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1. Analytic Functions

A. Complex Numbers

Definition A complex number is an ordered pair px, yq of real numbers, that is, a
vector in R2. One adds complex numbers using vector addition

px1, y1q ` px2, y2q “ px1 ` x2 , y1 ` y2q

and multiplies them using the interesting formula

px1, y1qpx2, y2q “ px1x2 ´ y1y2 , x1y2 ` x2y1q

which amounts to the rule “multiply lengths and add angles”.† (More on this below)

Exercise Addition and multiplication are associative and commutative operations with
identities p0, 0q and p1, 0q, resp., and multiplication distributes over addition. Furthermore,
any complex number px, yq has an additive inverse (or negative) p´x,´yq.

Denote the set of all complex numbers by C, and view R Ă C by identifiying x P R with
px, 0q P C. Since px1, 0q` px2, 0q “ px1`x2, 0q and px1, 0qpx2, 0q “ px1x2, 0q, addition and
multiplication in R are the same whether performed before or after this identification is
made. Also p0, 0q “ 0 and p1, 0q “ 1, as the identities for ` and ¨ are usually written.

Setting i “ p0, 1q, it is straightforward to check that

px, yq “ x` iy

which is the traditional way to write complex numbers. Also i2 “ ´1, and sums and
products can be computed in the familiar way px1`iy1q`px2`iy2q “ px1`x2q`ipy1`y2q

and px1 ` iy1qpx2 ` iy2q “ x1x2 ` x1iy2 ` iy1x2 ` iy1iy2 “ px1x2 ´ y1y2q ` ipx1y2 ` x2y1q.

Definition Let z “ x`iy be a complex number. We call x and y the real and imaginary
parts of z, written Repzq and Impzq. If pr, θq are the polar coordinates of the point px, yq,
then we call r and θ the norm (or modulus) and argument of z, written |z| and argpzq.
Thus

|z| “ r “
a

x2 ` y2 and argpzq “ θ “ arctanpy{xq .

Note that r ě 0, and θ is defined and multivalued when r ą 0. For example |1` i| “
?

2
and argp1` iq is equal to π{4` 2πn for any n P Z.

† This means that in polar coordinates pr1, θ1qpr2, θ2q “ pr1r2, θ1`θ2q. To see this, compute the product
px1, y1qpx2, y2q “ pr1 cos θ1, r1 sin θ1qpr2 cos θ2, r2 sin θ2q. By definition this is given by the formula

pr1r2pcos θ1 cos θ2 ´ sin θ1 sin θ2q , r1r2pcos θ1 sin θ2 ` sin θ1 cos θ2qq

which is equal to pr1r2 cospθ1 ` θ2q , r1r2 sinpθ1 ` θ2qq by trigonometry.
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The following basic properties are readily verified for any pair z, w of complex numbers

Repz ` wq “ Repzq ` Repwq |zw| “ |z||w|

Impz ` wq “ Impzq ` Impwq argpzwq “ argpzq ` argpwq pmod 2πq

the ones on the right being the “multiply lengths and add angles” rule for multiplication.
We also have the important triangle inequality

|z ` w| ď |z| ` |w|

which is geometrically obvious, or see Proposition 1.2.5 in MH (Marsden-Hoffman’s text)
for an algebraic proof, and its useful consequence: |z ˘ w| ě ||z| ´ |w|| (exercise).

Define the conjugate of z “ x` iy to be z “ x´ iy (geometrically z is the reflection of
z through the x-axis) It is easy to verify the formulas (cf. Proposition 1.2.4 in MH)

z ` w “ z ` w , zw “ z w and z “ z

which show that conjugation is an “involution” of C,† and

Repzq “ pz ` zq{2 , Impzq “ pz ´ zq{2i and zz “ |z|2 .

The last formula implies that any nonzero complex number z has a multiplicative inverse

z´1 “ z{|z|2.

With the exercise above, this proves:

1.1 Theorem C is a field. (Theorem 1.1.2 in MH)

Polar Form Given any complex number z “ x` iy, we have x “ r cos θ and y “ r sin θ,
where r “ |z| and θ “ argpzq, so z “ rpcos θ ` i sin θq. Using Euler’s Identity

eiθ “ cos θ ` i sin θ

(motivated in the next section) we can rewrite z in polar form

z “ reiθ

which is very convenient for many purposes. For example products in polar form become

(˚) reiθ seiϕ “ rs eipθ`ϕq

by the “multiply lengths and add angles” rule, or as one would expect using the familiar
laws of exponents. This is illustrated below

rs
s

ϕ

r
θ

θ

Figure 1. Complex multiplication

† An involution of C is by definition a homomorphism f : CÑ C (meaning fpz`wq “ fpzq` fpwq and
fpzwq “ fpzqfpwq) that satisfies f ˝ f “ id. These properties are clearly satisfied by fpzq “ z.
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Applications p˚q implies the formulas for the sine and cosine of the sum of two angles;
just take r “ s “ 1, and expand both sides using Euler’s identity. It also yields identities
for sines and cosines of multiples of angles. For example, eip3θq “ cos 3θ`i sin 3θ “ peiθq3 “
pcos θ ` i sin θq3 “ cos3 θ ` 3i cos θ sin θ ´ 3 cos θ sin2 θ ´ i sin3 θ, so

cos 3θ “ cos3 θ ´ 3 cos θ sin2 θ and sin 3θ “ 3 cos θ sin θ ´ sin3 θ .

As another application, consider the problem of computing the powers or the roots of
a complex number z “ reiθ. Applying p˚q repeatedly when reiθ “ seiφ, and using Euler’s
identity, we obtain DeMoivre’s Formula for the powers of z:

zn “ rneinθ “ rnpcosnθ ` i sinnθq

for any integer n ě 0, and consequently for n ă 0 as well, since z´1 “ r´1e´iθ. In fact this
holds for any rational number in place of n, when properly interpreted. For example, to
compute the nth roots seiϕ of z “ reiθ, we have sneinϕ “ reiθ, and so sn “ r and nϕ “ θ
pmod 2πq. Thus z has exactly n distinct nth roots:

z1{n “ r1{neipθ`2πkq{n “ r1{n pcos ppθ ` 2πkq{nq ` i sin ppθ ` 2πkq{nqq

for k “ 0, 1, . . . , n´ 1. Alternatively, these roots can be written as ν, νω, . . . , νωn´1 where
ν “ r1{neiθ{n and ω “ e2πi{n. They are equally distributed on a circle of radius r1{n about
0, since multiplication by ω rotates C about 0 by 2π{n radians (verify this). For example,

the cubes and cube roots of p1` iq “ 21{2eiπ{4 are

p1` iq3 “ 23{2e3πi{4 and p1` iq1{3 “ 21{6eπi{12, 21{6e9πi{12 or 21{6e17πi{12.

B. Complex Functions

Definition A complex function is a function f : AÑ C with domain A Ă C. Thus

fpx` iyq “ upx, yq ` ivpx, yq

for suitable real valued functions u and v on A Ă R2 (identifying C with R2). We call u
and v the real and imaginary parts of f , and often simply write f “ u` iv.

Examples Complex multiplication For fixed z0 “ x0 ` iy0, define mz0 : CÑ C by

mz0pzq “ z0z “ px0x´ y0yq ` ipy0x` x0yq (for z “ x` iy)

Geometry: Dilate by |z0| and rotate by arg z0 (about the origin)

Linear Algebra: Linearly transforms R2 by multiplying by

ˆ

x0 ´y0

y0 x0

˙

The exponential function Define exp : CÑ C by

exppzq “ ez :“ expcos y ` i sin yq (for z “ x` iy)

Thus |ez| “ ex and argpezq “ y. This extends the usual exponential function when the
variable is real, and yields Euler’s identity when it is purely imaginary.

Motivation: Recall ex “ 1` x` x2{2!` x3{3!` ¨ ¨ ¨ for x P R. Thus it is natural to let

eiy “ 1` iy `
piyq2

2!
`
piyq3

3!
`
piyq4

4!
` ¨ ¨ ¨ “ p1´

y2

2!
`
y4

4!
¨ ¨ ¨ q ` i py ´

y3

3!
` ¨ ¨ ¨ q

which equals cos y ` i sin y. In general we want ex`iy “ exeiy, which yields the definition
above.
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Properties: ka (law of exponents) ez`w “ ezewkb (periodicity) exp has period 2πi, i.e. ez`p “ ez ðñ p is an integral multiple of 2πi

Proofs: ka We show both sides have the same norm and argument. Set z “ x` iy and
w “ u` iv, so z ` w “ px` uq ` ipy ` vq. Then |ez`w| “ ex`u “ exeu “ |ez||ew| “ |ezew|

and argpez`wq “ y ` v “ argpezq ` argpewq “ argpezewq. kb ez`p “ ez ðñ ep “ 1 ðñ
Reppq “ 0 and Imppq P 2πZ (by the known periodicity of the real functions sin and cos)
ðñ p P 2πiZ. Geometric proof below.

Geometry: The x-axis maps to the positive x-axis by the usual exponential map. In fact
all the horizontal lines y “ c map to open rays θ “ c emanating from 0, sweeping around
with period 2π in θ (so in particular, exp has image C ´ t0u). The vertical lines x “ c
map to circles of radius ec centered at 0. Here is a “dynamic” picture of exp:

2πi

0

exp

expand

roll up

look
from
here

Figure 2. The exponential function

The logarithm Define log : C´ t0u ÝÑ C by

log z “ log |z| ` i arg z.

As it stands, this is a multivalued function, since arg is multivalued. If we restrict the
domain to the complement of the negative real axis, however, we obtain a continuous
(singlevalued) function

log : tz : arg z P p´π, πqu ÝÑ tz : Impzq P p´π, πqu

that extends the usual log function on R. This is called the principal branch of the
logarithm. Other branches are obtained by restricting to the complement of a different
ray emanating from the origin (i.e. restrict arg z to another open interval of length 2π).
Thus any z ‰ 0 is in the domain of some branch of the logarithm.
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Motivation: Want log to be the inverse function of exp, i.e. elog z “ z. Setting log z “ x`iy,
this makes z “ exeiy ùñ ex “ |z|, i.e. x “ log |z|, and y “ arg z, as defined above.

Property: logpzwq “ log z ` logw.

Proof: logpzwq “ log |zw| ` i argpzwq “ logp|z||w|q ` ipargpzq ` argpwqq “ log |z| `
log |w| ` i arg z ` i argw “ log z ` logw.

Geometry:

log

´πi

πi

Figure 3. The logarithm function (principal branch)

Trigonometric functions Define sin, cos, sinh, cosh : CÑ C by

sin z “
eiz ´ e´iz

2i
, cos z “

eiz ` e´iz

2
, sinh z “

ez ´ e´z

2
, cosh z “

ez ` e´z

2

Motivation: If x P R then eix ´ e´ix “ pcosx ` i sinxq ´ pcosp´xq ` i sinp´xqq “ 2i sinx
so sinx “ peix ´ e´ixq{2i, and similarly cosx “ peix ` e´ixq{2. For sinh and cosh, these
are just the usual definitions from calculus. The graphs of these real functions are:

sincos sinh
cosh

Figure 4. The real trigonometric functions

Properties: ka sinpz`wq “ sin z cosw`cos z sinw , cospz`wq “ cos z cosw´ sin z sinw,
sinhpz ` wq “ sinh z coshw ` cosh z sinhw , coshpz ` wq “ cosh z coshw ` sinh z sinhw.kb cos2 x` sin2 x “ 1 , cosh2 x´ sinh2 x “ 1kc cos z “ sinpz ` π{2q , sinh z “ ´i sinpizq , coshpzq “ cospizqkd sin and cos are periodic of period 2π, and sinh and cosh are periodic of period 2πi
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Proofs: Properties ka , kb and kc are straightforward from the definitions (for ka
start with the right-hand side). Property kd also follows from the definitions and the fact
that exp has period 2πi. The details are left to the reader.

Geometry: We discuss sin, leaving cos for homework, and sinh and cosh as exercises.
(Note: property kc above shows that the pictures are closely related.) Using ka , write

sinpx` iyq “ sinpxq cospiyq ` cospxq sinpiyq

“ psinx cosh yq ` ipcosx sinh yq “ u` iv.

For each a, b P R, let Va be the upward-pointing vertical line tx` iy : x “ au, and Hb be
the right-pointing horizontal line tx` iy : y “ bu. Where does the sine function map Va
and Hb in the uv-plane?

The real axis H0 clearly maps to the interval r´1, 1s in the u-axis by the real function
sin. For b ‰ 0 we have sinpx` ibq “ psinx cosh bq` ipcosx sinh bq, so Hb maps to the ellipse

u2

cosh2 b
`

v2

sinh2 b
“ 1

since sin2` cos2 “ 1. These ellipses enclose r´1, 1s since cosh ě 1. They are traversed
clockwise when b ą 0 and counterclockwise when b ă 0 (check what happens near x “ 0)
and grow in size as |b| grows.

As for the vertical lines, consider Va for a “ nπ{2 for n P Z. If n is even then sinpa`iyq “
˘i sinh y, so Va maps to the v-axis, pointing up or down according to whether n ” 0 or
2 mod 4. If n is odd then sinpa ` iyq “ ˘ cosh y, and so Va maps (folded in half) to the
ray u ě 1, or u ď ´1 on the u-axis, according to whether n ” 1 or 3 mod 4. For all other
values of a, the line Va maps to one branch of the hyperbola

u2

sin2 a
´

v2

cos2 a
“ 1

since cosh2´ sinh2 “ 1.

The picture is:

0´π{2´π π{2 π
sin

Figure 5. The sine function

Problem Find the maximum of | sin z| on the square tz : Repzq and Impzq P r0, πsu.

Solution: The sine function maps the horizontal segments x ` ib, for x P r0, πs, to
the right halves of the ellipses u2{ cosh2 b ` v2{ sinh2 b “ 1 in the uv-plane, starting at
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p0, sinh bq and ending at p0,´ sinh bq. These ellipses are nested, increasing in size with b.
Since cosh2 b ą sinh2 b, it follows that | sin | achieves a maximum value of coshπ at the
midpoint π{2` iπ of the upper edge of the square.

Complex powers For any two complex numbers b ‰ 0 and p, define the complex number

bp “ ep log b.

This is in general multivalued, since log is multivalued, with distinct values of bp differing
by powers of e2πip. In particular, if p “ n{d P Q (in lowest terms with n ě 0) then bp

takes on exactly d values, namely the dth roots of bn “ b ¨ ¨ ¨ b (n times). In all other cases
bp takes on infinitely many values. So bp is single valued iff p P Z.

Exercises Show ka logpbpq “ p log b , and kb pbpqq “ bpq.

There are two kinds of associated functions: power functions (taking b as the variable)
and exponential functions (taking p as the variable):

For fixed p P C define powp : C´ t0u Ñ C by

powppzq “ zp “ ep log z.

As noted above, this is multivalued unless p P Z. The most important special cases are
p “ n (nth power) and p “ 1{n (nth roots) for n P Z.

For fixed nonzero b P C define expb : CÑ C by

expbpzq “ bz “ ez log b.

This is always multivalued, taking on d values when z is rational of the form n{d (in lowest
terms) and infinitely many values for all other z.

Exercises Give geometric descriptions of ka pown and pow1{n for n P Z , andkb expb (hint: use the descriptions for mb and exp above)

C. Continuity

We begin with some basic “topology” in the plane. For any positive real number r and
point a P C, define the open disk

Drpaq “ tz P C : |z ´ a| ă ru (denoted Dpa; rq in MH)

consisting of all points in C at distance strictly less than r (the radius) from a (the center).
Also consider the associated closed disk and punctured open disk, defined by

Drpaq “ tz P C : |z ´ a| ď ru and qDrpaq “ tz P C : |0 ă |z ´ a| ă ru

respectively. These disks are sketched below (exclude the points on the dotted boundaries).

Drpaq Drpaq qDrpaq

Figure 6. Disks
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If r “ 1 or a “ 0, we may sometimes omit them from the notation. For example D,
unless otherwise specified, will denote the unit disk, of radius 1 centered at the origin 0.
These disks will help us understand the notions of open and closed subsets of C, limits of
complex functions and sequences, and continuous and differentiable functions.

Open and closed sets

Definition A subset A of C is open if each point in A is the center of some open disk
lying entirely inside A, or in symbols

@ a P A, D r ą 0 such that Drpaq Ă A,

and is closed if its complement C´A is open, i.e. @ a R A, D r ą 0 such that Drpaq Ă C´A.

Exercise Show (using the triangle inequality) that open disks are open, and closed
disks are closed. Also show that open disks are not closed, and closed disks are not open.

More generally, the region strictly inside – or strictly outside – a smooth simple closed
curve in C is open. If one includes the points on the curve, then the resulting sets are
closed, since their complements will be open. Examples of such regions are sketched below.

open

open

closed

closed

Figure 7. Open and closed sets

Needless to say, there are many other kinds of open and closed sets in C, but we will
not discuss these now.

Exercises ka Show that the union or intersection of any two open sets is open, and
that the union or intersection of any two closed sets is closed.†

kb Show that the only subsets of C that are both open and closed (clopen for short) are
C itself and the empty set ∅.

kc Show that a subset of C is open if and only if it is a union of (possibly infinitely
many) open disks, and closed if and only if it contains all its limit points. Here a point a
is called a limit point of A Ă C if there are points in A “arbitrarily close” to a, i.e. if for

all r ą 0, the punctured disk qDrpaq has non-empty intersection with A.

† In fact the union of an arbitrary collection of open sets (even possibly infinitely many of them) is open.

This is not true for closed sets; for example the union of the closed disks D1´1{np0q, for n “ 1, 2, 3, . . . , is
the open unit disk D “ D1p0q, which is not closed. Similarly the intersection of an arbitrary collection of
closed sets is closed, while the analogous statement for open sets is false in general.

8



Complex Analysis

Limits

If f : AÑ C is a complex function, and a and b are complex numbers, we write

lim
zÑa

fpzq “ b (or equivalently, fpzq Ñ b as z Ñ a)

to mean, intuitively, that “fpzq approaches b as z approaches a”.† More precisely, this
means that for every positive real number ε, there should exists a positive real number δ
(depending on ε) such that f maps all the points in A that are within a distance δ of a,
excluding a itself, to within a distance ε of b. In other words, @ ε ą 0 , D δ ą 0 such that

fpAX qDδpaqq Ă Dεpbq,

or equivalently 0 ă |z ´ a| ă δ ùñ |fpzq ´ b| ă ε. Note that a need not be in A, but it is
implicitly assumed that a is at least a limit point of A.

Also important is the notion of the limit of a sequence z1, z2, z3, . . . of complex numbers.
We write

lim
nÑ8

zn “ b (or equivalently, zn Ñ b as nÑ8)

to mean @ ε ą 0 Dn (again depending on ε) such that zk P Dεpbq for all k ą n.

The usual limit laws hold: the limit of a sum, difference, product or quotient, is the
sum, difference, product or quotient of the limits (provided they exist). You are asked to
prove this for sums in the homework.

Continuity

We say that a complex function f : A Ñ C is continuous at a point a if it is defined
at a (i.e. a P A) and limzÑa fpzq “ fpaq. It is said to be a continuous function if it is
continuous at every point in A.

Exercise Show that a complex function is continuous (in the sense defined above) if and
only if its real and imaginary parts are continuous (in the sense defined in multivariable
calculus). Using this fact, it is easy to show that the functions considered above (exp, log,
trig and hyperbolic trig functions, power functions, etc.) are all continuous.

There is an elegant reformulation of continuity for functions whose domains are open:

1.2 Theorem Let A be open. Then f : AÑ C is continuous ðñ f´1pUq is open for
each open subset U of C.

Proof (ùñ) Let U Ă C be open. Given a P f´1pUq (meaning fpaq P U), we must show
that D δ ą 0 such that Dδpaq Ă f´1pUq. To see this, observe that

‚ U is open and fpaq P U ùñ D ε ą 0 such that Dεpfpaqq Ă U .

‚ A is open and a P A ùñ D δ1 ą 0 such that Dδ1paq Ă A

‚ f is continuous at a ùñ D δ2 ą 0 such that fpAXDδ2paqq Ă Dεpfpaqq.

Thus taking δ “ minpδ1, δ2q, we have fpDδpaqq Ă Dεpfpaqq Ă U , i.e. Dδpaq Ă f´1pUq.

(ðù) Let a P A and ε ą 0. By hypothesis f´1pDεpfpaqq is open, so D δ ą 0 such that

Dδpaq Ă f´1pDεpfpaqq,

that is, fpDδpaqq Ă Dεpfpaqq. Thus f is continuous at a. �

† Note that unlike the real case, where z can only approach a from the right or left, in the complex case
it can approach a in many different ways, e.g. from the left, right, top or bottom, or perhaps spiraling in.
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Remark The theorem holds for general A if the conclusion “f´1pUq is open” is
replaced with “f´1pUq is open relative to A” (meaning that f´1pUq is the intersection
of an open set with A).

Corollary If f and g are continuous functions, then so is f ˝ g.

Proof Apply the theorem twice, noting that pf ˝ gq´1pUq “ f´1pg´1pUqq. �

Uniform Continuity

The continuity of f : A Ñ C, spelled out, means that @ ε ą 0 and a P A, D δ ą 0 such
that . . . The δ may very well depend on both ε and a. If there is a δ that will work for
all a, that is, if @ ε ą 0, D δ ą 0 such that

fpDδpaqq Ă Dεpfpaqq for all a P A,

or equivalently |a´b| ă δ ùñ |fpaq´fpbq| ă ε, then we say that f is uniformly continuous.
Note that all that has changed is that the quantifiers @ a and D δ have been swapped. This
is a very important notion in the theoretical study of complex analysis.

Example The function qD1p0q Ñ C that sends z to 1{z is continuous but not uniformly
continuous; the reader should draw a picture to see why.

We introduce two other important topological notions before moving on:

Connectedness

Definition A subset A Ă C is path-connected if any two points z, w P A can be joined
by a path in A, meaning a continuous function γ : ra, bs Ñ A (in the sense of multivariable
calculus, viewing A Ă R2) with γpaq “ z and γpbq “ w. If γ can always be chosen to
be smooth (i.e. which, at least for now, will mean differentiable), then we say that A is
smoothly path-connected.

Remark Slightly more general is the notion of A being connected. This means that
the only subsets of A that are clopen (both closed and open) relative to A are A and ∅.
It can be shown that

smoothly path-connected ùñ path-connected ùñ connected

while the converses fail. For open sets, however, these notions coincide (exercise).

Definition A region in C is a subset that is both open and connected. By the preceding
remark, it follows that regions are smoothly path-connected. The domains of most of the
functions considered in this course will be regions.

It is straightforward to show that continuous functions preserve connectedness,
i.e. A connected and f : A Ñ C continuous ùñ fpAq is connected, and the analogous
statement is true for path-connectedness (exercise).

Compactness

Definition A subset A Ă C is compact if every open cover of A (meaning a collection
of open sets whose union contains A) has a finite subcover (meaning a finite subcollection
of these sets whose union still contains A).

It is straightforward to show that continuous functions preserve compactness,
i.e. A compact and f : AÑ C continuous ùñ fpAq is compact (exercise).
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There is a useful characterization of compact subsets of C that is often taken as the
definition in elementary courses. It uses the notion of a bounded subset of C, meaning a
subset that is contained in some disk (possibly of very large, but finite, radius).

1.3 Theorem (Heine-Borel) A Ă C is compact if and only if it is closed and bounded.

This result is proved in every elementary topology course, but we do not prove it here.
We do, however, prove the following useful theorem which shows how compactness plays
a role in the study of continuous functions:

1.4 Theorem A continuous complex function f is uniformly continuous on any com-
pact subset A of its domain.

Proof Let ε ą 0. For each z P A, choose δz ą 0 such that

fpDδzpzqq Ă Dε{2pfpzqq.

The collection of all the disks Dδz{2pzq for z P A forms an open cover of A. Since A is
compact, A lies in the union of finitely many of these disks, say with centers z1, . . . , zn.
Set δk “ δzk and δ “ minpδ1{2, . . . , δn{2q.

Now consider any pair of points a, b P A with |a ´ b| ă δ. Certainly a lies in some
Dδk{2pzkq, and so a fortiori in Dδkpzkq. We claim that b also lies in Dδkpzkq. Indeed

|b´ zk| ď |b´ a| ` |a´ zk| ă δ ` δk{2 ď δk.

Therefore |fpaq ´ fpbq| ď |fpaq ´ fpzkq| ` |fpzkq ´ fpbq| ă ε{2` ε{2 “ ε. �

D. Differentiability

Definition Let f : AÑ C with A open. We say f is differentiable at a point a in A if

lim
zÑa

fpzq ´ fpaq

z ´ a

ˆ

or equivalently lim
hÑ0

fpa` hq ´ fpaq

h

˙

exists, and when it does, it is denoted f 1paq or df{dz paq and called the derivative of f at
a. Using basic properties of limits, it is easy to show that differentiability at a point
implies continuity at that point (HW).

If f is differentiable at it every point in its domain A, then the resulting function

f 1 “ df{dz : A ÝÑ C
is called the derivative of f , and f is said to be differentiable (or synonymously analytic or
holomorphic) on A.† A quick exercise with limits shows that the derivative of any constant
function is zero, and that pcfq1pzq “ cf 1pzq for any constant c. In addition, we have:

1.5 Theorem (Rules of Differentiation) If f, g are analytic on A,B respectively, then

(a) (sum and difference rules) f ˘ g is analytic on AXB, and pf ˘ gq1 “ f 1 ˘ g1.

(b) (product rule) fg is analytic on AXB, and pfgq1 “ f 1g ` fg1.

(c) (quotient rule) fg is analytic on AXB ´ g´1p0q, and pf{gq1 “ pf 1g ´ fg1qg2.

(d) (chain rule) g ˝ f is analytic on f´1pBq, and pg ˝ fq1 “ pg1 ˝ fqg1, i.e.

pg ˝ fq1paq “ g1pfpaqqf 1paq for all a P f´1pBq.

† Note however that analytic at a means differentiable on some open set containing a.

11
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The proof of (b) is a HW problem, and (a) and (c) are left as exercises. To prove (d),
first note that f and g are continuous, since they are differentiable. Setting w “ fpzq and
b “ fpaq, we must show

(˚)
gpwq ´ gpbq

z ´ a
ÝÑ g1pbqf 1paq as z ÝÑ a

As long as w ‰ b, the fraction on the left can be written as the product of two fractions,
pgpwq ´ gpbqq{pw ´ bq and pfpzq ´ fpaqq{pz ´ aq, the second of which approaches f 1paq as
z Ñ a. But unfortunately w might equal b for z’s arbitrarily close to a. To get around
this, we introduce a new function h : B Ñ C, defined by

hpwq “

$

’

&

’

%

gpwq ´ gpbq

w ´ b
if w ‰ b

g1pbq if w “ b.

This function is continuous (at b by the defiinition of g1pbq, and at all other points in B
since g is continuous). Now the fraction on the left in p˚q can be rewritten as

hpwq
fpzq ´ fpaq

z ´ a
.

and hpwq “ hpfpzqq goes to hpfpaqq “ hpbq “ g1pbq as z Ñ a, as desired. �

Remark The same argument shows that if γ : ra, bs Ñ A is a smooth path and
f : AÑ C is analytic, then f ˝ γ is differentiable with pf ˝ γq1ptq “ f 1pγptqqγ1ptq.

1.6 Corollary (Zero Derivative Theorem) If f : A Ñ C is analytic and f 1pzq “ 0 for
all z P A, then f is constant on any connected open subset U of A.

Proof Given two points w, z P U , let γ : r0, 1s Ñ U be a smooth path with γp0q “ w
and γp1q “ z. By the chain rule (in the form of the preceding remark) we have, for all t,

pf ˝ γq1ptq “ f 1pγptqqγ1ptq “ 0 ¨ γ1ptq “ 0

and so pu ˝ γq1ptq “ pv ˝ γq1ptq “ 0 where u and v are the real and imaginary parts of f .
From calculus (in particular the mean value theorem) it follows that u and v are constant
functions of t, and so f is as well. Therefore fpwq “ fpzq. Since w and z were arbitrary,
it follows that f is constant on U . �

At the opposite extreme, if f 1pzq ‰ 0 for all z P A, then f is “angle preserving” (or
“conformal”) in the following sense:

Definition A function f : A Ñ C is said to be conformal at z P A if there exists an
angle θ P r0, 2πq and a scalar r ą 0 such that near z, the map f (infinitesimally) rotates
by θ and dilates by r. More precisely, for every curve γ : R Ñ A satisfying γp0q “ z and
γ1p0q ‰ 0, the image curve µ :“ f ˝ γ is differentiable at 0 with µ1p0q ‰ 0, and

|µ1p0q| “ r|γ1p0q| and argpµ1p0qq “ argpγ1p0qq ` θ.

In particular, f preserves angles between intersecting curves.

1.7 Corollary (Conformal Mapping Theorem) If f is analytic at z and f 1pzq ‰ 0, then
f is conformal at z with θ “ arg f 1pzq and r “ |f 1pzq| pin the definition aboveq.

Proof For any smooth curve γ through z as in the definition, with image curve µ “ f ˝γ,
we have µ1p0q “ f 1pzqγ1p0q, by the chain rule. The result follows by the analysis of
multiplication by f 1pzq as discussed on page 3. �
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The Cauchy-Riemann (CR) Equations

These fundamental equations characterize the analyticity of a complex function in terms
of the partial derivatives of its real and imaginary parts.

1.8 Cauchy–Riemann Theorem A complex function f “ u ` iv is analytic if and
only if it is differentiable as a real function and satisfies the Cauchy–Riemann Equations

ux “ vy and uy “ ´vx

where subscripts denote partial derivatives. In this case f 1 “ fx “ ux`ivx “ fy “ vy´iuy.

Before giving the proof, we recall that a real function f : A Ñ R2, with A Ă R2 open,
is said to be differentiable if it is differentiable at each point a P A, where differentiability
at a means that there exists a linear map T : R2 Ñ R2 such that

lim
hÑ0

fpa` hq ´ fpaq ´ T phq

|h|
“ 0 (note that h P R2)

(cf. Chapter 2 in Spivak’s Calculus on Manifolds). It is easy to show that T is unique if it
exists.† It is typically denoted dfa, and is called the derivative (or differential) of f at a.

Fact (See Spivak, for example) If f is differentiable with components u and v (i.e.
fpx, yq “ pupx, yq, vpx, yqq) then all the partial derivatives ux, vx, uy, vy exist, and dfa (for
each a) is represented with respect to the standard basis of R2 by the Jacobian matrix

Jfa “

ˆ

uxpaq uypaq
vxpaq vypaq

˙ ˆ

or just write Jf “

ˆ

ux uy
vx vy

˙˙

.

Conversely, if all the partials of f exist and are continuous, then f is differentiable.

Note: The CR equations just say that Jf is an “amplitwist” matrix, meaning
its second column is its first rotated a quarter turn counterclockwise.

Proof (of the Cauchy-Riemann Theorem) Suppose f is analytic at z with f 1pzq “ a`ib.
This means that limhÑ0pfpz ` hq ´ fpzqq{h “ a` ib, or equivalently

lim
hÑ0

fpz ` hq ´ fpzq ´ pa` ibqh

|h|
“ lim

hÑ0

fpz ` hq ´ fpzq ´

ˆ

a ´b
b a

˙

h

|h|
“ 0

where we have identified C with R2 in the second limit. Thus f is differentiable as a real
function with

Jfz “

ˆ

a ´b
b a

˙

“

ˆ

ux uy
vx vy

˙

and so ux “ vy and vx “ ´uy.

Conversely, if f is differentiable as a real function and satisfies the CR equations, then

dfz “

ˆ

ux uy
vx vy

˙

“

ˆ

ux ´vx
vx ux

˙

so viewing f as a complex function we have

lim
hÑ0

fpz ` hq ´ fpzq ´ pux ` ivxqh

h
ÝÑ 0

so f 1pzq exists and equals ux ` ivx “ vy ´ iuy. �

† If S is another such linear map, then limhÑ0ppSphq ´ T phqq{|h|q “ 0 (by taking the difference of the
defining limits for T and S). Replacing h by tu, where u “ h{|h| and t is real, and letting t Ñ 0, we see
(using the linearity of S and T ) that Spuq “ T puq. Thus S “ T on all unit vectors, and so S “ T .

13
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Applications (derivatives of exp, trig functions, log and power functions)k1 Recall that ez “ u ` iv where (for z “ x ` iy) u “ ex cos y and v “ ex sin y. The
functions u and v are continuously differentiable with

ux “ ex cos y “ vy and uy “ ´ex sin y “ ´vx.

Thus ez is analytic by the CR Theorem, with

dez{dz “ ux ` ivx “ expcos y ` i sin yq “ ez.

k2 Using the rules of differentiation, we deduce from k1 that the sine function is analytic,
with sin1 “ cos: By the chain rule de˘iz{dz “ ˘ieiz, so by 1.5(a), sin is analytic with

sin1 z “
ieiz ´ p´ie´izq

2i
“

eiz ` e´iz

2
“ cos z.

Similarly cos1 “ ´ sin, tan1 “ sec2 (where sec “ 1{ cos), sinh1 “ cosh, cosh1 “ sinh, etc.k3 The logarithm (any branch) is analytic at any z ‰ 0, with

log1pzq “ 1{z.

There are several (instructive) ways to see this.

ka For example, away from the imaginary axis (where x “ 0) we have log “ u ` iv

where u “ log px2 ` y2q1{2 and v “ arctanpy{xq (for some branch of arctan), which are
continuously differentiable with

ux “
x

x2 ` y2
“

1{x

1` py{xq2
“ vy and uy “

y

x2 ` y2
“ ´

´y{x2

1` py{xq2
“ ´vx

and so the CR Theorem gives the result in this region.

kb To give a proof for all z “ reiθ ‰ 0, one can use the Polar Cauchy-Riemann Equations†

ur “
1

r
vθ and vr “ ´

1

r
uθ

(also useful in physics). Since log z “ u` iv where u “ log r and v “ θ, we check that

ur “ 1{r “ vθ{r and vr “ 0 “ ´uθ{r

so log is analytic. We can now compute log1pzq by approaching z “ reiθ in any manner,
e.g. along the ray pr ` tqeiθ as tÑ 0:

log1pzq “ lim
tÑ0

plogpr ` tq ` iθq ´ plog r ` iθq

teiθ
“

1

eiθ
log1prq “

1

reiθ
“

1

z
.

(Note: MH’s proof on page 83 is flawed because arctanpy{xq is undefined when x “ 0.)

kc One can also compute log1 using the Inverse Function Theorem (see below).k4 For b nonzero, dzb{dz “ deb log z{dz “ bzb{b (by the chain rule) which equals bzb´1.

† These follow from the usual CR equations using the change of variables x “ r cos θ, y “ r sin θ: The
chain rule gives

ˆ

ur uθ
vr vθ

˙

“

ˆ

ux uy
vx vy

˙ˆ

cos θ ´r sin θ
sin θ r cos θ

˙

or equivalently
ˆ

ur uθ{r
vr vθ{r

˙

“

ˆ

ux uy
vx vy

˙ˆ

cos θ ´ sin θ
sin θ cos θ

˙

.

and the polar CR equations follow, since the product of an amplitwist matrix and a rotation matrix is an
amplitwist matrix.
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For another application of the CR equations, observe that if f “ u ` iv is analytic,
then the level sets of u and v are orthogonal. Indeed, from calculus we know that
these sets are perpendicular to the gradient vector fields of u and v, so it suffices to show

pux, uyq¨pvx, vyq “ uxvx ` uyvy “ 0

which is immediate from the CR equations. As an example, any branch of the function
arcsin is analytic (by the inverse function theorem below) and so this shows that the
ellipses and hyperbolas drawn in Figure 5 are orthogonal.

We conclude this section with two more important results about analytic functions that
can be proved using the CR Theorem :

1.9 Inverse Function Theorem If f is analytic at z (meaning differentiable near z)
with f 1pzq ‰ 0, then there exist open sets U containing z, and V containing w “ fpzq,
such that f : U Ñ V is bijective and f´1 : V Ñ U is analytic with pf´1q1pwq “ 1{f 1pzq.

This is rather tricky to prove. One approach (taken in MH) is to appeal to the real
version of this theorem, where the hypothesis f 1pzq ‰ 0 is replaced with detpdfzq ‰ 0,
and the conclusion pf´1q1pwq “ 1{f 1pzq is replaced with pdf´1qw “ df´1

z . Then one only
need observe that the amplitwist matrix representing multiplication by f 1pzq has nonzero
determinant (namely |f 1pzq|) and that its inverse is also an amplitwist matrix, and then
appeal to the CR Theorem. But of course one must still prove the real inverse function
theorem, which is hard. We do not give the proof here.

Applications k1 Using the fact that log and exp are inverse functions, this theorem
gives an alternative proof to the one above that (any branch of) log is analytic, and that
log1pzq “ 1{ exp1plog zq “ 1{ expplog zq “ 1{z.k2 If f is analytic with f 1 ‰ 0 everywhere in some open set A, then fpAq is open. Indeed
we can assume that the open sets U in the theorem lie in A, and so fpAq is the union of
all the corresponding open sets V , and so is open.†k3 Combining this theorem with Corollary 1.6 (the zero derivative theorem) it is easy to
prove that if f is analytic on a connected open set A with constant modulus (meaning |f |
is constant on A), then f is constant on A. The proof is asked for in the homework.

Harmonic functions Let A be an open set in R2. A twice continuously differentiable
function h : AÑ R (a.k.a. a C2-function) is harmonic if

∆h :“ hxx ` hyy “ 0

at every point in A. Here the double subscripts indicate second order partial derivatives
(so hxx “ B

2h{Bx2, etc.). The differential operator ∆ is called the Laplacian, and is one
of the most important operators in mathematics and physics.

1.10 Theorem If f “ u` iv is analytic, then u and v are harmonic. Conversely, if u
is harmonic on an open disk D, then there exists a harmonic function v on D, unique up
to adding a constant, such that u` iv is analytic; we call v the harmonic conjugate of u.

Proof The first statement follows from the CR equations: uxx “ vyx and uyy “ ´vxy,
and these add up to zero by the equality of mixed partials (from in multivariable calculus).
Similarly vxx ` vyy “ 0. The second statement follows from the basic existence and
uniqueness theorems for differential equations, but we do not prove it here. �

† This is a special case of the “Open Mapping Theorem” (to be proved later) that states that any
nonconstant analytic function on a connected open set is an “open map”, i.e. maps open sets to open sets.
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˚Remark (starred sections are optional for undergraduates)

The conjugate v of a given harmonic function u can be found by integration. First compute
w “

ş

´uy dx (with a fixed constant of integration) and set h “ ux´wy, which is a function
of y only since hx “ uxx ´ wyx “ uxx ` uyy “ 0. Then

v “ w ´

ż

hpyqdy.

To see that that f “ u ` iv is analytic, compute vx “ wx “ ´uy and vy “ wy ` h “ ux,
which are the Cauchy-Riemann equations.

Note that v is defined up to adding a real constant, or equivalently, f is defined up to
adding a purely imaginary constant.

Ahlfors describes a simpler way to find f , without integrating. First assume that u is
defined at p0, 0q. Then

fpzq “ upz{2, z{2iq ´ up0, 0q.

This formula is derived using the following magic. Set z “ x ` iy and z̄ “ x ´ iy. If
fpzq “ upx, yq ` ivpx, yq is analytic, then setting f̄pz̄q “ upx, yq ´ ivpx, yq we have

upx, yq “ 1
2pfpzq ` f̄pz̄qq.

It is reasonable to assume (and can in fact be shown) that this last identity holds for all
complex x and y. Taking x “ z{2 and y “ z{2i, and so z “ z{2 ` ipz{2iq “ x ` iy and
z̄ “ x ´ iy “ z{2 ´ ipz{2iq “ 0, we find that upz{2, z{2iq “ 1

2pfpzq ` f̄p0qq. Since f can
be changed by adding an imaginary constant, we may assume that fp0q is real, and so
f̄p0q “ up0, 0q. This gives the stated formula.

If u is not defined at p0, 0q, then u0 “ u ˝ τ is, for a suitable translation τ of R2. By the
argument above there is an analytic f0 with real part u0. Then u is the real part of the
analytic function f “ f0 ˝ τ

´1, where τ is now viewed as a translation of C.

2. Integration

A. Contour Integrals

Definition A contour is a smooth map γ : ra, bs Ñ C, meaning that γ1 exists and is
continuous and nonzero on pa, bq, and that the one-sided limits of γ1 exist at the endpoints
a and b. There is a natural orientation on the image curve C “ Impγq, from z “ γpaq
toward w “ γpbq, indicated by putting an arrow on C; we say that γ is a contour from
z to w. If z “ w, then γ is called a closed contour. If γpsq ‰ γptq except when s “ t
(or possibly s, t “ a, b in some order; i.e. C does not “intersect itself”) then γ is called a
simple contour.

Remark We often blur the distinction between the map γ and the oriented curve C,
and talk about “the curve γ” to mean C. Strictly speaking, γ is just one of infinitely
many possible parametrizations of C. For example any map γ ˝ ρ, where ρ : rc, ds Ñ ra, bs
is smooth with ρpcq “ a and ρpdq “ b, is a reparametrization of C.

Given a contour γ : ra, bs Ñ C and a function f that is continuous on γ, define
ż

γ
f “

ż

γ
fpzq dz :“

ż b

a
fpγptqqγ1ptq dt. †

† Note that the integrand is complex, and is computed in terms of real integrals by defining
ş

puptq `

ivptqqdt :“
ş

uptq dt` i
ş

vptq dt.
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An easy calculus exercise shows that the result is independent of the parametrization
of C “ Impγq, and so we can write

ş

C in place of
ş

γ . If C is closed, we sometimes

write
ű

C , or even just
ű

if C is understood from the context. The reader should compare
this definition of contour integrals with definition of line integrals of vector fields, where
complex multiplication is replaced by the dot product. It is also instructive to write down
the definition as a limit of Riemann sums.

Examples k1 Let S be the oriented line segment in the complex plane from 1 to i,
parametrized by σptq “ 1` tpi´ 1q “ p1´ tq ` it for t P r0, 1s. Then

ż

S
z dz “

ż

σ
z dz “

ż 1

0
pp1´ tq ` itqp´1` iqdt

“

ż 1

0
p´1` ip1´ 2tqqdt “ p´t` ipt´ t2qq

ˇ

ˇ

ˇ

ˇ

1

0

“ ´1.

k2 Let C be the counterclockwise oriented unit circle, parametrized by τptq “ eit for
t P r0, 2πs. Then

¿

C

1

z
dz “

ż

τ

1

z
dz “

ż 2π

0

1

eit
ieit dt “ it

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2π

0

“ 2πi.

Remark It is sometimes convenient to use piecewise smooth maps γ : ra, bs Ñ C
to parametrize a curve C (especially if C has corners), meaning γ is smooth on each
subinterval rak, ak`1s of a partition a “ a1 ă ¨ ¨ ¨ ă an “ b of ra, bs; the one-sided limits of
γ1 need not agree at a1, . . . , an. We will continue to call such maps “contours”, and define

ż

C
f “

ż

γ
f :“

n´1
ÿ

k“1

ˆ
ż

γk

f

˙

where γk “ γ|rak, ak`1s.

2.1 Fundamental Theorem of Contour Integrals If f is continuous in a region A
and has an antiderivative F there pmeaning F is analytic on A and F 1 “ fq and γ is a
contour in A pmeaning its image lies in Aq from z to w, then

ż

γ
f “ F pwq ´ F pzq.

Note : This theorem shows that
ş

γ f is the same for any contour γ from z to w in A,

provided f has an antiderivative (a.k.a. a primitive) throughout A.

Proof First assume γ is smooth.
ż

γ
f “

ż b

a
fpγptqγ1ptq dt “

ż b

a
F 1pγptqqγ1ptq dt

“

ż b

a
pF ˝ γq1ptq dt “

FTC
pF ˝ γqpbq ´ pF ˝ γqpaq “ F pz2q ´ F pz1q.

In the piecewise smooth case, one obtains a sum that telescopes. �

Examples (from above, again) k1 ż

σ
z “

1

2
z2

ˇ

ˇ

ˇ

ˇ

i

1

“ ´
1

2
´

1

2
“ ´1.
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k2 We can’t use 2.1 to compute

¿

1

z
dz since log is not single valued on the unit circle.

2.2 Estimation Theorem If γ : ra, bs Ñ C is a contour of length L :“
şb
a |γ

1ptq|dt and
f is a continuous function on γ with |fpzq| ďM for all z on γ, then

ˇ

ˇ

ˇ

ˇ

ż

γ
f

ˇ

ˇ

ˇ

ˇ

ď ML.

Proof By definition,
ˇ

ˇ

ˇ

ş

γ f
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

şb
a fpγptqqγ

1ptq dt
ˇ

ˇ

ˇ
ď

şb
a |fpγptqqγ

1ptq|dt where the

inequality follows from the general fact that
ˇ

ˇ

ˇ

ˇ

ż b

a
gptq dt

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
|gptq|dt.

for any continuous function g : ra, bs Ñ C.† Since the norm is multiplicative, we have
ˇ

ˇ

ˇ

ˇ

ż

γ
f

ˇ

ˇ

ˇ

ˇ

ď

ż b

a
|fpγptqq| |γ1ptq| dt ď M

ż b

a
|γ1ptq|dt “ ML. �

B. Cauchy’s Theorem

Classical statement: If f is analytic on and inside a simple closed contour γ, then
ż

γ
fpzq dz “ 0.

But what does “inside” mean? We take a more modern approach.

Homotopic contours

Let z and w be two points in a region A Ă C. Two contours γ, δ : ra, bs Ñ A from z to
w are homotopic (written γ » δ) in A if there exists a one-parameter family of contours
γs : ra, bs Ñ A, s P r0, 1s, all from z to w, such that γ0 “ γ, γ1 “ δ, and the function

H : ra, bs ˆ r0, 1s ÝÑ A ps, tq ÞÝÑ γsptq

is continuous. Such a map H is called a homotopy from γ to δ.

If z “ w (so γ is closed) then γ is null-homotopic in A if γ » ‹ where ‹ denotes the
constant contour at z, i.e. ‹ptq “ z for all t. If every closed contour in A is null-homotopic,
then we say that A is simply connected. Intuitively, this means that every closed loop in
A can be shrunk in A to a point.

2.3 Cauchy’s Theorem If f is analytic on a simply connected region A, then
ż

γ
fpzq dz “ 0

for any closed contour γ in A.

† This is well known if g is real valued. For g complex valued, suppose
şb

a
gptq dt “ reiθ. Then

ˇ

ˇ

ˇ

ˇ

ż b

a

gptq dt

ˇ

ˇ

ˇ

ˇ

“ r “ Reprq “ Re

ˆ

e´iθ
ż b

a

gptq dt

˙

“ Re

ˆ
ż b

a

e´iθgptq dt

˙

“

ż b

a

Re
´

eiθgptq
¯

dt ď

ż b

a

ˇ

ˇ

ˇ
eiθgptq

ˇ

ˇ

ˇ
dt “

ż b

a

|gptq|dt.
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Remark The same conclusion holds if we allow there to be one point a P A where f ,
though still continuous, need not be assumed to be differentiable. We refer to this as the
generalized Cauchy’s Theorem.

Below we will give the classic proof due to Goursat in 1883 for the case when A is a
disk, and then use this special case to prove the following powerful generalization:

2.4 Deformation Theorem If f is analytic on an arbitrary region A, and γ and δ
are homotopic contours in A, then

ż

γ
fpzq dz “

ż

δ
fpzq dz.

In particular
ş

γ f “ 0 for any null-homotopic closed contour in A.

Note that 2.3 follows immediately from the last statement in 2.4, which in turn follows
from the first statement since γ » ‹ implies that

ş

γ f “
ş

‹
f “ 0 (since ‹1ptq “ 0 for all t).

The deformation theorem is often used to simplify the computation of contour integrals
by replacing the contour with a “simpler” one homotopic to γ. For example, if γ is any
contour “encircling” the origin once counterclockwise, then

ż

γ

1

z
dz “ 2πi

since γ is homotopic to a counterclockwise circle C centered at the origin, and it is easy
to show

ş

C dz{z “ 2πi as in example k2 above. Other examples appear in the homework.

Here is one very useful application of Cauchy’s Theorem:

2.5 Primitive Theorem If f is analytic on a simply connected region A, then f has
a primitive F pi.e. F 1 “ fq on A, unique up to adding a constant.

Proof Pick a P A and set

F pzq “

ż z

a
fpzq dz

where
şz
a means

ş

γ for any contour in A from a to z. This is well defined by Cauchy.†

We claim F 1 “ f . Using any contour to get from a to a given z, and extending this by
a straight line from there to z ` h (for suitably small h), we see that

F pz ` hq ´ F pzq “

ż 1

0
fpz ` thqh dt.

Therefore, using the estimation theorem we compute

ˇ

ˇ

ˇ

ˇ

F pz ` hq ´ F pzq

h
´ fpzq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ş1
0pfpz ` thq ´ fpzqqh dt

h

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
tPr0,1s

|fpz ` thq ´ fpzq||h|

|h|

which tends to 0 as hÑ 0, by the continuity of f at z, and so F 1pzq “ fpzq.

If G1 “ f as well, then pF ´Gq1 “ 0 ùñ F ´G is constant since A is connected. �

† If δ is another such path, then γ ´ δ, meaning traverse γ from a to z and then δ “backwards” from z
back to a, is a closed path in A, and so

ş

γ´δ
f “ 0. But this is equal to

ş

γ
f ´

ş

δ
f , so

ş

γ
f “

ş

δ
f .
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2.6 Corollary Let A be a simply connected region not containing 0. Then there exists
a continuous function ` : A Ñ C, unique up to addition of multiples of 2πi, such that
e`pzq “ z. pWe call ` a generalized branch of the logarithm.q

Proof By the theorem, D p : AÑ C with p1pzq “ 1{z. Fix any a P A, and set

`pzq “ ppzq ´ ppaq ` logpaq

for any branch of log defined at a. Then

`1pzq “ 1{z and e`paq “ elogpaq “ a.

In fact e`pzq “ z for all z P A. To see this, set qpzq “ e`pzq{z. Then q1pzq “ 0 by the

quotient rule, so q is constant. Therefore qpzq “ qpaq “ 1, and so e`pzq “ z. �

Before giving the promised proof of Cauchy’s Theorem (and the Deformation Theorem)
we discuss some other remarkable consequences.

C. Cauchy’s Integral Formula

If f is analytic at z, then Cauchy’s integral formula expresses the value of f at z in
terms of the values of f on any closed curve “encircling” z; it is remarkable that this is
possible, underscoring the rigidity of analytic functions.

To state this formula precisely, consider a closed contour γ : ra, bs Ñ C and a point z
not on γ. Define the index (or winding number) of γ about z to be

Ipγ, zq :“
1

2πi

ż

γ

1

ζ ´ z
dζ .

This definition (motivated by our previous computation Ipγ, 0q “ 1 when γ is the
counterclockwise unit circle centered at the origin) is reasonable in view of the fact that
Ipγ, zq is always an integer. Indeed Ipγ, zq “ gpbq{2πi, where

gpsq “

ż

γ|ra,ss

1

ζ ´ z
dζ “

ż s

a

γ1ptq

γptq ´ z
dt .

By the Fundamental Theorem of Calculus, g1psq “ γ1psq{pγpsq ´ zq, or equivalently
γ1psq ´ g1psqpγpsq ´ zq “ 0. This implies that h1psq “ 0 where

hpsq “ e´gpsqpγpsq ´ zq .

Thus h is constant, so hpaq “ hpbq. Since γpaq “ γpbq, it follows that e´gpbq “ e´gpaq “
e´0 “ 1. Therefore gpbq “ 2πin for some n P Z, so Ipγ, zq “ n, as claimed. �

2.7 Cauchy’s Integral Formula Let f : AÑ C be analytic. Then for any z P A and
any null-homotopic closed contour γ in A that does not pass through z,

Ipγ, zq fpzq “
1

2πi

ż

γ

fpζq

ζ ´ z
dζ .

Proof Set

gpζq “

$

’

&

’

%

fpζq ´ fpzq

ζ ´ z
if ζ ‰ z

f 1pzq if ζ “ z
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which is continuous on A and analytic on A´ tzu. By the generalized Cauchy Theorem

0 “

ż

γ
g “

ż

γ

fpζq

ζ ´ z
dζ ´

ż

γ

fpzq

ζ ´ z
dζ “

ż

γ

fpζq

ζ ´ z
dζ ´ 2πifpzqIpγ, zq

and the formula follows. �

2.8 Cauchy’s Derivative Formula Let f : A Ñ C be analytic. Then all derivatives
f pkq for k “ 1, 2, . . . exist, and for any z and γ as in 2.7,

Ipγ, zq f pkqpzq “
k!

2πi

ż

γ

fpζq

pζ ´ zqk`1
dζ .

This follows immediately from the integral formula 2.7 and the following technical result
that allows one to differentiate under the integral sign:

2.9 Interchange Lemma Let gpz, ζq be a continuous function of z and ζ for z in an
open set A and ζ on a contour C. If g is analytic in z for each fixed ζ, then

d

dz

ż

C
gpz, ζq dζ “

ż

C

Bg

Bz
pz, ζq dζ .

Proof Fix z P A and let D be an open disk in A containing z. Then for each ζ on C,

gpz, ζq “
1

2πi

ż

BD

gpτ, ζq

τ ´ z
dτ

by Cauchy’s integral formula applied to gp¨, ζq. Setting Gpzq “

ż

C
gpz, ζq dζ, we have

Gpzq “
1

2πi

ż

C

ż

BD

gpτ, ζq

τ ´ z
dτ dζ

“
1

2πi

ż

BD

ż

C

gpτ, ζq

τ ´ z
dζ dτ (by Fubini’s theorem)

“
1

2πi

ż

BD

Gpτq

τ ´ z
dτ

and so G also satisfies Cauchy’s integral formula.

Once we know this about G, it follows that G is analytic at z with

(˚) G1pzq “
1

2πi

ż

BD

Gpτq

pτ ´ zq2
dτ .

(which is first case of the derivative formula for G). To see this, let r “ radiuspDq and
M “ maxτPBD |Gpτq|. Then for h nonzero with |h| ă r{2,we compute, using Cauchy’s
integral formula for G (established above) and the Estimation Theorem,

ˇ

ˇ

ˇ

ˇ

Gpz ` hq ´Gpzq

h
´

1

2πi

ż

BD

Gpτq

pτ ´ zq2
dτ

ˇ

ˇ

ˇ

ˇ

“
1

2π

ˇ

ˇ

ˇ

ˇ

ż

BD

Gpτq

h

ˆ

1

τ ´ pz ` hq
´

1

τ ´ z
´

h

pτ ´ zq2

˙

dτ

ˇ

ˇ

ˇ

ˇ

“
1

2π

ˇ

ˇ

ˇ

ˇ

ż

BD

Gpτqh

pτ ´ pz ` hqqpτ ´ zq2
dτ

ˇ

ˇ

ˇ

ˇ

ď
1

2π
2πr

M |h|

pr{2qr2
“

2M

r2
|h|

which goes to 0 as hÑ 0. This proves p˚q.
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Thus

d

dz

ż

C
gpz, ζq dζ “ G1pzq “

p˚q

1

2πi

ż

BD

ż

C

gpτ, ζq

pτ ´ zq2
dζ dτ

“
1

2πi

ż

C

ż

BD

gpτ, ζq

pτ ´ zq2
dτ dζ

“

ż

C

ˆ

1

2πi

ż

BD

gpτ, ζq

pτ ´ zq2
dτ

˙

dζ “

ż

C

Bg

Bz
pz, ζq dζ .

where the last equality follows from p˚q applied to gp¨, ζq. �

D. Consequences of Cauchy’s Formulas

From the Integral Formula

2.10 Mean Value Property (MVP) If f is analytic on a region containing a closed
disk D centered at a point z, then fpzq is the average of the values of f on BD, meaning

fpzq “
1

2π

ż 2π

0
fpz ` reiθq dθ

where r is the radius of D.

Proof By Cauchy’s Integral Formula, we have fpzq “
1

2πi

ż

BD

fpζq

ζ ´ z
dζ.

Parametrizing BD by z ` reiθ for θ P r0, 2πs gives

fpzq “
1

2πi

ż 2π

0

fpz ` reiθq

reiθ
rieiθ dθ

and the result follows by canceling rieiθ from numerator and denominator. �

2.11 Maximum Principle Let A be a region with compact closure Ā pthe closure of
A is A together with all its limit pointsq and f : Ā Ñ C be a continuous, non-constant
function that is analytic on A. Then f assumes its maximum modulus only at points on
the boundary BA :“ Ā´A.

Proof Let M “ maxzPĀ |fpzq| and B “ tz P A : |fpzq| “Mu. We must show B “ ∅.

First note that B is closed in A, since B “ f´1pMq X A, and f´1pMq is closed in C
since f is continuous. We claim that B is open as well. If not, then we could find a disk
D Ă A, say of radius r, centered at a point z P B but having points in BD that are not in
B. But then by the Mean Value Property,

|fpzq| “

ˇ

ˇ

ˇ

ˇ

1

2π

ż 2π

0
fpz ` reiθq dθ

ˇ

ˇ

ˇ

ˇ

ď
1

2π

ż 2π

0
|fpz ` reiθ| dθ ă

1

2π
2πM “ M

a contradiction, since |fpzq| “M . Thus B is both open and closed in A.

Since A is connected, B “ ∅ or A. But if B “ A, then |f | would be constant on A,
which would imply (e.g. by previous homework) that f is constant. Therefore B “ ∅. �
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˚Application of the Maximum Principle

The Maximum Principle can be applied to study analytic functions on the open unit
disc D “ D1p0q.

2.12 Schwarz Lemma If f : D Ñ D is analytic with fp0q “ 0, then

|fpzq| ď |z| and |f 1p0q| ď 1.

If either |fpz| “ |z| for some z ‰ 0 or |f 1p0q| “ 1, then f is a rotation pi.e. fpzq “ uz for
some unit complex number uq. In particular, if f : D Ñ D is analytic with fp0q “ 0 and
f 1p0q “ 1, then f is the identity function.

Proof Apply the Maximum Principle to the function

gpzq “

#

fpzq{z if z ‰ 0

f 1p0q if z “ 0

restricted to the discs Drp0q as r Ñ 1. The details are left to the reader. �

Remark The Maximum Principle fails for unbounded regions, e.g. for A the infinite
horizontal strip tz : Impzq P p´π{2, π{2qu. Indeed the function

f : Ā ÝÑ C given by fpzq “ epe
zq

is bounded on BA but unbounded on A (exercise). Under suitable restrictions on f (for
example requiring that f be bounded on BA and not grow “too fast” on A) one can still
conclude that f assumes its maximum modulus on BA; these variations on the Maximum
Principle go under the name Phragmén-Lindelöf Principles.

From the Derivative Formula

2.13 Morera’s Theorem (Converse of Cauchy’s Theorem) If f is continuous on a
region A, and

ş

γ f “ 0 for all closed contours in A, then f is analytic on A.

Proof Fix a P A and define F : AÑ C by

F pzq “

ż z

a
fpzq dz

where
şz
a means

ş

γ for any contour γ in A from a to z.

The vanishing integral hypothesis shows that F is well defined, and as in the proof of
the Primitive Theorem 2.5, F 1 “ f . In particular F is analytic, so by Cauchy’s derivative
theorem, so is f “ F 1. �

2.14 Corollary If f is continuous on a region A and analytic on A ´ tau for some
point a P A, then f is in fact analytic at a as well.

Proof This is immediate from the generalized Cauchy Theorem and Morera’s Theorem
applied to f on an open disk in A containing a. �

2.15 Liouville’s Theorem If f : CÑ C is analytic and bounded pmeaning there exists
a constant M with |fpzq| ăM for all z P Cq then f is constant.
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Proof For any z P C and any r ą 0, we have

|f 1pzq| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

BDrpzq

fpζq

pζ ´ zq2
dζ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2π
2πr

M

r2
“

M

r

by Cauchy’s Derivative Theorem and the Estimation Theorem. Since this goes to 0 as
r Ñ8, this shows that f 1pzq “ 0 for all z, and so f is constant. �

Remarks ia The proof shows that if f is analytic on a disk D of radius r, and assumes
a maximum value of M on BD, then |f 1pzq| ăM{r. A similar argument using the higher

order derivative formulas shows that |f pkqpzq| ď k!M{rk for all k ě 0. These are known
as Cauchy’s Inequalities.

ib An analytic function defined on all of C is also called an entire function. Thus
Liouville’s Theorem says that bounded entire functions are constant.

2.16 Fundamental Theorem of Algebra Any non-constant complex polynomial

ppzq “ p0 ` p1x` ¨ ¨ ¨ ` pnz
n

has at least one complex root.

Remark If z1 is such a root, then ppzq factors as pz´ z1qqpzq for some polynomial q of
degree n´ 1. Repeating, we see that there is a factorization ppzq “ pnpz´ z1q ¨ ¨ ¨ pz´ znq,
where z1, . . . , zn are the roots of p “with multiplicities” (i.e. each root zi is repeated mi

times, where mi, its multiplicity, is the least positive integer such that ppmiqpziq ‰ 0).

Proof If p were never zero, then f “ 1{p would be an entire function. Furthermore, f
would be bounded. Indeed

lim
zÑ8

fpzq “ lim
zÑ8

1

p0 ` ¨ ¨ ¨ ` pnzn
“ lim

zÑ8

1{zn

p0{zn ` ¨ ¨ ¨ ` pn
“ 0{pn “ 0

and so f would be bounded outside some closed disk D Ă C, but f is certainly bounded
on D since it is continuous and D is compact. This would force f to be constant, by
Liouville’s Theorem, and so p would be constant, a contradiction. �

˚2.17 Lucas’s Theorem The smallest convex polygon that contains all the roots of a

polynomial ppzq also contains all the roots of its derivative p1pzq. (This is the analogue of
Rolle’s Theorem in real variable calculus.)

Proof It suffices to show that if all the roots of p lie in a closed half plane H, and z R H,
then p1pzq ‰ 0. Rotating H by a suitable angle θ converts it into an upper half-plane at
some height r above the real axis, and so w P H ðñ Impωzq ě r where ω “ exppiθq. In
particular, for any root zi of p we have

Impωpz ´ ziqq “ Impωzq ´ Impωziq ă 0

and so Imp1{ωpz ´ ziqq ą 0. A quick calculation shows that if z1, . . . , zn is the full list of
roots of p with multiplicities, i.e. ppzq “ pnpz ´ z1q ¨ ¨ ¨ pz ´ znq, then

p1pzq

ppzq
“

1

z ´ z1
` ¨ ¨ ¨ `

1

z ´ zn
.

It follows that Impp1pzq{ωppzqq ą 0, and so p1pzq ‰ 0. �
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Computing integrals of rational functions

Let fpzq “ ppzq{qpzq be a rational function, that is ppzq and qpzq are polynomials,
which we can take to be relatively prime. We wish to compute the integral

ş

γ f for any

simple closed contour γ on which f is defined (i.e. on which q is nonzero). To do so in
general, we must assume that we know the roots z1, . . . , zn of q, and their multiplicities
m1, . . . ,mn. This means that for each i “ 1, . . . , n, we can write fpzq “ fipzq{pz ´ ziq

mi ,
where fipzq “ fpzqpz ´ ziq

mi is a rational function that does not have zi as a root of its
denominator.

Now suppose that the roots z1, . . . , zk lie inside γ, while zk`1, . . . , zn lie outside. Choose
small disks Di centered at the zi, and arcs αi joining BDi to γ. We can assume that these
disks and arcs are disjoint (except at the starting points of the arcs) and that they all lie
inside γ (except at the endpoints of the arcs). This partitions γ into subarcs γ1, . . . , γk so
that γ “ γ1`¨ ¨ ¨ γk, and produces a null-homotopic curve τ1`¨ ¨ ¨` τk in C´tz1, . . . , znu,
where τi “ γi ´ αi ´ BDi ` αi, as shown in the figure. We say γ is homologous to

ř

BDi

γ

γ1

γ2

γ3

BD1

BD2

BD3

α1

α3

α2

Figure 8. Homologous contours

(written γ „
ř

BDi) in C´ tz1, . . . , znu. By Cauchy’s Theorem and Derivative Formula,

ż

γ
fpzq dz “

k
ÿ

i“1

ż

BDi

fpzq dz “
k
ÿ

i“1

ż

BDi

fipzq

pz ´ ziqmi
“

k
ÿ

i“1

2πi

pmi ´ 1q!
f
pmi´1q
i pziq.

E. Proof of Cauchy’s Theorem

We begin with a very special case, proved by Goursat in 1883.

2.18 Goursat’s Lemma (Cauchy’s Theorem for a Triangle) If f is analytic in a region
A and 4 is a triangle in A, then

ş

B4 f “ 0.

Proof Construct a sequence of triangles 4 “ 40 Ą 41 Ą 42 Ą ¨ ¨ ¨
† with boundary

lengths L “ L0 ą L1 ą L2 ą ¨ ¨ ¨ such that

Ln “
1

2n
L and

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B4n

f

ˇ

ˇ

ˇ

ˇ

ˇ

ě
1

4n

ˇ

ˇ

ˇ

ˇ

ż

B4
f

ˇ

ˇ

ˇ

ˇ

.

† Divide 4 into four congruent triangles 4k (k “ 1, . . . , 4) oriented so that
ş

4 f “
ř

k

ş

B4k f . Then

|
ş

4 f | ď
ř

k |
ş

B4k f |. Let 41 “ 4k with |
ş

4k f | maximal. Continue with 41 in place of 4, etc.
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Choose a point a P A in the intersection of all the 4n’s (it exists because the 4n’s are
compact). Since f is differentiable at a, every ε ą 0 has a δ ą 0 such that

|z ´ a| ă δ ùñ |fpzq ´ fpaq ´ f 1paqpz ´ aq| ă ε|z ´ a|.

For n satisfying L{2n ă δ, we have |z ´ a| ă Ln “ L{2n ă δ for every z P B4n, and so
ˇ

ˇ

ˇ

ˇ

ˇ

ż

B4n

f

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B4n

pfpzq ´ fpaq ´ f 1paqpz ´ aqq dz

ˇ

ˇ

ˇ

ˇ

ˇ

ď εL2
n “ εL2{4n

(The first equality follows from Theorem 2.1, since fpaq and f 1paqpz ´ aq have primitives
and B4n is closed, and the inequality follows from the Estimation Theorem.) It follows
that |

ş

B4 f | ď εL2. Since this is true for all ε, we have
ş

B4 f “ 0. �

All the other versions of Cauchy’s Theorem follow from Goursat’s Lemma.

Proof of the generalized Goursat Lemma for a Triangle Let a be a “bad” point inside
4 where we only assume that f is continuous. For any ε ą 0, consider a small triangle
41 around a with boundary length less than ε{M , where M is the maximum modulus of
f on 4. Now chop up the rest of 4 into triangles 41,42, . . . , so

ş

B4k
f “ 0 for all k by

Goursat’s Lemma. Hence
ˇ

ˇ

ˇ

ˇ

ż

4
f

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

41
f `

ÿ

k

ż

4k

f

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

41
f

ˇ

ˇ

ˇ

ˇ

ď
ε

M
M “ ε.

Since ε was arbitrary,
ş

4 f “ 0. �

Proof of Cauchy’s Theorem in a Disk D (This includes the generalized version.) Pick
a point a in D, and for every z P D let ra, zs be the oriented line segment from a to z. Set

F pzq “

ż

ra,zs
f.

By Goursat’s Lemma F pz ` hq ´ F pzq “
ş

rz,z`hs f for any small h, and so as in the proof

of the Primitive Theorem 2.5, we see that F is an antiderivative of f in D. Therefore
ş

γ f “ 0 for all closed γ in D, by the Fundamental Theorem of Contour Integrals. �

Proof of the Deformation Theorem (Sketch) Let

H : R ÝÑ A where R “ r0, 1s ˆ r0, 1s (“R” for “rectangle”)

be a homotopy between contours γ0, γ1 : r0, 1s Ñ A, keeping the endpoints z “ γ0p0q “
γ1p0q and w “ γip1q “ γ1p1q fixed. There exist open disks sets Dk Ă A, for k “ 1, . . . ,m,
such that HpRq Ă D1 Y ¨ ¨ ¨ YDm (note that HpRq is compact since R is compact), and
so R “ H´1pD1q Y ¨ ¨ ¨ YH

´1pDmq.

Pick n so large that each rectangle Rp,q “ rp{n, pp`1q{nsˆrq{n, pq`1q{ns Ă H´1pDkq,
or equivalently HpRp,qq Ă Dk, for some k. Set γ “ H|BR and γp,q “ H|BRp,q. It can be
arranged (adjusting H and n) that γ and γp,q are piecewise smooth.

It follows from Cauchy’s Theorem in a disk that

ż

γp,q

f “ 0 and so

ż

γ
f “

ÿ

p,q

˜

ż

γp,q

f

¸

“ 0.

But setting λiptq “ Hpi, tq for i “ 0 and 1 (which are constant paths at z an w) we have
γ “ γ0` λ1´ γ1´ λ0 and so 0 “

ş

γ f “
ş

γ0
f ` 0´

ş

γ1
f ´ 0. Therefore

ş

γ0
f “

ş

γ1
f. �
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3. Series

A. Basic Notions

Numerical Sequences and Series

A sequence z0, z1, z2, . . . (abbreviated zn) of complex numbers is said to converge to
z P C, written limnÑ8 zn “ z, or zn Ñ z, if

@ ε ą 0, DN such that n ą N ùñ |zn ´ z| ă ε.

If @M, DN such that n ą N ùñ |zn| ą M , we say zn diverges to 8, and write
limnÑ8 zn “ 8, or zn Ñ8. In either case, the limit z is unique if it exists (4 inequality).

A priori weaker than convergence is the condition that zn be a Cauchy sequence, i.e.

@ ε ą 0, DN such that p, q ą N ùñ |zp ´ zq| ă ε,

also written limp,qÑ8pzp ´ zqq “ 0, or simply zp ´ zq Ñ 0. But the completeness of R
shows that these notions are in fact equivalent: every Cauchy sequence converges to a
unique complex number, and conversely, every convergent sequence is Cauchy – an easy
exercise again using the 4 inequality. So we accept without proof this powerful criterion
for convergence, useful because it does not require a knowledge of the limiting value.

3.1 a) Cauchy Criterion zn converges ðñ zn is a Cauchy sequence.

Remark The usual limit theorems hold: The limit of a sum of two convergent sequences
is the sum of the limits, and similarly for differences, products and quotients (when the
denominator’s limit is nonzero). Also if zn Ñ z, then 1

npz1 ` ¨ ¨ ¨ znq Ñ z as well (HW).

A series z1 ` z2 ` z3 ` ¨ ¨ ¨ (abbreviated
ř8
n“0 zn) converges to z, written

ř8
n“0 zn “ z,

if its sequence of partial sums z1, z1 ` z2, z1 ` z2 ` z3, . . . converges to z. The Cauchy
criterion translates into the following:

3.1 b) Cauchy Criterion for Series
ř8
n“0 zn converges ðñ @ ε ą 0, DN such that

N ă p ď q ùñ |
řq
n“p zn| ă ε, which we also simply write as

řq
n“p zn Ñ 0.

A series
ř8
n“0 zn converges absolutely if the associated real series

ř8
n“0 |zn| converges.

Since

|

q
ÿ

n“p

zn| ď

q
ÿ

n“p

|zn| ,

the Cauchy criterion for series shows that absolute convergence implies convergence.
Thus all the tests (ratio, root, integral, comparison) for convergence of real series can be
used in analyzing complex series.

Example Fix z P C. Then
ř8
n“0 z

n{n! converges absolutely, by the ratio test:

|zn`1{pn` 1q!|

|zn{n!|
“

|z|

n` 1
ÝÑ 0.

Below we show that this series converges to ez.

Sequences and Series of Functions

A sequence of complex functions fn : AÑ C is said to converge pointwise to f , written
limnÑ8 fn “ f or fn Ñ f , if fnpzq Ñ fpzq for every z P A. It converges uniformly to f ,
written limnÑ8 fn “u f or fn Ñu f , if @ ε ą 0, DN such that n ą N ùñ |fnpzq´fpzq| ă ε
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for all z P A. The difference is that for uniform convergence, N is independent of z. If
fn Ñu f on all compact subsets of A (or equivalently on all closed disks in A), then we
say fn converges almost uniformly to f on A, and write fn Ñau f .

Example The sequence fnpzq “ |z|
n converges pointwise on the closed unit disk D to

the function that is 1 on the boundary BD and 0 on the inside D˝. This convergence is not
uniform, since if it were, then for any ε ą 0 there would exist an n such that |z|n ă ε for all

z P D˝. But for z “ ε1{n this would imply ε ă ε, a contradiction. This example illustrates
the fact that the limit of a sequence of continuous functions need not be continuous. We
will see below, however, that continuity is preserved under uniform limits.

The series
ř8
n“0 fn is said to converge pointwise to f , written

ř8
n“0 fn “ f , if the

sequence of partial sums f0, f0 ` f1, f0 ` f1 ` f2, . . . converges pointwise to f . Similarly
for uniform (or almost uniform) convergence, written

ř8
n“0 fn “u f (or

ř8
n“0 fn “au f).

For pointwise convergence, the Cauchy criterion can be applied at each point in A
separately. For uniform convergence , we have the following:

3.2 Uniform Cauchy Criterion a) (for sequences) fn converges uniformly ðñ
@ ε ą 0, DN such that p, q ą N ùñ |fppzq ´ fqpzq| ă ε for all z P A.

b) (for series)
ř8
n“0 fn converges uniformly ðñ @ε ą 0, DN such that N ă p ď q ùñ

|
řq
n“p fnpzq| ă ε for all z P A.

Proof b) follows from a) applied to the partial sums. For a) (ùñ) suppose fn Ñu f .
Fix ε ą 0. Then DN such that n ą N ùñ |fnpzq ´ fpzq| ă ε{2 for all z P A, and so

|fppzq ´ fqpzq| ď |fppzq ´ fpzq| ` |fpzq ´ fqpzq| ă ε{2` ε{2 “ ε

for all p, q ą N and z P A, by the 4 inequality.

(ðù) Let f be the pointwise limit of fn, which exists by the Cauchy Criterion 3.1a.
Fix ε ą 0. Choose N so that p, q ą N ùñ |fppzq ´ fqpzq| ă ε{2 for all z P A. Now fix
z P A, and choose q ą N so that |fqpzq ´ fpzq| ă ε{2. Then p ą N ùñ

|fppzq ´ fpzq| ď |fppzq ´ fqpzq| ` |fqpzq ´ fpzq| ă ε{2` ε{2 “ ε.

Since N is independent of z, we have fp Ñu f . �

3.3 Weierstrass M-test (Uniform comparison test) Let fn : AÑ C be a sequence of
functions. If DMn P R such that

ř

Mn converges and |fnpzq| ă Mn for all z P A, then
ř

fn converses absolutely and uniformly on A.

Proof Let ε ą 0. Choose N such that q ě p ą N ùñ
řq
n“pMn ă ε (the Cauchy

criterion for the convergence of
ř

Mn). Then

|

q
ÿ

n“p

fnpzq| ď

q
ÿ

n“p

|fnpzq| ă

q
ÿ

n“p

Mn ă ε .

The result follows by 3.2b. �

Example Fix r ă 1. Then the M -test with Mn “ rn shows that the series
ř8
n“0 z

n

converges uniformly to 1{p1´ zq for |z| ă r, and so almost uniformly for |z| ă 1.

3.4 Weierstrass’ Theorem Let fn : AÑ C be a sequence of functions.

a) If fn converges uniformly to a function f , then
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‚ fn continuous ùñ f continuous and
ş

γ fn Ñ
ş

γ f for any contour γ in A

‚ fn analytic ùñ f analytic and f 1n Ñau f
1 †

b) If
ř

fn converges uniformly to a function f , then

‚ fn continuous ùñ f continuous and
ř

ş

γ fn “
ş

γ f for any contour γ in A

‚ fn analytic ùñ f analytic and
ř

f 1n “au f
1.

Thus one can integrate or differentiate a uniformly convergent series term by term.

Proof a) First assume the fn are continuous, and fix ε ą 0. Since fn Ñu f , by
hypothesis, we can choose n so that |fnpzq ´ fpzq| ă ε{3 for all z P A. Now for any a P A,
the continuity of fn at a ùñ D δ ą 0 such that |fnpzq ´ fnpaq| ă ε{3 whenever |z´ a| ă δ,
so in that case

|fpzq ´ fpaq| ď |fpzq ´ fnpzq| ` |fnpzq ´ fnpaq| ` |fnpaq ´ fpaq|

ă ε{3` ε{3` ε{3 “ ε

Therefore f is continuous at a.

Next choose N so that n ą N ùñ |fnpzq ´ fpzq| ă ε{L for all z P A, where L is the

length of γ. Then
ˇ

ˇ

ˇ

ş

γ fn ´
ş

γ f
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ş

γpfn ´ fq
ˇ

ˇ

ˇ
ă Lpε{Lq “ ε and so

ş

γ fn Ñ
ş

γ f .

Next assume the fn are analytic. Then certainly the fn are continuous, and so f is
continuous by the previous argument. By Cauchy’s Theorem,

ş

γ fn “ 0 for every null-

homotopic closed curve γ in A. This implies
ş

γ f “ 0 by the previous argument, and so f

is analytic, by Morera’s Theorem.

Now fix closed disks D Ă A of radius r and E Ă intD, and ε ą 0. Then for any z P E,
we have

|f 1npzq ´ f
1pzq| “

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

BD

fnpζq ´ fpζq

pζ ´ zq2
dζ

ˇ

ˇ

ˇ

ˇ

(by CIF)

ă
1

2π
2πr

εr

r2
“ ε

for n chosen large enough so that |fnpζq ´ fpζq| ă εr for ζ P BD (uniform convergence of
fn Ñ f on BD). Thus f 1n Ñ f 1 uniformly on E, and thus almost uniformly on A.

For b), apply a) to the sequence of partial sums (exercise). �

Example The Riemann ζ-function

ζpzq “
8
ÿ

n“1

1

nz

is analytic in the open right half plane H “ tz : Repzq ą 1u.

Proof It suffices to show that ζpzq converges uniformly on any closed disk D Ă H.
Clearly D p P R with p ą 1 such that Repzq ą p for all z P D. Also

|1{nz| “ 1{nRepzq ă 1{np

Now taking Mn “ 1{np, the Weierstrass M -test gives uniform convergence. �

† In short: limp
ş

fnq “
ş

plim fnq and lim f 1n “ plim fnq
1
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B. Taylor’s and Laurent’s Theorems

Let f : AÑ C be analytic.

3.5 Taylor’s Theorem If D is an open disk † in A with center a, then for all z P D,

fpzq “
au

8
ÿ

n“0

fnpz ´ aq
n where fn “

1

2πi

ż

γ

fpζq

pζ ´ aqn`1
dζ

for any (positively oriented) circle γ in D with center a.

Remark Cauchy’s Derivative Formula shows that fn can be expressed in terms of the
nth derivative of f at a: fn “ f pnqpaq{n!. This yields the familiar expansion

fpzq “
8
ÿ

n“0

f pnqpaq

n!
pz ´ aqn for all z P D.

As an immediate consequence we see that if f and all its derivatives vanish at a, then f ” 0
on D. On the other hand, if f pkqpaq ‰ 0 for some (smallest) k, then we claim that fpzq ‰ 0
for all z ‰ a sufficiently close to a; indeed Taylor’s theorem gives fpzq “ pz ´ aqkϕpzq,
where ϕ : D Ñ C is analytic with ϕpaq ‰ 0, and the claim follows from the continuity
of ϕ. This implies the remarkable “rigidity” property of analytic functions, that they are
determined by their values on “small” subsets of their domains:

Identity Theorem If two analytic functions g and h defined on an open connected set
A agree on a sequence of points in A that converge to a point in A, then g “ h everywhere
in A. In particular the zeros of any nonconstant analytic function f : AÑ C are isolated.

Proof The first statement follows from the second applied to f “ g´h, so we prove the
latter. As noted above, if a is a zero of f that is not isolated, then f ” 0 in some neigh-
borhood of a. Therefore the set of non-isolated zeros form an open (and clearly closed)
subset of A, and so must be empty by the connectedness of A, since f is nonconstant. �

3.6 Laurent’s Theorem If R is an open annulus : in A with center a pi.e. the region
between two concentric circles centered at aq then for all z P R,

fpzq “
au

8
ÿ

n“´8

fnpz ´ aq
n

for fn as defined in Taylor’s Theorem, where γ is any circle in A centered at a.

To prove Taylor’s and Laurent’s theorems, we appeal to the following:

3.7 Lemma If z is any point not on γ, then

1

2πi

ż

γ

fpζq

ζ ´ z
dζ “

$

&

%

ř

ně0 fnpz ´ aq
n for z inside γ

ř

nă0 fnpz ´ aq
n for z outside γ

Note: we only need continuity of f on γ for the lemma.

† The disk D in 3.5 can be replaced by C, and the annulus R in 3.6 can be replaced by the region
outside a circle, a punctured disk, or C´point. In other words, the radii can go to 0 or to 8.
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Proof For z inside γ we compute

1

ζ ´ z
“

1

ζ ´ a

1

1´ pz ´ aq{pζ ´ aq
“
au

ÿ

ně0

pz ´ aqn

pζ ´ aqn`1

by the Weierstrass M -test (see the example below 3.3), and so by Theorem 3.4b

1

2πi

ż

γ

fpζq

ζ ´ z
dζ “

ÿ

ně0

ˆ

1

2πi

ż

γ

fpζq

pζ ´ aqn`1
dζ

˙

pz ´ aqn “
ÿ

ně0

fnpz ´ aq
n .

Interchanging the role of ζ and z, we see that for z outside γ we have

1

ζ ´ z
“ ´

1

z ´ ζ
“
au

´
ÿ

kě0

pζ ´ aqk

pz ´ aqk`1
“ ´

ÿ

nă0

pz ´ aqn

pζ ´ aqn`1
.

where the last equality follows by setting n “ ´pk ` 1q. It follows exactly as above that

1

2πi

ż

γ

fpζq

ζ ´ z
dζ “

au

ÿ

nă0

fnpz ´ aq
n

for z outside γ. �

Proof (of Taylor’s Theorem) Fix z P D. Let γ be a circle in D with center at a and z
inside γ. Then by Lemma 3.7,

fpzq “
CIF

1

2πi

ż

γ

fpζq

ζ ´ z
dζ “

au

8
ÿ

n“0

fnpz ´ aq
n . �

Proof (of Laurent’s Theorem) Fix z P R. Let γ and Γ be concentric circles in D
centered at a with z outside γ but inside Γ. Then by Lemma 3.7,

fpzq “
CIF

1

2πi

ż

Γ

fpζq

ζ ´ z
dζ ´

1

2πi

ż

γ

fpζq

ζ ´ z
dζ “

au

8
ÿ

n“´8

fnpz ´ aq
n . �

Example Since exp is entire and exppnqp0q “ expp0q “ 1, we have

ez “
ř

ně0 z
n{n!

for all z P C; the convergence is uniform on any compact subset of C. This is the Taylor
expansion of ez about the origin. We can use it to find the Laurent expansion of e1{z in
C´ t0u, as follows: For all z ‰ 0 in C,

e1{z “
ř

ně0 p1{zq
n{n! “

ř

nď0 z
n{|n|! .

Note that it is difficult to find this directly, since the integrals defining the coefficients are
difficult to compute. However, if we knew the uniqueness of the Laurent expansion (see

below) then we could conclude that
ű

zn´1e1{z dz “ 2πi{n! for all n ě 0.

C. Power Series and Laurent Series

Definition A Laurent series is an infinite series of the form
8
ÿ

n“´8

anpz ´ aq
n.

We say that the series is centered at a. If an “ 0 for all n ă 0, then this is simply called
a power series. If an “ 0 for all n ě 0 it is called a negative power series.

31



Bryn Mawr College

Power Series

The radius of convergence of a power series
ř

ně0 anpz ´ aq
n is

R :“ supt r ě 0 :
ÿ

ně0

|an| r
n converges u†

which is a non-negative real number or 8. The open disk DRpaq is called the disk of
convergence of the series, and the set of all z P C at which the series converges is called
its domain of convergence.

3.8 Theorem The power series
ř

ně0 anpz ´ aqn converges absolutely and almost

uniformly on its disk D of convergence, and diverges on C´D.

It follows that the domain C of convergence of the series satisfies D Ă C Ă D.

Proof Let D “ DRpaq, and fix r ă R. By definition of R, we can find w P D at a
distance s ą r from a such that

ř

anpw ´ aqn converges. Then anpw ´ zqn Ñ 0, and so
DM such that |anpw ´ aq

n| ăM for all n. Now if |z ´ a| ď r, then

|anpz ´ aq
n| “ |anpw ´ aq

n|

ˇ

ˇ

ˇ

ˇ

z ´ a

w ´ a

ˇ

ˇ

ˇ

ˇ

n

ă M
´r

s

¯n
.

Since
ř

Mpr{sqn is a convergent (geometric) series, the M -test shows that
ř

anpz ´ aqn

converges uniformly and absolutely on Drpaq.

For the last assertion, note that if the series converges at a point w at a distance s ą R
from a, then the argument above shows that it also converges absolutely at any closer
point to a, contradicting the definition of R. �

3.9 Corollary a) The power series
ř

ně0 anpz ´ aq
n defines an analytic function fpzq

within in its disk D of convergence, with f 1pzq “
ř

ně0 nanpz ´ aqn´1. These two series
have the same radius of convergence. Furthermore,

ak “
1

2πi

ż

γ

fpζq

pζ ´ aqk`1
dζ “ f pkqpaq{k!

for each k ě 0.

b) A complex function is analytic at a point a P C ðñ it can be expanded in a power
series

ř

anpz ´ aqn in some open disk centered at a. The series expansion in pùñq is
unique, and valid in any open disk lying in the domain of analyticity of the function.

Proof a) The first statement follows from the theorem and Weierstrass’ Theorem 3.4b.
To prove the second, suppose that the derived series converged at some w outside D. Then
|nanpw´ aq

n´1| Ñ 0 ùñ |anpw´ aq
n| Ñ 0, which would imply as in the proof of 3.8 that

the original series converged absolutely at any point closer to a than w, and therefore at
points not in D, a contradiction. The last statement follows from Taylor’s Theorem and
the Cauchy Derivative Formula.

b) (ùñ) follows from Taylor’s Theorem, and (ðù) from part a) of this corollary. The
last statement also follows from these two results. �

† The classical Cauchy-Hadamard Theorem gives the explicit formula R “ plim sup |an|
1{n
q
´1.

32



Complex Analysis

Negative Power Series

The radius of divergence of a negative power series
ř

nă0 anpz ´ aq
n is

S :“ inft s ě 0 :
ÿ

nă0

|an| s
n converges u.

Thus S ě 0 when the set on the right is nonempty, or 8 (by definition) when it is empty.
The (infinite) open annulus A “ tz : |z| ą Su is called the annulus of convergence of the
series, and its complement, the open disk DSpaq, is called its disk of divergence. The set
of all z P C at which the series converges is called its domain of convergence.

3.81 Theorem The negative series
ř

nă0 anpz ´ aqn converges absolutely and almost

uniformly on its annulus A of convergence, and diverges on C´A.

It follows that the domain C of convergence of the series satisfies A Ă C Ă A.

3.91 Corollary The negative power series
ř

nă0 anpz´aq
n defines an analytic function

fpzq within in its annulus A of convergence, with f 1pzq “
ř

nă0 nanpz´aq
n´1. These two

series have the same radius of divergence. Furthermore, for any positively oriented circle
γ in A centered at a we have

ak “
1

2πi

ż

γ

fpζq

pζ ´ aqk`1
dζ

for each k ă 0, and so this negative series expansion of f is unique.

The proofs of 3.81 and 3.91 are analogous to 3.8 and 3.9 (exercise).

Remark Perhaps it is clearer to replace an by b´n, and so

fpzq “
ÿ

ně1

bn
pz ´ aqn

“
b1

z ´ a
`

b2
pz ´ aq2

` ¨ ¨ ¨

f 1pzq “ ´
b1

pz ´ aq2
´

2b2
pz ´ aq3

´ ¨ ¨ ¨

where 2πibn “
ş

γ fpζqpζ ´ aq
n´1 dζ for each n ě 1.

Laurent Series

A Laurent series
ř8
n“´8 anpz´aq

n is just the sum of a positive power series – say with
radius of convergence R – and a negative one – say with radius of divergence S. The
negative part is called the principal part of the Laurent series.

If R ą S, then the Laurent series converges in the annulus tz : S ă |z ´ a| ă Ru and
is unique by Corollaries 3.9 and 3.91. From Laurent’s Theorem 3.6, we conclude:

3.10 Theorem For any complex analytic function f : AÑ C and any point a P C pnot
necessarily in Aq, the function f can be expanded uniquely in a Laurent series within any
open annulus contained in A and centered at a.

Computing Taylor and Laurent series

It is generally inconvenient (if not impossible) to compute these series directly from
the formulas for their coefficients given in Theorems 3.8 and 3.81. There are several other
methods for making these computations. We illustrate these using the known Taylor seriesk1 ez “

ř

ně0 z
n{n! on C, and k2 1{p1´ zq “

ř

ně0 z
n on |z| ă 1.
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Substitute in a known series ka (from g1 ) e1{z “ 1`
1

z
`

1

2!z2
` ¨ ¨ ¨ for z ‰ 0.

kb (from g2 )
1

1` z
“ 1´ z ` z2 ´` ¨ ¨ ¨ for |z| ă 1.

Multiply series together (or add, subtract, or divide)

ÿ

ně0

anpz ´ aq
n ¨

ÿ

ně0

bnpz ´ aq
n “

ÿ

ně0

˜

n
ÿ

k“0

akbn´k

¸

pz ´ aqn

with radius of convergence ě the minimum of the two radii for the series on the left.

ka (from g1 ) zez “ z
ÿ

ně0

zn

n!
“ z ` z2 `

z3

2!
`
z4

3!
` ¨ ¨ ¨

kb (from g1 ) Since eiz “ cos z ` i sin z “ 1` iz ´
z2

2!
´ i

z3

3!
`
z4

4!
` i

z5

5!
´´`` ¨ ¨ ¨ ,

cos z “ 1´
z2

2!
`
z4

4!
´` ¨ ¨ ¨ and sin z “ z ´

z3

3!
`
z5

5!
´` ¨ ¨ ¨

and so

cos z sin z “ z ´

ˆ

1

2!
`

1

3!

˙

z3 `

ˆ

1

4!
`

1

2!3!
`

1

5!

˙

z5 ´` ¨ ¨ ¨

“
1

2
sin 2z “

1

2

ˆ

2z ´
p2zq3

3!
`´ ¨ ¨ ¨

˙

for all z P C.

Differentiate or integrate a known series (term by term) †

Differentiating k1 , we have

1

p1´ zq2
“ 1` 2z ` 3z2 ` ¨ ¨ ¨ for |z| ă 1

while integrating, we have

´ logp1´ zq “ z `
1

2
z2 `

1

3
z3 ` ¨ ¨ ¨ for |z| ă 1 .

D. Zeros and Isolated Singularities

Let f be a complex function and a be a point in C.

If f is defined and analytic at a, then we call a an analytic point of f . If in addition
fpaq “ 0, we call it a zero of f . If f is not defined at a but is defined and analytic near a,
then we call a an isolated singularity of f .

† Can integrate term by term: if
ř

anpz ´ aqn converges absolutely, then so does
ř an
n` 1

pz ´ aqn`1

since
ˇ

ˇ

ˇ

ˇ

an
n` 1

pz ´ aqn`1

ˇ

ˇ

ˇ

ˇ

“ |anpz ´ aq
n
| ¨
|z ´ a|

n` 1

and |z ´ a|{pn` 1q ÝÑ 0.
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In this section we will assume that f is analytic in a region A except at finitely many
isolated singularities a1, . . . , as in A.† For any point a P A, consider the Laurent expansion

fpzq “
8
ÿ

n“´8

anpz ´ aq
n where an “

1

2πi

ż

BD

fpζq

pζ ´ aqn`1
dζ

for a suitably small disk D surrounding a, and set

opf, aq “ min tn P Z : an ‰ 0u

where by convention minp∅q “ ´8. Note that opf, aq ě 0 ðñ lim
zÑa

pz ´ aqfpzq “ 0 .

Define the principal part and residue of f at a to be

PPpf, aq “
ÿ

nă0

anpz ´ aq
n and Respf, aq “ a´1 “

1

2πi

ż

BD
fpzq dz .

Note that when opf, aq ě ´1 (which means f is either analytic at a or, in the terminology
introduced below, f has a removable singularity or a simple pole at a) we can compute:

Respf, aq “ lim
zÑa

pz ´ aqfpzq .

The importance of the residues at the isolated singularities a1, . . . , as arises from the
following observation: If γ is a simple closed contour in A that is null-homotopic in A and
does not pass through any of the ak’s, then by the argument on page 24 we can compute

ż

γ
fpzq dz “ 2πi

s
ÿ

k“1

Respf, akqIpγ, akq .

In words, “the integral
ş

γ f is 2πi times the sum of the residues of f inside γ.” This is

the classical Residue Theorem, which has many useful applications; see the next chapter.
The modern version of the theorem just allows for non-simple contours.

Zeros If f is analytic at a P A, then opf, aq ě 0. The Laurent expansion is then just the
Taylor expansion of f about a, and so of course Respf, aq “ 0. If in addition a is a zero
of f , and so opf, aq ą 0, then opf, aq (which is easily computed using derivatives; it is the

smallest positive integer m such that f pmqpaq ‰ 0) is called the order or multiplicity of a.
A zero of order 1 is also called a simple zero.

For example sin z has simple zeros at the integer multiples of π, whereas sin2z has zeros
of order 2 at these points (exercise).

Note that near a zero a of order m, we can write

fpzq “ pz ´ aqmϕpzq

where ϕpzq “
ř

ně0 an`kpz ´ aqn is analytic at a with ϕpaq ‰ 0. Conversely, if fpzq can
be so written, then by taking derivatives we see that f has a zero of order m at a.

Isolated singularities An isolated singularity a of f is classified as a

removable singularity , pole , or essential singularity

according to whether opf, aq ě 0, ă 0 but finite, or ´8. If a is a pole, then the positive
integer |opf, aq| is called the order of a. A pole of order 1 is also called a simple pole.
Sometimes a removable singularity is called a pole of order 0.

† This is restrictive; for example cscp1{zq on C´ 0 has isolated singularities at 1{nπ for all n P Z.

35



Bryn Mawr College

For example sin z{z “ 1 ´ z2{3! ` ´ ¨ ¨ ¨ has a removable singularity at 0, whereas

cos z{z “ 1{z ´ z{2! ` ´ ¨ ¨ ¨ and e1{z “ ¨ ¨ ¨ ` 1{2!z2 ` 1{z ` 1 have, resp., a simple pole

and an essential singularity at 0. We can then read off Respcos z{z, 0q “ 1 “ Respe1{z, 0q.

3.11 Theorem If f has a removable singularity or a pole at a, then opf, aq “ k if and
only if Dϕ, analytic at a, with ϕpaq ‰ 0 and fpzq “ pz ´ aqkϕpzq for all z ‰ a near a.

Proof pùñq Referring to the Laurent series above, we take ϕpzq “
ř

ně0 an`kpz ´ aq
n.

pðùq Since ϕpzq is analytic at a, fpzq{pz´ aqk is certainly bounded near a. Therefore,
for sufficiently large M and sufficiently small r

|an| “

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

BDrpaq

fpζq

pζ ´ aqn`1
dζ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1

2πi

ż

BDrpaq

fpζq

pζ ´ aqkpζ ´ aqn`1´k
dζ

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1

2π
2πr

|M |

rn`1´k
“ |M | rk´n

which goes to 0 as r Ñ 0, so an “ 0 for n ă k. Therefore ϕpzq “ fpzq{pz ´ aqk “
ak ` ak`1pz ´ aq ` ¨ ¨ ¨ . Letting z Ñ a gives ak ‰ 0, and so opf, aq “ k. �

3.12 Corollary If f and g are analytic in a region A except at a finite number of
ppossibly differentq isolated singularities, then the same is true of fg and f{g, and

opfg, aq “ opf, aq ` opg, aq and opf{g, aq “ opf, aq ´ opg, aq

for any a P A that is not an essential singularity of f or of g.

Proof Setting n “ opf, aq and d “ opg, aq, we have by Theorem 3.11

fpzq “ pz ´ aqnϕpzq and gpzq “ pz ´ aqdψpzq

for z near a, with ϕ and ψ analytic and nonzero at a. Therefore

fpzqgpzq “ pz ´ aqn`dϕpzqψpzq and fpzq{gpzq “ pz ´ aqn´dϕpzq{ψpzq

for z ‰ a near a, and the result follows since ϕψ and ϕ{ψ are nonzero at a. �

3.13 Casorati-Weierstrass Theorem If f has an essential singularity at a, then for
any b P C, there exists a sequence an Ñ a such that fpanq Ñ b.†

Proof If not, then gpzq “ 1{pfpzq ´ bq is analytic and bounded on some punctured
neighborhood of a. But then pz ´ aqgpzq Ñ 0 as z Ñ a, which implies that g has a
removable singularity at a, and so fpzq “ b´ 1{gpzq is either analytic or has a pole at a,
by 3.12, a contradiction. �

This has a remarkable generalization, whose proof ˚ we do not give here:

3.14 Picard’s Theorem If f has an essential singularity at a, then for any b P C,
with one possible exception, there exists a sequence an Ñ a such that fpanq “ b for all n.

† In topological terms, this says that the image under f of any neighborhood of a is dense in C.
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4. Calculus of Residues

A. The Residue Theorem

On page 34 we stated the classical version of the theorem. Here is the modern version:

4.1 Residue Theorem Let f : AÑ C be analytic on A´ ta1, . . . , asu and γ be a null
homotopic closed contour in A not passing through any of the ak’s. Then

ż

γ
fpzq dz “ 2πi

s
ÿ

k“1

Respf, akqIpγ, akq .

Note that we do not assume that γ is simple. If it is, and is oriented counterclockwise,
then this says that the integral of f around γ is equal to 2πi times the sum of the residues
at the singularities of f inside γ, as previously noted (and proved).

Proof For each k “ 1, . . . , s, let pk denote the principal part of f at ak. Then pk
converges on C´ ak, and uniformly on γ, by Theorem 3.81, so

ż

γ
pk “ 2πiRespf, akqIpf, akq.

Now the function g “ f ´
ř

pk has a removable singularity at each aj since it has a finite
limit as z Ñ aj (namely `j “ pf ´ pjqpajq ´

ř

k‰j pkpajq) and so becomes analytic on A

by setting gpajq equal to that limit (by Corollary 2.13). Thus by Cauchy’s Theorem

0 “

ż

g “

ż

f ´

ż

ÿ

pk “

ż

f ´
ÿ

ż

pk “

ż

f ´ 2πi
ÿ

Respf, akqIpf, akq

where
ř

“
řs
k“1 and all the integrals are along γ. This completes the proof. �

B. Computing Residues

Recall that the residue of f at an isolated singularity a is the coefficient c´1 of pz´aq´1

in the Laurent expansion fpzq “
ř8
n“´8 cnpz ´ aq

n, and is given by integral formula

Respf, aq “
1

2πi

ż

γ
fpζq dζ

for any suitably small, positively oriented circle γ centered at a. Unfortunately this integral
is generally hard to compute. Easier approaches:

k1 Check whether a is a removable singularity; if it is, then Respf, aq “ 0. As noted
above, a is removable if and only if limzÑapz ´ aqfpzq “ 0, and this limit is sometimes
easy to compute. For example fpzq “ pez´1q{ sin z has a removable singularity (and thus
zero residue) at 0 since limzÑ0 zpe

z ´ 1q{ sin z “ 0.

k2 If f “ g{h with g and h analytic and gpaq “ 0, then there is a formula for Respf, aq
in terms of the derivatives of g and h at a, obtained as follows. Suppose that

opg, aq “ r and oph, aq “ s , and set p “ s´ r

which equals ´opf, aq by Corollary 3.12. (Recall that r and s are just the orders of the
first nonvanishing derivatives of g and h at a.) Then a is a removable singularity if p “ 0,
in which case of course Respf, aq “ 0.
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If p ą 0, then a is a pole of order p, and then the Taylor expansions

fpzq “
ÿ

ně´p

fnpz ´ aq
n ,

ÿ

gpzq “
ÿ

něr

gnpz ´ aq
n and hpzq “

ÿ

něs

hnpz ´ aq
n,

where gn “ gpnqpaq{n! and hn “ hpnqpaq{n! , yield

pf´ppz ´ aq
´p ` ¨ ¨ ¨ q phspz ´ aq

s ` ¨ ¨ ¨ q “ grpz ´ aq
r ` ¨ ¨ ¨ .

since fh “ g. Expanding out, one can then solve for f´1 in terms of the gn’s and hn’s.

Simple poles Assume a is a simple pole (that is p “ 1, and so s “ r ` 1). Then

pf´1pz ´ aq
´1 ` ¨ ¨ ¨ q phspz ´ aq

s ` ¨ ¨ ¨ q “ grpz ´ aq
r ` ¨ ¨ ¨ .

Therefore f´1hs “ gr, and so

Respf, aq “ f´1 “
gr
hs

“ s
gprqpaq

hpsqpaq
,

or simply gpaq{h1paq when r “ 0 and s “ 1, e.g. for 1{hpzq when h has a simple zero at a.

Exercises: Show ka Respez{ sin z, 0q “ 1 kb Respz{pcos z ´ 1q, 0q “ ´2.

Higher order poles To state the residue formula in general, we use matrices: We must

solve the equation ~fH “ ~g, where ~f “ pf´p ¨ ¨ ¨ f´1q, ~g “ pgr ¨ ¨ ¨ gs´1q and H is the upper
triangular pˆ p matrix with hs’s on the diagonal, hs`1’s on the first superdiagonal, etc.:

`

f´p ¨ ¨ ¨ f´1

˘

¨

˚

˚

˚

˝

hs hs`1 ¨ ¨ ¨ hs`p´1

0
. . .

. . .
...

...
. . .

. . . hs`1

0 ¨ ¨ ¨ 0 hs

˛

‹

‹

‹

‚

“
`

gr ¨ ¨ ¨ gs´1

˘

By Cramer’s rule Respf, aq “ f´1 “ detHg { detH “ detHg {h
p
s where Hg is the matrix

obtained from H by replacing the last row with ~g.

For example, if a is a double pole (that is p “ 2, and so s “ r ` 2) then

Respf, aq “ f´1 “

det

ˆ

hs hs`1

gr gr`1

˙

h2
s

“
gr`1hs ´ grhs`1

h2
s

Exercises: Show ka Respez{pz ´ 1q2, 1q “ e kb Resppez ´ 1q{ sin3 z, 0q “ 1{2.

In the next two sections, we discuss some applications of the residue theorem.

C. The Argument Principle and Rouché’s Theorem

Let f : A Ñ C be analytic except at finitely many poles. Then f is said to be
meromorphic in A. (Note that we do not allow essential singularities in A.) For sim-
plicity we also assume that f has only finitely many zeros in A.

Now let γ is a null-homotopic closed curve in A that does not pass through any of the
zeros or poles of f . Consider the integral

1

2πi

ż

γ

f 1pzq

fpzq
dz.
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If γ is parametrized by γptq for t P ra, bs, then this integral can be written as

1

2πi

ż b

a

f 1pγptqqγ1ptq

fpγptqq
dt “

1

2πi

ż b

a

pf ˝ γq1ptq

pf ˝ γqptq
dt “

1

2πi

ż

f˝γ

1

z
dz “ Ipf ˝ γ, 0q.

Thus it can be interpreted as the winding number of f ˝ γ about 0, or equivalently, the
total change in the argument of f as γ is traversed.

4.2 Argument Principle If f is meromorphic in A with zeros aj and poles bk peach
repeated as many times as its order indicatesq then

Ipf ˝ γ, 0q “
ř

j Ipγ, ajq ´
ř

k Ipγ, bkq

for every null-homotopic closed curve that does not pass through any of the zeros or poles.

Proof If a is a zero of order m, then as noted on page 34, fpzq “ pz´aqmϕpzq, where ϕ is
analytic and nonzero at a, and so f 1paq “ mpz´aqm´1ϕpzq`pz´aqmϕ1pzq. Consequently
f 1pzq{fpzq “ m{pz ´ aq ` ϕ1pzq{ϕpzq, and so f 1{f has a simple pole at a with residue m.
The same calculation for a pole b of order p shows that f 1{f has a simple pole at b with
residue ´p. The result is now immediate from the residue theorem. �

Here is a useful application of this principle (which we state in a slightly unusual way):

4.3 Rouché’s Theorem Let f be analytic in a region A, and γ be a null-homotopic
simple closed curve in A. If f can be written as the sum of two analytic functions g and h
with |g| ą |h| on γ, then f and g have the same number of zeros pcounting multiplicitiesq
enclosed in γ.

Proof By the hypothesis, f and g are zero-free on γ (since |f | “ |g ` h| ě |g| ´ |h| ą 0
and |g| ą |h| ě 0 on γ). Set q “ f{g. Then since |f ´ g| “ |h| ă |g| on γ, we see (dividing
by |g|) that |q´1| ă 1 on γ, and so the curve q˝γ lies in the open disc of radius 1 centered
at 1. Thus Ipq ˝ γ, 0q “ 0, and so by the argument principle q “ f{g has an equal number
of zeros and poles inside γ (counting multiplicities, where we define the multiplicity of a
pole to be its order). But the zeros of q are just the zeros of f , while the poles of q are
the zeros of g, and the result follows. �

Example Let fpzq “ z5 ` 3z2 ` 7z ´ 2.k1 How many roots does f have inside the unit circle C? Go for the largest single term:
Since |7z| “ 7 on C, while |z5` 3z2´ 2| ď |z5| ` |3z2| ` 2 “ 6 on C, we see that f has the
same number of roots inside C as does 7z, namely one.k2 How many roots of f have modulus between 1 and 2? Noting that |z5| “ 32 on 2C,
while |3z2 ` 7z ´ 2| ď |3z2| ` |7z| ` 2 “ 28 on 2C, we see that f has the same number of

roots inside 2C as z5, namely 5. Therefore, using k1 , we see that f has 4 “ 5 ´ 1 roots
of modulus between 1 and 2.

D. Evaluation of Definite Integrals

The residue theorem provides an efficient tool for computing real definite integrals of
many different types. We illustrate this technique, following Ahlfors, first for certain
trigonometric integrals, and then for two types of improper integrals.
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Trigonometric Integrals Consider any integral
ż 2π

0
Rpcos θ, sin θq dθ

where Rpx, yq is a rational function of two variables. The substitution z “ eiθ, dz “ ieiθdθ
(and so dθ “ dz{iz) transforms it into a contour integral around the unit circle C:

¿

fpzq dz where fpzq “ R

ˆ

z ` z´1

2
,
z ´ z´1

2i

˙

1

iz

Therefore by the residue theorem, the value of the original integral is just 2πi times the
sum of the residues of fpzq inside C.

Example Evaluate I “

ż π{2

0

1

sin2 θ ` 2
dθ “

ż 2π

0

1{4

sin2 θ ` 2
dθ , for which

fpzq “
1{4

˜

ˆ

z ´ z´1

2i

˙2

` 2

¸

iz

“
iz

z4 ´ 10z2 ` 1
“:

gpzq

hpzq
.

Now hpzq factors as pz2 ´ rqpz2 ´ sq where r “ 5´
?

24 and of s “ 5`
?

24. Thus f has
4 simple poles at ˘

?
r and ˘

?
s, and only the first two lie inside C. We compute

Respf,˘
?
rq “

gp˘
?
rq

h1p˘
?
rq

“
˘i
?
r

˘2
?
rpr ´ sq

“
i

2pr ´ sq
“

´i

4
?

24
.

Therefore I “ 2πip´i{2
?

24q “ π{
?

24.

For homework you are asked to evaluate I “

ż π

0

1

cos θ ` 2
dθ , which is easier.

Improper Integrals Let Rpxq “ P pxq{Qpxq, where P and Q are polynomials of degree
p and q, and Q is nonzero on R (so necessarily of even degree). We consider two types of
improper integrals:

I1 “

ż 8

´8

Rpxq dx where q ě p` 2

I2 “

ż 8

´8

Rpxqeiωx dx where q ě p` 1 † and ω is a positive real number

By definition, these are the limits of the corresponding finite integrals from ´r to s, as r
and s tend independently to 8. In fact I1 can be equivalently be defined as the limit of
the integral from ´r to r as r Ñ8 (since the half improper integrals from 0 to ˘8 both
converge). This is not the case for I2.

k1 For I1 the procedure is to integrate the analogous complex function Rpzq over a
contour Cr consisting of the directed line segment r´r, rs along the real axis, followed by

† The integral I2 is the value at ω of the Fourier transform of R, usually denoted

pRpωq “

ż 8

´8

Rpxqeiωx dx “

ż 8

´8

Rpxq cospωxq dx` i

ż 8

´8

Rpxq sinpωxq dx .

This transform is of great importance in PDE’s (solutions to the heat equation), theoretical physics,
quantum mechanics, etc.
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the semicircular arc Ar from r to ´r in the upper half plane. For r large enough, Cr will
contain all the poles of R (which are among the zeros of Q) and so

ż

Cr

Rpzq dz “ 2πiRes`pRq

where Res`pRq is the sum of the residues of R at all its poles in the upper half plane.
Also if r is large enough, then for some constant c, |Rpzq| ă c{r2 for all z on Ar (since
q ě p` 2) and so we can estimate

ˇ

ˇ

ˇ

ˇ

ż

Ar

Rpzq dz

ˇ

ˇ

ˇ

ˇ

ď
cπr

r2
“

cπ

r
.

Since this goes to 0 as r Ñ8, it follows that

I1 “ lim
rÑ8

ż

Cr

Rpzq dz “ 2πiRes`pRq.

Example Evaluate

ż 8

´8

P pxq

Qpxq
dx where P pxq “ x2´x`2 and Qpxq “ x4`10x2`9.

Note that Qpxq “ px2 ` 1qpx2 ` 9q, and so it has roots ˘i and ˘3i. By the discussion
above, the answer is 2πi times the sum of the residues of R at i and 3i, which are

RespR, iq “
P piq

Q1piq
“

1´ i

16i
and RespR, 3iq “

P p3iq

Q1p3iq
“
´7´ 3i

´48i

and so the integral equals 2πi pp1´ iq{16i` p7` 3iq{48iq “ 5π{12.

For homework you are asked to evaluate the analogous integral when P pxq “ x2`x`1
and Qpxq “ x4 ` 5x` 4.

k2 For I2, note that |eiωz| “ e´ωy (for z “ x` iy) is bounded in the upper half plane,
so the same estimates as above show that

I2 “

ż 8

´8

Rpxqeiωx dx “ 2πi Res`pRpzqe
iωzq

provided q ě p`2. In fact the same result holds when q “ p`1, but in this case, as noted
above, we must compute

lim
r,sÑ8

ż s

´r
Rpxqeix dx .

For this computation, it is more convenient to use the rectangular contours

γr,s,y “ r´r, ss ` rs, s` iys ` rs` iy,´r ` iys ` r´r ` iy,´rs (where r, s, y ą 0).

Since q “ p ` 1, there is a constant C such that |Rpzq| ă C{|z| for |z| sufficiently large.
Hence the integral along the right vertical side rs, s` iys can be estimated
ˇ

ˇ

ˇ

ˇ

ˇ

ż

rs,s`iys
Rpzqeiωz dz

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż y

0
Rps` itqeiωps`itqi dt

ˇ

ˇ

ˇ

ˇ

ď
C

s

ż y

0
e´ωt dt ď

C

ωs
p1´ e´ωyq

which is less than C{ωs since y ą 0. Similarly the integral along the left vertical side
is bounded in absolute value by C{ωr. The integral along the top is easily seen to be
bounded in absolute value by Ce´ωypr ` sq{y, which for fixed r and s tends to 0 as
y Ñ8. Therefore

|I2 ´ 2πiRes`pRpzqe
iωzq| ă Cp1{ωr ` 1{ωsq.

for sufficiently large r and s. Letting r and s go to 8, we see that I2 “ 2πiRes`pRpzqe
izq.

41



Bryn Mawr College

5. Conformal Maps

Let A Ă C be open and connected and f : AÑ C be continuously differentiable (when
viewed as a real function) with dfa nonsingular at some a P A. For our present purposes,
we define the notion of “conformality” slightly differently (a priori) than we did in §1.D.

Definition The function f is conformal at a if it is analytic at a with f 1paq ‰ 0.

We now introduce two notions of a more geometric nature that are closely related to this
analytic definition. Consider any parametrized contour γ passing through a, say γp0q “ a,
with γ1p0q ‰ 0. Thus γ1p0q can be viewed as the velocity vector of a particle moving
through a at time zero.

We will use the classical expressions for functions in terms of variables, using subscripts
to denote derivatives. Thus if z “ x` iy “ γptq and w “ u` iv “ fpzq, then we will write
zt for γ1ptq, wz for f 1pzq (if it exists), wt for pf ˝ γq1ptq, wx for Bf{Bx, etc. The hypotheses
γ1p0q ‰ 0 and dfa nonsingular show that zt ‰ 0 at 0 and wz ‰ 0 at a, so by the chain rule,
wt ‰ 0 at 0 as well.

In this notation, the two Cauchy-Riemann equations ux “ vy, uy “ ´vx can be written
in complex form as the single equation wy “ iwx.

Definition Given w “ fpzq, z “ γptq with γp0q “ a as above, we say the function fka rotates uniformly at a if argpwt{ztq is independent of γ at t “ 0.kb dilates uniformly at a if |wt{zt| is independent of γ at t “ 0.

It is understood that both zt and wt are nonzero at t “ 0.

5.1 Conformal Criterion If f is conformal at a, then it rotates and dilates uniformly
at a. Conversely, (a) if f rotates uniformly at a, then it is conformal at a, and (b) if f
dilates uniformly at a, then either f or f̄ is conformal at a.

Proof The first statement is just the “Conformal Mapping Theorem” (Corollary 1.7)
proved using the chain rule on page 12.

For (a), assume that f rotates uniformly at a. Then by the chain rule

wt “ wxxt ` wyyt “
1
2pwx ´ iwyqpxt ` iytq `

1
2pwx ` iwyqpxt ´ iytq.

Setting c “ 1
2pwx ´ iwyq and r “ 1

2pwx ` iwyq, we see that wt{zt “ c ` r zt{z̄t which
describes a circle of radius r (centered at c) as zt varies. This has constant argument if
and only if r “ 0, that is if and only if wy “ iwx, which is just the Cauchy-Riemann
equation. Therefore f is analytic at a, and the chain rule implies that f 1paq is nonzero,
since zt and wt are nonzero by hypothesis.

For (b), assume that f dilates uniformly at a. Then as above we see that either r “ 0
or c “ 0. In the former case we conclude that f is conformal at a, as above, while in the
latter case we have wy “ ´iwx, and so f̄ is conformal at a. �

NOTES IN PROGRESS ...
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