4 For any metric d on a set X, define d̂ : X ×X → R by

d̂(x, y) =
d(x, y)

1 + d(x, y)
.

Show that d̂ is also a metric on X, and that d and d̂ have the same open sets. Note that X is
“bounded” with respect to d̂ (meaning ∃M such that d̂(x, y) < M for all x, y ∈ X) although
it need not be bounded with respect to d.

Remark 1.6 (Heine’s definition) Continuity can also be defined in terms of convergent
sequences, as follows: A function f : X → Y is continuous iff ∀x ∈ X,

xn → x =⇒ f(xn)→ f(x).

Here xn → x means ∀ε > 0, ∃N such that xn ∈ Bε(x) for all n > N . This is often the
way continuity is used in analysis courses. It is a worthwhile exercise to prove that this is
equivalent to the ε-δ definition.

4



2 Topological Spaces

Definition 2.1 A topology on a set X is a collection O of subsets of X,† called open sets,
that satisfy (cf. Remark 1.5a)

O1) the intersection of any finite number of open sets is open

O2) the union of any (possibly infinite) number of open sets is open

O3) X and ∅ are open.

The pair (X,O) is called a topological space (or just space). We usually suppress O from the
notation, but don’t forget that the notion of “openness” depends on the topology; a subset
of X can be open in one topology on the set X and not open in another!

A function f : X → Y between spaces is continuous if f−1(V ) is open in X for every open
V in Y . Continuous functions are also called maps. Observe that the composition

X
f−→ Y

g−→ Z

of maps is a map: W open in Z =⇒ (g ◦ f)−1(W ) = f−1(g−1(W )) open in X. A map which
has a continuous inverse is called a homeomorphism. Two spaces X and Y are said to be
homeomorphic, written X ∼= Y , if there exists a homeomorphism X → Y .

Examples of Topological Spaces

i1 Any set X with the trivial topology {X,∅}, or the discrete topology P(X) (= the power
set of X, i.e. all subsets of X are open in the discrete topology). Note that any function with
domain a discrete space, or codomain a trivial space, is continuous.

i2 Any set with the cofinite topology {U | U = ∅ or X − U is finite}. (Verify the axioms)

i3 Any metric space (X, d) with its associated metric topology Od, consisting of the open sets
defined as above using open balls (see Remark 1.4a). For example the metric topology for
the standard metric on Rn (or any of the metrics dp defined above) is called the “standard
topology” on Rn. A space whose topology is the metric topology for some metric is said to
be metrizable. For example any discrete space is metrizable, with d(x, y) := 1 for all x 6= y.
Not all spaces are metrizable, however, as we will see below!

i4 Finite sets have lots of different topologies. For example any set with 3 elements has 29
different topologies, which fall into 9 homeomophism classes. (Can you find them all? Draw
pictures) In general, let tn denote the number of distinct topologies on an n element set X,
and let hn denote the number of homeomorphism classes of the associated spaces. Then
the first seven values of tn and hn are, respectively, 1, 4, 29, 355, 6942, 209527, 9535241 and
1, 3, 9, 33, 139, 718, 4535, but no general formulas are known!

†in other words O is a subset of the power set P(X) = the set of all subsets of X
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Subspaces

Any subset A of a space X has a natural subspace or relative topology consisting of
{U ∩ A | U is open in X}. With this topology, A is called a subspace of X. The inclusion
map i : A → X of any subspace, defined by i(a) = a, is continuous, since i−1(U) = U ∩ A.
In fact this shows that the subspace topology is the smallest topology on A for which i is
continuous.

Sums and Products

If X and Y are spaces, then so is their disjoint union X t Y with the sum topology
(consisting of all sets of the form U tV for open U ⊂ X, V ⊂ Y ) and their cartesian product
X × Y with the product topology (consisting of all sets W for which each x ∈ W lies in an
open box – meaning any set of the form U×V for open U ⊂ X, V ⊂ Y – in W †). The former
is called the sum (or disjoint union), and latter the product, of X and Y . (draw pictures)

HW #5 Show that the product topology on X × Y (as defined above) is indeed a topology.

The product X×Y has “natural projections” X
p1←− X×Y p2−→ Y defined by p1(x, y) = x

and p2(x, y) = y. Likewise the sum X t Y has “natural inclusions” X
i1−→ X t Y i2←− Y

defined by i1(x) = x and i2(y) = y. These are all continuous and satisfy the following:

Universal Properties 2.2 If W is a space equipped with maps X
q1←−W q2−→ Y (call this

gizmo a “pre-product”) then ∃! map W
g→ X × Y such that q1 = p1g and q2 = p2g, i.e. the

following diagram commutes:

W
q1

zz
g

��

q2

$$
X X × Yp1
oo

p2
// Y

If Z is a space equipped with maps X
j1−→ Z

j2←− Y (call this a “pre-sum”) then ∃! map

X t Y h→ Z such that j1 = hi1 and j2 = hi2, i.e. the following diagram commutes:

X
i1 //

j1 $$

X t Y

h
��

Y
i2oo

j2zz
Z

Thus given X and Y , their product is an “initial object” (a.k.a. a “universally repelling
object”) in the category of all pre-products, and their sum is a “teminal object” (a.k.a.
“universally attracting object”) in the category of all pre-sums. In a general category, such
constructs are called “products” and “coproducts”.

The proofs are left as exercises. The key ingredient in the case of the product is:

†or equivalently, the product topology consists of all sets that are unions of open boxes.
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HW #6 Prove that any function W
f→ X × Y , whose compositions p1f , p2f with the

projections onto the factors are continuous, is continuous.

Bases (used to efficiently define and compare topologies on a set X)

For any S ⊂ P(X), there is a unique smallest topology O(S) on X that contains S,
namely the collection of all unions of sets that are themselves intersections of finitely many
sets in S; this is a topology by deMorgan’s laws.† We say S generates O(S). If the sets in
O(S) can all be expressed simply as unions of sets in S, then we call S a basis for O(S). In
other words, a basis for a topology is just a collection of some of its open sets – designated
as “basic” – such that any open set can be written as a union of basic open sets.

Remark If X and Y are spaces and S is a basis for the topology on Y , then a function
f : X → Y is continuous if and only if f−1(V ) is open in X for every V ∈ S. This follows
from deMorgan’s laws.

Examples of bases i1 The 1-element subsets form a basis for the discrete topology.i2 The open balls in a metric space form a basis for the metric topology.i3 The infinite strips J × R and R × J , for all open intervals J , generate the standard
topology on R2. However they do not form a basis for this (or any) topology on R2 (since,
for example, the intersection J × R ∩ R× J = J × J which is not a union of strips).

This last example shows that not every S ⊂ P(X) is the basis for a topology on X, but
it is easy to characterize those that are (the proof is left as an exercise):

Lemma 2.3 (characterization of bases) S ⊂ P(X) is a basis for a topology on X if and only
if (a) S covers X (meaning X is the union of the sets in S), and (b) the intersection of any
two sets in S is a union of sets in S. Furthermore, if S and S ′ are bases for topologies O
and O′, then O ⊂ O′ ⇐⇒ every set in O is a union of sets in O′.

If a space X has a countable basis, then it is said to be second countable. For example,
Rn is second countable: the open balls whose radii and center coordinates are rational form
a countable basis. This is a very useful condition to impose, included in the definition of a
“manifold” (below) and related to metrization results.

Hausdorff Spaces

A space X is Hausdorff if any two points x, y ∈ X have disjoint neighborhoods in X.
Here a neighborhood of a point in X, or more generally of a subset A of X, is by definition
any subset of X (not necessarily open) that contains an open set containing A; thus it is
equivalent to require that x and y lie in disjoint open sets in X.

For example discrete spaces are Hausdorff, as are metric spaces (since any two points
x 6= y lie in the disjoint balls Br/2(x) and Br/2(y), where r = d(x, y)). In contrast, trivial
spaces with more than one element and infinite cofinite spaces are not Hausdorff, hence not
metrizable (exercise).

†In particular, use the fact that (∪iAi) ∩ (∪jBj) = ∪i,j(Ai ∩Bj).
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The Hausdorff condition is extremely useful. It is clearly a topological property (i.e. any
space homeomorphic to a Hausdorff space is Hausdorff) and “hereditary”, i.e. inherited by
subspaces (exercise). It also behaves well with respect to sums and products:

HW #7 Prove that two non-empty spaces X and Y are Hausdorff ⇐⇒ their sum X t Y is
Hausdorff ⇐⇒ their product X × Y is Hausdorff.

The Hausdorff condition implies that limits of sequences are unique: A sequence x1, x2, . . .
of points in a space X is said to converge to a point x ∈ X, written limxn = x, if for every
neighborhood N of x, the sequence is eventually in N (meaning xn ∈ N for all sufficiently
large n). In a Hausdorff space, a = limxn = b =⇒ a = b; the proof is an exercise for the
reader. This need not be the case in a space that is not Hausdorff. For example in any space
with the trivial topology, every sequence converges to every point.

Manifolds

The Hausdorff condition is generally included in the definition of “manifolds”, the primary
objects of study for topologists:

Definition 2.4 A manifold is a locally Euclidean, second countable Hausdorff space M .
Here “locally Euclidean” means that there is an integer n ≥ 0 such that each point in M
lies in an open set (called a “chart”) homeomorphic to an open set in Rn; n is called the
dimension of the manifold, denoted dim(M), and we refer to M as an n-manifold.

Examples of 1-manifolds are R and the circle S1, and of 2-manifolds are R2, any open
subset of R2, the sphere S2, the torus T 2 ∼= S1 × S1, etc. The study of 3 and 4-manifolds
is a very active area of current research, and in some sense the richest part of the study of
manifolds in general; in fact some of the most interesting phenomena in low dimensions, and
especially in dimension 4, disappear in higher dimensions!

Special Subsets X = space, A ⊆ X:

• A is closed if its complement X −A is open. Finite unions and arbitrary intersections
of closed sets are closed, as are X and ∅. This follows from deMorgan’s law: The complement
of a union/intersection of subsets of a set X is the intersection/union of their complements.

Warning: There are subsets of X that are both open and closed (e.g. X and ∅) and there
may be subsets that are neither (give examples in R2).

Remark A function f : X → Y between spaces is continuous if and only if the preimage
f−1(C) of every closed subset C of Y is a closed subset of X (since X−f−1(C) = f−1(Y −C)).

• In general, the closure of A is the set

A = ∩ {closed C ⊇ A} = the smallest closed set containing A.

Clearly A is closed ⇐⇒ A = A. If X is a metric space, then A can equivalently be defined
as the set of limit points of sequences in A, but this is not true in general.
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The interior of A is the set

A◦ = ∪ {open U ⊆ A} = the largest open subset of A.

Clearly A is open ⇐⇒ A = A◦. Note that A◦ can also be described as the set of all interior
points of A, which by definition are the points which have a neighborhood entirely inside A.

• There are three other important sets associated with A, its

exterior A× = {x ∈ X | some neighborhood of x is disjoint from A}
boundary ∂A = {x ∈ X | every neighborhood of x intersects A and X −A}
limit set A′ = {x ∈ X | every neighborhood of x contains points in A distinct from x}

The points in A×, ∂A, and A′ are called, respectively, exterior, boundary, and limit (or
cluster or accumulation) points of A in X. Clearly X is the disjoint union

X = A◦ t ∂A t A×.

Also note that A× = (X −A)◦, and so A× is open. It follows that ∂A is closed, and that

A = A◦ ∪ ∂A = A ∪ ∂A.

HW #8 For any subset A of a space X, show (using the definitions above) that A = A∪A′,
and that A is closed ⇐⇒ A ⊇ A′.

If A = X, i.e. every open set in X intersects A, say A is dense in X. For example, Q is
dense in R. If a space has a countable dense subset, then it is said to be separable.

HW #9 Show that every second countable space is separable, and that every separable
metric space is second countable.

Aside

Baire Category Theorem (useful in analysis) If X is a complete† metric space and
U1, U2, . . . are open dense subsets of X, then U = U1 ∩ U2 ∩ · · · is dense in X.

Proof It suffices to show V open =⇒ V ∩U 6= ∅. Inductively construct balls B1⊃B2⊃· · ·
in V with Bn ⊂ U1 ∩ · · · ∩ Un for each n. Completeness =⇒ B1 ∩ B2 ∩ · · · is a nonempty
subset of V ∩ U .

Application ∃ continuous, nowhere differentiable functions I → R, where I = [0, 1].

Proof Apply Baire to X = {continuous functions I
f→ R} with the “sup metric”

d(f, g) = max
t∈I
|f(t)− g(t)|

and with Un = {f : ∀t ∈ I, ∃h with |f(t+ h)− f(t)| > nh}.
†meaning that any Cauchy sequence in X converges to a point in X
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Piecing maps together

Piecewise continuous functions (e.g. functions defined by more than one formula) need
not be continuous, but under certain mild conditions on the “pieces”, they are:

Gluing Lemma 2.5 If f : X → Y is a function between spaces such that f |A and f |B are
continuous, where A and B are closed subsets of X with A ∪ B = X, then f is continuous.
The same conclusion holds if A and B are both open in X.

Proof If C is closed in Y , then f−1(C) = (f |A)−1(C) ∪ (f |B)−1(C) is the union of
two closed subsets of X, and so closed in X. Indeed (f |A)−1(C) is closed in A, i.e. the
intersection of a closed set in X with A, and so is closed in X since A is closed in X; similarly
for (f |B)−1(C). Thus f is continuous. The argument in the open case is analogous.
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3 Separation and Metrization

We first discuss the separation axioms of Alexandroff-Hopf (1945)which generalize the Haus-
dorff condition. They are useful tools and lead to metrization results, the most famous of
which (due to Urysohn) is proved below.

Let A,B be disjoint subsets of a space X. Say that A can be separated from B if A has
a nbd disjoint from B, and that A and B can be separated in X if they have disjoint nbds.

Separation Axioms A top space X is

• T0 if at least one pt of each pair of pts can be separated from the other

• T1 if either pt of each pair of pts can be separated from the other

• T2 if each pair of pts can be separated in X (= the Hausdorff condition)

• T3 if each closed set and pt not in it can be separated in X

• T4 if each pair of disjoint closed sets can be separated in X

(Draw pictures) Further terminology: regular = T1 + T3 , normal = T1 + T4.

Facts about Ti-spaces : i1 A space X is T1 ⇐⇒ all points in X are closed (exercise).

i2 normal =⇒ regular =⇒ Hausdorff =⇒ T1 =⇒ T0 (easy consequence of i1 ).

i3 All reverse implications in i2 fail (see Steen-Seebach: “Counterexamples in Topology”).

i4 While regularity and the Hausdorff conditions are hereditary (inherited by subspaces),
normality is not, although it is weakly hereditary (inherited by closed subsets) – easy exercise.

HW #10 Prove that any metric space (X, d) is normal.†

Not all normal spaces are metrizable (see e.g. Steen and Seebach). However, all second
countable ones are, indeed:

Urysohn Metrization Theorem 3.1 (1924) Any second countable regular topological
space is metrizable.

Tychonoff’s Lemma 3.2 Second countable regular spaces are normal.

Proof. Let X be second countable, A,B ⊂ X closed, A ∩ B = ∅. Each a ∈ A has an open
nbd Ua with Ua ∩ B = ∅. The cover {Ua} of A has a countable subcover. (Pf: a ∈ basic
Ba ⊂ Ua. {Ba} countable, so = {Bi} for i = 1, 2, . . . . Choose Ui ⊃ Bi.) Similarly have a

†Hint: For A,B disjoint closed subsets of X, explain why there is an open ball around each point in A that
is disjoint from B, and an open ball around each point in B that is disjoint from A. Now use these balls to
construct your separation of A and B.
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countable cover {Vi} of B with Vi∩A = ∅. Set U ′i = Ui−∪j<iV j and V ′i = Vi−∪j≤iU j (note
that S ∪ T = S ∪ T , but not for infinite unions). Then have disjoint open neighborhoods:

U = U1 ∪ (U2 −V1) ∪ (U3 − V1 ∪ V2) ∪ · · · = ∪U ′i
V = (V1 −U1) ∪ (V2 − U1 ∪ U2) ∪ · · · = ∪V ′i

of A and B respectively (draw picture).†

Urysohn’s Lemma 3.3 A,B disjoint closed subsets of a normal space X =⇒ ∃ continuous
f : X → I with f(A) = 0, f(B) = 1.

Proof. Inductively define Cr for every diadic rat’l r ∈ (0, 1) so that X − Cr = disj union of
two open sets Ur and Vr w/ ∪s<rCs ⊂ Ur and ∪s>rCs ⊂ Vr (picture). Define f : X → I by

f(x) = inf{r : x ∈ Ur}

(where inf ∅ = 1). Note that I has basis of (r, s) with r, s diadic. Since f−1(r, s) = Vr ∩Us is
open, f is continuous.

Proof of metrization theorem. Let X be second countable and regular, and therefore normal
by Tychonoff. Idea: Show X embeds in `2 (=⇒ X is metrizable since `2 is).

Definition 3.4 A map f : X → Y is an embedding if it is a homeomorphism onto its
image, i.e. it is 1-1, continuous and maps open sets in X to open sets in f(X). Indicate this
by writing f : X ↪→ Y .

Choose a countable basis U1, U2, . . . for X. For every pair i, j with Ui ⊂ Uj , define
fij : X → I with fij(Ui) = 0, f(X − Uj) = 1 (by Urysohn). Reindex i, j ↔ n. Define
f : X → `2 by

f(x) = (f1(x), f2(x)/2, f3(x)/3, · · · ).

This is in `2 since
∑

(fn(x)/n)2 <
∑

1/n2 <∞.

Claim f is an embedding:

f is 1− 1 Given x 6= y in X, ∃Ui ⊂ Uj with x ∈ Ui, y 6∈ Uj (by regularity) =⇒ associated
coordinate of f(x) and f(y) differ (= 0, 1/n resp.)

f is continuous Given x ∈ X, ε > 0, it suffices to show ∃ (open) nbd U of x such that for
all y ∈ U

d(f(x), f(y)) = (
∑

dn(x, y))1/2 < ε

where dn(x, y) := (fn(x)/n− fn(y)/n)2. To do this, choose N ao that
∑

n>N dn(x, y) < ε2/2
for all y ∈ X; such an N exists since

∑
1/n2 converges and dn(x, y) ≤ 1/n2. Next choose U

so that dn(x, y) < ε2/2N for all y ∈ U and n ≤ N (by continuity of fn). This implies that

†Clearly A ⊂ U (any a ∈ A lies in some Ui but in no V j , so lies in U ′i). Similarly B ⊂ V Finally U ∩ V
is empty: If not, then ∃x ∈ U ′i ∩ V ′k for some i, k. If i > k then x /∈ V k but is in Vk (contradiction) while if
i ≤ k then x ∈ Ui but is not in U i (again a contradiction).

12



∑
n≤N dn(x, y) < ε2/2 for y ∈ U . Therefore the whole sum

∑
dn(x, y) < ε2 for all y ∈ U , so

d(f(x), f(y)) < ε.

f is open ISTS U open and x ∈ U =⇒ f(U) contains Bε(f(x)) ∩ f(X) for some ε > 0. As
above, the regularity of X shows that ∃ basic Ui, Uj with x ∈ Ui ⊂ Uj ⊂ U . If n corresponds
to ij then d(f(x), f(y)) > 1/n for y 6∈ Uj , and so f(U) contains B1/n(f(x)) ∩ f(X).

Another application of Urysohn’s Lemma:

Tietze Extension Theorem 3.5 C closed subset of normal X, f : C → [−1, 1] con-
tinuous =⇒ ∃ continuous F : X → [−1, 1] extending f , i.e. F |C = f . (Exercise: Find a
counterexample when C is not closed)

Lemma Given h : C → [−m,m], ∃ g : X → [−m
3 ,

m
3 ] with |h− g| ≤ 2m

3 on C.

Proof. Set A = h−1[−m,−m
3 ] and B = h−1[m3 ,m], and apply Urysohn’s Lemma to get

g : X → [−m
3 ,

m
3 ] with g(A) = −m

3 and g(B) = m
3 .

Proof. (of Tietze) Apply lemma to h = f to find g1 with |g1| ≤ 1
3 , |f − g1| ≤ 2

3 on C, then
to h = f − g1 to get g2 with |g1| ≤ (13)2, |f − (g0 + g1)| ≤ (23)2 on C, etc. In other words,
induct to find gn with

ia |gn| ≤ (13)n , ib |f −
∑n

i=1 gi| ≤ (23)n on C.

Set F =
∑
gn. F is cont by ia (Weierstrass M -test) and F |C = f by ib .

General Extension Problem

X
i
⋃

↘∃? F
A →

f
Y

No general solution is known, but many special cases are understood (e.g. A closed subset of
normal X, and Y = I or R.) Method of algebraic topology:

nonexistence apply appropriate functor H : Topology → Algebra

H(X)
H(i)

⋃
↘@ G

H(A) →
H(f)

H(Y )

(Give example of Brouwer Fixed Point Theorem again: f = id : S1 → S1, and X = B2).

existence obstruction theory (blend of homotopy and cohomology theory)

HW #11 Show that any manifold M is metrizable. You may use without proof the fact that

any closed ball in a chart in M is closed in M as well (an easy consequence of compactness,
yet to come).
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4 Connected Spaces

We discuss two basic, closely related notions: connected and path-connected spaces X. In-
tuitively the first means that X consists of a single “piece”, and the second (which turns out
to be slightly more restrictive) means that there exist “paths” between any two points in X.

Connectedness

A clopen subset of a space X is a subset that is both closed and open in X. For example
∅ and X are clopen in X; these are called the trivial clopen subsets.

Definition 4.1 X is connected if it has no nontrivial clopen subsets.

Equivalent formulations X is connected if and only if either of the following conditions
holds i1 X is not the disjoint union of two non-empty open subsets, or i2 every map from
X to a discrete space is constant. (Exercise: Show that these definitions are all equivalent)

Connectedness is clearly a topological property, meaning any space homeomorphic to a
connected space is connected. But it is not not a hereditary property, meaning subspaces of
connected spaces need not be connected, as easily seen from the following characterization
of the connected subspaces of R:

Theorem 4.2 A subspace J of R is connected iff it is convex (i.e. an interval). In particular
R and the unit interval I = [0, 1] are connected.

Proof. (=⇒) Sps J connected but not convex. Then ∃ a < b < c with a, c ∈ J and b 6∈ J .
But then J ∩ [b,∞) = J ∩ (b,∞) is a nontrivial clopen subset of J =⇒⇐=.

(⇐=) If J is convex but not connected, then it has a nontrivial clopen subset A. Choose
a ∈ A, c ∈ J−A. WLOG a < c, so [a, c] ⊂ J (by convexity). Now consider b = lub (A∩[a, c]).
If b ∈ A, then b ∈ some [b, b + ε) ⊂ A (since A is open) =⇒ b 6= an upper bound for
A ∩ [a, c] =⇒⇐=. Sim’ly b ∈ J −A =⇒ some (b− ε, b] ⊂ J −A =⇒⇐= minimality of b.

Remark Connected subspaces of R2 can be quite wild, e.g. the topologist’s sin curve
TS = T ∪ S ⊂ R2, where T = {0} × [−1, 1] and S = graph of f(x) = sin(1/x) on (0, 1].

T

S

To see that TS is connected, need (part of) the following:

Proposition 4.3 (Properties of connected spaces)

(a) X connected, f : X → Y continuous =⇒ f(X) connected (Corollary: Int Value Thm)

(b) X = ∪Xi, Xi connected, Xi ∩Xj nonempty for all i, j =⇒ X connected

(c) S × T is connected ⇐⇒ S and T are connected

14



(d) A ⊂ B ⊂ A ⊂ X with A connected =⇒ B is connected (in particular A is connected).

Proof (a) The preimage of any nontrivial clopen set in Y is a nontrivial clopen set in X.

For (b) observe that any nonempty clopen subset A of X intersects each Xi in a clopen
set (= ∅ or Xi) so A is the union of some of the Xi’s. Since each pair of Xi’s intersect, A is
in fact the union of all of them, i.e. A = X.

(c =⇒) follows from (a) since the natural projections are continuous. For (c⇐=) consider
Xst = S×t∪s×T , for (s, t) ∈ S×T (draw picture). (Here we write s×T for {s}×T , etc., by
abuse of notation.) Since S×t ∼= S and s×T ∼= T (exercise), and S×t∩s×T = {(s, t)} 6= ∅,
it follows from (b) that Xst is connected. Then Xst ∩ Xs′t′ ⊃ {(s, t′), (s′, t)} 6= ∅ and
S × T = ∪Xst, so S × T is connected by (b). We leave (d) for HW.

HW #12 Prove Proposition 4.3(d)

HW #13 Prove that the topologist’s sin curve is connected. (Hint: use Proposition 4.3)

Components

A component of a space X is a maximal connected subspace C of X (meaning that
C $ D ⊂ X =⇒ D not connected).

Corollary 4.4 Any space is the disjoint union of its components, each of which is closed.
(These are the “pieces” of the space.)

Proof First note that each x ∈ X lies in a component, namely Cx = union of all connected
A ⊂ X containing x (this set is connected by 4.3(b) and maximal by construction). Also,
distinct components C,D are disjoint: C ∩D 6= ∅ =⇒ C ∪D connected =⇒ C = C ∪D = D
(by maximality). Components are closed by 4.3(d).

Remark Components need not be open (e.g. the components of Q, as a subspace of R, are
points†) but are if there are only finitely many (explain why).

Path-Connectedness and Path-Components

Let x, y be points in a space X. A path in X from x to y is a (continuous) map α : I → X
with α(0) = x and α(1) = y. (Recall I = [0, 1].)

Definition 4.5 X is path-connected if any two points in X can be joined by a path.

Clearly intervals are path-connected (use the path α(t) = x+t(y−x) to join x to y). Also
the analogues of properties 4.3(a)(b)(c), but not (d), e.g. the topologists sin curve TS = S is
not path-connected although S is:

HW #14 Prove that the topologists sin curve is not path-connected. (This is tricky)

†such a space is called totally disconnected
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Proposition 4.6 (Properties of path-connected spaces)

(a) The continuous image of a path connected space is path-connected.

(b) The union of pairwise intersecting path-connected spaces is path-connected.

(c) The product of two spaces is path-connected iff the factors are path-connected.

Proof (a) If f : X → Y is continuous, then any f(x) and f(y) in f(X) can be joined by
the path f ◦ α for any path α in X joining x to y. For (b), it suffices to show that if X and
Y are path-connected with X ∩ Y 6= ∅, then we can join any x ∈ X and y ∈ Y by a path in
X ∪ Y . So choose z ∈ X ∩ Y , and paths α in X from x to z and β in Y from z to y. Then
the composite path α · β from x to y defined by

α · β(t) =

{
α(2t) for t ≤ 1/2

β(2t− 1) for t ≥ 1/2

(which is continuous by the gluing lemma above) is the desired path. Part (c) follows exactly
as in the proof of Proposition 4.3(c).

As for components, the path-components of a space are its maximal path-connected sub-
spaces. Readily deduce the analogue of Corollary 4.4 (same proof) except path-components
need not be closed (e.g. path-components of TS are T and S, but S is not closed in TS).

Corollary 4.7 Any space is the disjoint union of its path components.

Relationship between the two notions

Path-connectedness =⇒ connectedness, but not conversely without a suitable “local”
connectivity condition: A spaceX is locally path-connected if all points inX have “arbitrarily
small” path-connected neighborhoods, i.e. ∀x ∈ X and nbd N of x, ∃ path-connected nbd P
of x with P ⊂ N . For example manifolds are locally path-connected (why?).

Proposition 4.8 Every path-connected space is connected. Conversely, every locally path-
connected, connected space is path-connected.

HW #15 Prove Proposition 4.8. (Hints: For =⇒ use Prop 4.3b, and for ⇐= show that the

set of points that can be joined by a path to a given base point is a nonempty clopen set.)

Thus for manifolds the notions coincide. In general each component of a space is a union
of path-components.

HW #16 Find an example of a path-connected space which is not locally path-connected

(hint: start with the topologist’s sin curve).
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5 Compact Spaces

Compactness is a central concept in all of math. The compact subspaces of Rn are exactly
the closed and bounded subsets (where “bounded” means “lying in some ball”) but since
boundedness does not generalize to topological spaces, must use a different definition (and
then this compactness criterion becomes the famous Heine-Borel Theorem).

A cover U of a top space X is a collection of subsets whose union is X; its an open cover
if the sets are open. A subcollection of U which still covers X is called a subcover of U .

Definition 5.1 X is compact if every open cover of X has a finite subcover.†

Equivalent formulation in terms of closed sets: A collection of sets has the finite
intersection property (FIP) if any finite subcollection has nonempty intersection. Then X
is compact iff every collection of closed subsets of X w/ the FIP has nonempty intersection
(exercise).

Theorem 5.2 Closed intervals are compact.

Proof For any open cover U of an interval [a, c], consider the set B of all t ∈ [a, c] such
that [a, t] is covered by finitely many sets in U . Must show c ∈ B. Set b = lubB. Note
that b > a since a ∈ some U ∈ U =⇒ [a, a + ε) ⊂ U for some ε > 0 =⇒ [a, a + ε) ⊂ B.
Choose V ∈ U containing b and a finite subset F of U which covers [a, t] for some t < b in V .
Then b ∈ B (since F ∪ {U} covers [a, b]) and b 6< c (since b is an upper bound for B). Thus
b = c ∈ B.

Remark Compact subsets of Rn can be quite wild, even for n = 1; e.g. the Cantor set (cf.
introduction to Jänich’s Topology).

Proposition 5.3 (Properties of compact spaces)

(a) The continuous image of a compact space is compact.

(b) A closed subset of a compact space is compact.

(c) A compact subset of a Hausdorff space is closed.

(d) The product of two spaces is compact iff the factors are compact.

(e) (Bolzano-Weierstrass property) Every infinite subset of a compact space has a limit
point in the space.

Proof (a) V = open cover of Y =⇒ f−1(V) = {f−1(V ) : V ∈ V} = open cover of X =⇒ ∃
finite subcover F ⊂ f−1(V) of X =⇒ f(F) = {f(U) : U ∈ F} ⊂ V is a finite subcover of
f(X). Thus f(X) is compact. The proofs of (b) and (c) are left for HW. (d=⇒) is immediate
from (a) since the natural projections are continuous.

†In other words, from any collection of open sets U whose union is X, one can select finitely many whose
union is still equal to X. Note that a subspace A of a space X is compact ⇐⇒ from any collection of open
sets in X whose union contains A, one can select finitely many whose union still contains A.
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For (d⇐=) suppose we are given an open cover U of S × T , where S and T are compact.
Call a subset of S × T “good” if it lies in the union of some finite sub-collection of the sets
in U . Thus any finite union of good sets, or any subset of such a union, is good. We must
show that S × T is good.

First note that every (s, t) ∈ S × T lies in an open box Bst contained in some open set in
U . In particular each Bst is good. For any fixed t ∈ T , the level S × t is compact (since it is
homeomorphic to S which is compact) and so is covered by finitely many of these boxes. In
fact this finite collection of boxes also covers the thickened level S×Vt, where Vt is the (open)
intersection of their projections onto T . In particular S × Vt is good. But T is also compact,
and so is the union of finitely many of the Vt. Thus S × T is the union of the finitely many
corresponding good sets S × Vt, and so is good.

(e) Let S be an infinite subset of the compact space X. If S has no limit points in X then
each x ∈ X has a neighborhood Ux containing at most one point of S. But then compactness
of X =⇒ X is covered by finitely many Ux’s, contradicting that S is infinite.

HW #17 Prove Proposition 5.3(b) and (c).

There are many consequences. For example, here is one that provides a very useful tool
for constructing homeomorphisms:

Corollary 5.4 Any bijective continuous map from a compact space to a Hausdorff space is
a homeomorphism.

Proof Let f : X → Y be such a map; ISTS f is closed (i.e. maps closed sets to closed
sets). So let A ⊆ X be closed. Then A is compact by Proposition 5.3(b). Thus f(A) is
compact by 5.3(a), and so closed in Y by 5.3(c)

We’ll apply this below, after some general remarks about compactness in Euclidean space.

Compactness in Rn

Let A ⊂ Rn. If A is compact, then A is closed (by 5.3(c)) and bounded (consider the open
cover consisting of all open balls about the origin). Conversely if A is closed and bounded,
then it lies inside some closed “box” (i.e. product of closed intervals). But boxes are compact
by 5.2 and 5.3(d), so A is compact by 5.3(b). We have proved the famous:

Heine-Borel Theorem 5.5 A subset of Rn is compact ⇐⇒ it is closed and bounded.

HW #18 Show how to use the Heine-Borel Theorem and Proposition 5.3(a) to deduce the

Extreme Value Theorem (a key ingredient in the fundamental theorem of calculus) which
asserts: Any real valued map on a compact space achieves a maximum and minimum value.

As another application consider the rotation group SO(n) ⊂ Rn2
of Rn (also known as

the special orthogonal gp), the set of all n × n real orthogonal matrices A (i.e. AAt = I) of
determinant 1. (Note that an n × n matrix is naturally identified with a point in Rn2

by
listing its entries in lexicographic order.) This is an example of a topological group (i.e. a
group G which is also a space such that the group multiplication G×G→ G and inversion
G→ G are continuous).
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Corollary 5.6 SO(n) is compact.

Proof SO(n) is closed (it’s the intersection of two closed sets, det−1(1) and = h−1(I),
where h(A) = AAt) and bounded (the columns in A ∈ SO(n) are unit vectors).

Similarly the special unitary groups SU(n) (= the set of all n×n complex unitary matrices
A, meaning AA∗ = I where A∗ denotes the conjugate transpose of A, of determinant 1) are
compact.

These groups are extremely important in physics, especially SO(3) and SU(2).

Note that SO(2) is homeo to S1, via the map which sends a matrix to its first column,†

and similarly SU(2) is homeomorphic to S3, via the map which sends a matrix to its first
column (viewed as a point in S3 ⊂ C2). Note: SO(3) and SU(2) are not homeomorphic, but
almost; more on this later.

Remark Another way to construct interesting compact subsets of Rn: Start with a sequence
C1 ⊃ C2 ⊃ · · · of nonempty compact subsets of Rn, then C∞ = ∩Cn is compact and nonempty
(why? Hint: think about the Bolzano-Weierstrass property). For example, for n = 1 take
C1 = I, and inductively Cn+1 = the complement of the open middle thirds of each of the
intervals in Cn, then C∞ is the Cantor set. Also describe the Whitehead continuum in R3,
where each Ci is a “solid torus”.

Compactness in metric spaces

By the argument above, compact =⇒ closed and bounded for any metric space, but the
converse sometimes fails. For example the unit sphere in `2 is closed and bounded but not
compact (exercise). There are, however, a number of ways to characterize compactness using
metric notions.

The first pairs two important notions from analysis: A metric space X is complete if
Cauchy sequences in X converge to points in X, and is totally bounded if it can be covered
by a finite number of ε-balls for any ε > 0 (see §9 in Bredon or any analysis text for details).
Write C/T for both conditions.

Another involves the (analytical or topological) notion of sequencial compactness, written
SC, meaning that every sequence has a convergent subsequence.†

Theorem 5.7 For metric spaces, the conditions C/T, SC and BW (Bolzano-Weierstrass
property) are all equivalent to compactness.

Proof See for example §9 in Bredon’s Geometry and Topology

Remark For general top spaces, C/T doesn’t make sense, and C (:= compactness) and SC
are unrelated (i.e. neither implies the other). However we do have

C =⇒ BW ⇐= SC.

†this map is a homeomorphism by Corollary 5.4 since SO(2) is compact, as we’ve just seen, and S1 is
Hausdorff.
†Recall that in a general topological space, a sequence xn “converges to” x means that any neighborhood

of x contains xn for all sufficiently large n.
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It is just that the reverse implications fail (see Steen and Seebach’s Counterexamples in
Topology for examples). With a suitable generalization of sequences, however, one obtains
analogous necessary and sufficient conditions for compactness. (See discussion of “nets” in
§6 and §7.14 in Bredon.)

Finally we have the following useful result.

Lebesgue Covering Lemma 5.8 For every open cover U of a compact metric space X,
∃λ > 0 such that every ball in X of radius λ lies in some U ∈ U . (Any such λ is called a
Lebesgue number for the cover U .)

HW #19 Prove the Lebesgue Covering Lemma. Hint: If @λ, then for each integer n > 0,

there is a ball Bn of radius 1/n not lying in any U ∈ U . Show how this leads to a contradiction
by considering the set of all centers of these balls and its limit points.
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6 Quotient Spaces

Let X be a set with an equivalence relation ∼. Write X/∼ for the set of all equivalence
classes, and π : X → X/∼ for the natural projection sending each x ∈ X to its equivalence
class [x]. Note that [x] can either be viewed as a point in X/∼ or as a subset of X (the latter
is the preimage of the former under π). Here is a picture in which each equivalence class is
represented by a vertical line segment which π maps to the point directly below it:

X

X/∼
[x]

x

[x]

π

Now if X is a topological space, then X/∼ has a natural topology, called the quotient
topology, consisting of all the subsets U ⊂ X/∼ for which π−1(U) is open in X. Note that
π−1(U) is a “saturated” open set in X in the sense that it is a union of equivalence classes,
so the open sets in X/∼ naturally correspond to the saturated open sets in X. Evidently
the projection π is continuous when X/∼ is given this topology; in fact this is the largest
topology on X/∼ for which π is continuous. Endowed with this topology, X/∼ is called a
quotient space of X.

U

π−1(U)π

Reiterating: the open sets in X/∼ are exactly the subsets whose preimages under π
are open in X. And it follows that the closed sets in X/∼ are exactly the subsets whose
preimages under π are closed in X; in particular a point [x] ∈ X/∼ is closed (when viewed
as a one-element subset of X/∼) if and only the equivalence class [x] is a closed subset of X.
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Properties inherited by quotient spaces

If the space X is connected, path-connected, or compact, then X/∼ will have the same
property. This follows from Propositions 3.3a, 3.6a and 4.3a since X/∼ is the image of X
under the continuous map π.

However this is not the case for the Hausdorff property: X being Hausdorff does not force
X/∼ to be Hausdorff. For if X/∼ is Hausdorff then it is T1 and so all its points are closed,
or equivalently all the equivalence classes of ∼ must be closed subsets of X. For example
the two-element space [0, 1]/∼, where the equivalence classes of ∼ are {0} and (0, 1], is not
Hausdorff since (0, 1] is not a closed subset of [0, 1]. Conversely, all equivalence classes being
closed does not generally force X/∼ to be Hausdorff, as seen by the following example.

HW #20 Consider the two equivalence relations ∼1, ∼2 on R2 defined as follows: Both have

the vertical lines x = c as equivalence classes for all c with |c| ≥ π/2. The other equivalence
classes for ∼1 (resp. ∼2) are the graphs of tan(x) + c (resp. sec(x) + c) on (−π/2, π/2), for
each c ∈ R. Note that all these equivalence classes are closed subsets of R2.

Show that exactly one of the spaces Xi = R2/∼i (for i = 1, 2) is Hausdorff. (Hint: In thinking
about separating a pair of equivalence classes, recall that the open sets in Xi can be thought
of as saturated open sets in R2.)

Universal property of quotient spaces

Theorem 6.1 Let X/∼ be a quotient space. Then for any map F : X → Y which is
constant on equivalence classes of ∼, there exists a unique map f : X/∼ → Y such that
F = f ◦ π, where π : X → X/∼ is the canonical projection, i.e. such that the following
diagram commutes:

X

F

""
π
��

X/∼
f
// Y

Proof It is clear that there is a unique such function f , namely the one which maps each
equivalence class to the image under F of any point in that class (i.e. f([x]) = F (x)). We must
only show that f is continuous. But U open in Y =⇒ F−1(U) = (f ◦π)−1(U) = π−1(f−1(U))
which is open in X. Thus f−1(U) is open in X/∼ by definition of the quotient topology.
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This theorem is most often used to construct familiar models for quotient spaces.

Example 6.2 The space obtained by identifying the endpoints of the closed interval I =
[0, 1] (meaning I/0 ∼ 1, i.e. the equivalence classes are {0, 1} and all the singletons {t} for
t ∈ (0, 1)) is homeomorphic to the circle S1. Indeed the map F : I → S1, t 7→ (cos 2πt, sin 2πt)
induces a map f : I/∼→ S1 (by Theorem 6.1) which is clearly a bijection, and therefore a
homeomorphism by Corollary 5.4. (Note that I/∼ is compact since I is, and S1 is Hausdorff.)

f

F
π

∼=

S1

Similarly the space obtained by identifying opposite sides of a square I×I as indicated below
(meaning I × I/(t, 0) ∼ (t, 1), (0, t) ∼ (1, t) for all t ∈ I) is homeomorphic to the torus T 2.

∼=
T 2

Examples of quotient spaces

Two important types of quotient spaces are homogeneous spaces G/H (whose points are
the cosets of a subgroup H of a topological group G) and orbit spaces X/G (whose points
are the orbits of a continuous action of a topological group G on a topological space X; see
Janich for definitions). For example

1. The meridian in T 2 (marked with a double arrow above) is a subgroup isomorphic† to
the circle S1 (namely 1×S1 if T 2 is identified with S1×S1) with quotient T 2/S1 ∼= S1

(another group in this case, although in general homogeneous spaces are not groups).

2. The action of S1 on S2 by rotations about the z-axis has orbit space S2/S1 ∼= I.

(Draw pictures.) These facts can be proved rigorously using the universal property as in
Example 5.2, applied to the projections of T 2 = S1 × S1 onto its first factor in the former
case, and of S2 onto the z-axis in the latter.

†as a topological group, i.e. isomorphic as a group and homeomorphic as a space
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One particularly important example of an orbit space is the projective space RPn (for
any integer n ≥ 0) defined as the quotient of the space of nonzero vectors in Rn+1 by the
multiplication action of the group of nonzero real numbers. The orbits are the (punctured)
lines through 0 in Rn+1, and so

RPn =
Rn+1− 0

x ∼ λx
(for all λ 6= 0 in R).

It is easy to check by hand that RPn is Hausdorff. It is also compact, which can be checked
from the alternative descriptions

RPn ∼=
Sn

x ∼ −x
∼=

Bn

x ∼ −x for x ∈ ∂Bn
.

which follow from the following basic principle:

Lemma 6.3 If the quotient space X/∼ is Hausdorff and A is a compact subset of X that
contains at least one point in each equivalence class of ∼, then X/∼ ∼= A/∼.

HW #21 Prove Lemma 6.3 using the universal property of quotient spaces.

See pages 34–39 in Janich for some more sophisticated remarks about homogeneous spaces
and orbit spaces. We shall not discuss them any more for now.

Two other common ways to construct quotients are (1) collapsing subspaces of a space,
and (2) gluing spaces together (see pages 39–49 in Janich):

Collapsing

Let A be a subspace of a space X. Then X/A is the quotient space obtained by collapsing
A to a single point a, i.e. X/A := X/∼ where the equivalence classes of ∼ are A and all the
singletons {x} for x ∈ X −A.

More generally if A = A1t· · ·tAk, a disjoint union of a finite number k > 1 of subspaces
of X, then define X/A1, . . . , An to be the space obtained from X by collapsing the sets
A1, . . . , An separately to k distinct points a1, . . . , ak.

Examplesi1 We have already seen the example I/{0, 1} ∼= S1 (in 6.2 above), or equivalently
B1/∂B1 ∼= S1 (since there is a homeomorphism I → B1 = [−1, 1] carrying {0, 1} onto
∂B1 = S0). Similarly

B2/∂B2 ∼= S2.

Indeed there is a natural map F : B2 → S2 which sends the origin to the north pole, and wraps
the rest of B2 around S2, sending ∂B2 to the south pole. For example, F can be given by
the formula F (r, θ) = (θ, 2πr) (using polar coordinates (r, θ) on B2 and spherical coordinates
(θ, φ) on S2). In words, F sends each radial segment onto a corresponding longitude (i.e. half
great circle) on S2 from the north pole to the south pole. Here’s a picture:
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F

This map induces a continuous bijection (and thus a homeomorphism) B2/∂B2 → S2.
More generally

Bn/∂Bn ∼= Sn

by the same proof (where we happily accept the verbal description of the analogous map F ,
knowing however that we could write down a formula for F if put to the test).i2 The cone on a space X is the quotient

CX := X × I /X × 1.

In other words all the points on the “top” X × 1 of X × I are collapsed to a single point c
(called the “cone point”) as shown below.

I

X

X × 1 c

CX

Note that CX should not be visualized as on the left below, since this gives the wrong
image of the open neighborhoods U of the cone point. The picture on the right shows the
correct image.

not
U

c

, but rather

U

c

For example

CBn ∼= Bn+1 and CSn ∼= Bn+1

shown using the universal property applied to the map

Bn × I → Bn+1, (x, t) 7→ t(0, 1) + (1− t)(x,−
√

1− ‖x‖2)
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in the first case (viewing Bn+1 ⊂ Rn+1 = Rn × R), and

Sn × I → Bn+1, (x, t) 7→ (1− t)x

in the second.i3 The suspension of a space X is the quotient

ΣX := X × I /X × 0, X × 1

In other words all the points on the “bottom” X × 0 of X × I are collapsed to a point s0,
and all the points on the top X × 1 are collapsed to another point s1; these two points are
called the “suspension points”.

X × I CX

For example ΣBn ∼= Bn+1 (exercise) and:

HW #22 Show that ΣSn ∼= Sn+1.

Gluing

MORE TO COME ... At some point, consider the case when Hausdorff spaces X1 and X2

are glued together via a homeomorphism h : U1 → U2 where the Ui are open in Xi (this comes
up when gluing smooth manifolds together to get a smooth manifold, e.g. in the definition of
connected sum). In that case assign a HW that asks for necessary and sufficient conditions
for the result to be Hausdorff.†

†A sufficient condition is that the Xi − Ui have open neighborhoods Vi in Xi such that h(V1) ∩ V2 = ∅.
Probably not necessary. Necessary and sufficient condition is that for all points xi ∈ ∂Ui, there should be
neigborhoods Vi of xi in Xi such that h(V1) ∩ V2 = ∅.
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