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1. ANALYTIC FUNCTIONS

A. Complex Numbers

Definition A complex number is an ordered pair (z,y) of real numbers, that is, a
vector in R%. One adds complex numbers using vector addition
(@1, 91) + (22,92) = (21 + 22, Y1 +92)

and multiplies them using the interesting formula

(z1,91)(22,92) = (T172 — Y12, T1Y2 + T201)
which amounts to the rule “multiply lengths and add angles”.t (More on this below)

Exercise Addition and multiplication are associative and commutative operations with
identities (0,0) and (1,0), resp., and multiplication distributes over addition. Furthermore,
any complex number (x,y) has an additive inverse (or negative) (—x, —y).

Denote the set of all complex numbers by C, and view R < C by identifiying € R with
(x,0) € C. Since (21,0) + (22,0) = (z1 +22,0) and (x1,0)(x2,0) = (z122,0), addition and
multiplication in R are the same whether performed before or after this identification is
made. Also (0,0) = 0 and (1,0) = 1, as the identities for + and - are usually written.

Setting ¢ = (0,1), it is straightforward to check that

(z,y) = x+iy

which is the traditional way to write complex numbers. Also 2 = —1, and sums and
products can be computed in the familiar way (x1 +iy1)+ (z2+iy2) = (x1+x2)+i(y1+y2)
and (z1 +iy1) (22 + iy2) = T122 + T1iye + Y172 + iyriye = (T122 — Y1y2) +i(T1Y2 + T291).

Definition Let z = z+¢y be a complex number. We call z and y the real and imaginary
parts of z, written Re(z) and Im(z). If (r,0) are the polar coordinates of the point (z,y),
then we call r and 0 the norm (or modulus) and argument of z, written |z| and arg(z).
Thus

lz| = r = a2+ y? and arg(z) = 0 = arctan(y/x).
Note that r > 0, and 6 is defined and multivalued when r > 0. For example |1 + i| = /2
and arg(1l + i) is equal to 7/4 + 27n for any n € Z.

T This means that in polar coordinates (r1,01)(r2,02) = (rir2,01+62). To see this, compute the product
(z1,y1)(x2,y2) = (r1cos b1, r18in61)(r2 cos b2, r2 sin 02). By definition this is given by the formula

(r172(cos 61 cos B2 — sin 0 sin 62) , r172(cos 61 sin Oz + sin 01 cos 62))

which is equal to (r1r2 cos(61 + 02), rirasin(61 + 62)) by trigonometry.
1
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The following basic properties are readily verified for any pair z,w of complex numbers
Re(z + w) = Re(z) + Re(w) lzw| = |z]|w]
Im(z + w) = Im(z)+ Im(w) arg(zw) = arg(z) + arg(w) (mod 27)

the ones on the right being the “multiply lengths and add angles” rule for multiplication.
We also have the important triangle inequality

2+ w| < 2] + |w]

which is geometrically obvious, or see Proposition 1.2.5 in MH (Marsden-Hoffman’s text)
for an algebraic proof, and its useful consequence: |z + w| = ||z| — |w|| (exercise).

Define the conjugate of z = = + iy to be Z = z — iy (geometrically Z is the reflection of
z through the z-axis) It is easy to verify the formulas (cf. Proposition 1.2.4 in MH)

Z+w = Z4+wW, Zw = ZW and zZ =2z
which show that conjugation is an “involution” of C," and
Re(z) = (z4+%)/2, Im(z) = (2 —%2)/2i and 2Z = |2|2.
The last formula implies that any nonzero complex number z has a multiplicative inverse
1 = 7/|2)%

With the exercise above, this proves:

1.1 Theorem C is a field. (Theorem 1.1.2 in MH)

Polar Form Given any complex number z = x + iy, we have x = rcosf and y = rsin 6,
where 7 = |z] and 6 = arg(z), so z = r(cosf + isinf). Using Euler’s Identity

e = cos®+isinf

(motivated in the next section) we can rewrite z in polar form

z = re
which is very convenient for many purposes. For example products in polar form become
(%) re' s = rsell0t¥)

by the “multiply lengths and add angles” rule, or as one would expect using the familiar
laws of exponents. This is illustrated below
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FiGure 1. Complex multiplication

T An involution of C is by definition a homomorphism f : C — C (meaning f(z+w) = f(2) + f(w) and
f(zw) = f(2)f(w)) that satisfies f o f = id. These properties are clearly satisfied by f(z) = Z.
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Applications (*) implies the formulas for the sine and cosine of the sum of two angles;
just take r = s = 1, and expand both sides using Euler’s identity. It also yields identities
for sines and cosines of multiples of angles. For example, ¢'(3?) = cos 30 +isin 30 = (e9)3 =
(cos@ +isin )3 = cos® O + 3i cos §sin§ — 3 cos §sin? § — isin® 0, so

cos30 = cos®f — 3cosfsin’h and sin30 = 3cosfsinfh —sin®0.

As another application, consider the problem of computing the powers or the roots of
a complex number z = re®. Applying () repeatedly when re? = se’®, and using Euler’s
identity, we obtain DeMoivre’s Formula for the powers of z:

2" = ™ = P(cosnb + isinnb)

for any integer n > 0, and consequently for n < 0 as well, since =1 = r~1e™. In fact this
holds for any rational number in place of n, when properly interpreted. For example, to
compute the nth roots se™ of z = re'?, we have s"e’¥ = re?, and so s™ = r and ng = 6
(mod 27). Thus z has exactly n distinct nth roots:

2 = ptnei0+2mk)ne U (eog (0 + 27k /n) + isin (6 + 27k)/n))

n

for k=0,1,...,n—1. Alternatively, these roots can be written as v, vw, . .., vw" ! where
v =ri/ne/m and w = 2™/, They are equally distributed on a circle of radius /™ about
0, since multiplication by w rotates C about 0 by 27/n radians (verify this). For example,
the cubes and cube roots of (1 + ) = 2'/2¢'™/* are

(1+'L)3 — 23/2637“;/4 and (1+Z>1/3 — 21/667%'/127 21/6697ri/12 or 21/66177”'/12.

B. Complex Functions

Definition A complex function is a function f: A — C with domain A < C. Thus

flx+iy) = u(z,y) +iv(z,y)

for suitable real valued functions v and v on A = R? (identifying C with R?). We call u
and v the real and imaginary parts of f, and often simply write f = u + iv.

Examples ’Complex multiplication‘ For fixed zp = ¢ + iyo, define m,, : C — C by

My (2) = 202 = (vox — yoy) + i(yor + Toy) (for z = x +iy)

Geometry: Dilate by |zo| and rotate by arg zy (about the origin)

Linear Algebra: Linearly transforms R? by multiplying by <1;0 ;yo)
0 0

’The exponential function‘ Define exp : C — C by

z

exp(z) = €° = e"(cosy + isiny) (for z = x + iy)
Thus |e*| = e and arg(e®) = y. This extends the usual exponential function when the
variable is real, and yields Euler’s identity when it is purely imaginary.

Motivation: Recall e® =1+ z + 22/2! + 23/3! + - -+ for x € R. Thus it is natural to let

: o (iy)? (y)?® (i) vy oy

iy cee = 2 47 . — L 4.

e = 1+iy+ ST TR TR (1 or v ) +i(y T )
which equals cosy + isiny. In general we want e*™% = e%e®_ which yields the definition
above.
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Properties: (a) (law of exponents) e*T% = eZe®
(b) (periodicity) exp has period 27i, i.e. e*? = e* <= p is an integral multiple of 27

Proofs: @ We show both sides have the same norm and argument. Set z = x + 1y and
w=u+1iv,s0 z+w=(z+u)+i(y+v). Then [e*T?]| = "% = %" = |e*||e"| = |e*e"
and arg(e*tV) = y + v = arg(e?) + arg(e?) = arg(e®e?). (b) P = ¢ = P = 1
Re(p) = 0 and Im(p) € 2nZ (by the known periodicity of the real functions sin and cos)
<= p € 2miZ. Geometric proof below.

Geometry: The z-axis maps to the positive x-axis by the usual exponential map. In fact
all the horizontal lines y = ¢ map to open rays 6 = ¢ emanating from 0, sweeping around
with period 27 in 6 (so in particular, exp has image C — {0}). The vertical lines x = ¢
map to circles of radius e¢ centered at 0. Here is a “dynamic” picture of exp:

A \ /
o > ) .
exp
_
>
U
roll up l
) 2~ expand
—— — —>

FIGURE 2. The exponential function

The logarithm | Define log : C — {0} — C by

logz = log|z| + iarg 2.

As it stands, this is a multivalued function, since arg is multivalued. If we restrict the
domain to the complement of the negative real axis, however, we obtain a continuous
(singlevalued) function

log:{z :argze (—m,m)} — {z:Im(z) € (—m,m)}

that extends the usual log function on R. This is called the principal branch of the
logarithm. Other branches are obtained by restricting to the complement of a different
ray emanating from the origin (i.e. restrict argz to another open interval of length 27).
Thus any z # 0 is in the domain of some branch of the logarithm.
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Motivation: Want log to be the inverse function of exp, i.e. elogz — > Setting log z = x+iy,
this makes z = e®e'¥ = e* = |z|, i.e. © = log |z|, and y = arg z, as defined above.

Property: log(zw) = log z + log w.

Proof: log(zw) = log |zw| + iarg(zw) = log(|z||w]) + i(arg(z) + arg(w)) = log|z| +
log |w| + iarg z + iargw = log z + log w.

Geometry:
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FIGURE 3. The logarithm function (principal branch)

Trigonometric functions‘ Define sin, cos, sinh, cosh : C — C by

. e — e F e +e et —e e’ 4+ e ?
sing = —— , cosz=———, sinhz = ——— , coshz = ———
21 2 2 2

Motivation: If 2 € R then " — e~ = (cosz + isinx) — (cos(—xz) + isin(—z)) = 2isinz
so sinz = (" — e~ ") /2i, and similarly cosz = (e"* + e~ **)/2. For sinh and cosh, these
are just the usual definitions from calculus. The graphs of these real functions are:

A

A
) cosh
cos sin sinh

»

N -

FIGURE 4. The real trigonometric functions

Properties: (a) sin(z +w) = sin z cosw +cos zsinw , cos(z +w) = cos z cos w — sin z sin w,
sinh(z + w) = sinh z coshw + cosh zsinhw , cosh(z + w) = cosh z cosh w + sinh z sinh w.

@ cos?z +sin?z =1, cosh’?z —sinh?z =1
(¢) cosz = sin(z + 7/2), sinh z = —isin(iz), cosh(z) = cos(iz)

(d) sin and cos are periodic of period 27, and sinh and cosh are periodic of period 27i
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Proofs: Properties (a), (b) and (¢) are straightforward from the definitions (for (a)
start with the right-hand side). Property (d) also follows from the definitions and the fact
that exp has period 27i. The details are left to the reader.

Geometry: We discuss sin, leaving cos for homework, and sinh and cosh as exercises.
(Note: property @ above shows that the pictures are closely related.) Using @, write

sin(z + iy) = sin(x) cos(iy) + cos(z) sin(iy)
= (sinzcoshy) + i(cosxsinhy) = u + dv.

For each a,b € R, let V, be the upward-pointing vertical line {x + iy : = = a}, and Hy, be
the right-pointing horizontal line {x + iy : y = b}. Where does the sine function map V
and Hp in the uv-plane?

The real axis Hy clearly maps to the interval [—1, 1] in the u-axis by the real function
sin. For b # 0 we have sin(x 4 ib) = (sin z cosh b) +i(cos z sinh b), so Hy maps to the ellipse

u? v?

_|_ =
cosh?b  sinh?b
since sin? + cos? = 1. These ellipses enclose [—1,1] since cosh > 1. They are traversed

clockwise when b > 0 and counterclockwise when b < 0 (check what happens near x = 0)
and grow in size as |b| grows.

As for the vertical lines, consider V, for a = nw/2 for n € Z. If n is even then sin(a+iy) =
+isinhy, so V, maps to the v-axis, pointing up or down according to whether n = 0 or
2 mod 4. If n is odd then sin(a + iy) = + coshy, and so V, maps (folded in half) to the
ray u = 1, or u < —1 on the wu-axis, according to whether n = 1 or 3 mod 4. For all other
values of a, the line V, maps to one branch of the hyperbola

u? v?

2

. 7 = 1
s a COs” a

since cosh? — sinh? = 1.

The picture is:

FIGURE 5. The sine function

Problem Find the maximum of |sin z| on the square {z : Re(z) and Im(z) € [0, 7]}.

Solution: The sine function maps the horizontal segments x + ib, for = € [0,7], to
the right halves of the ellipses u?/cosh?b + v?/sinh?b = 1 in the wv-plane, starting at
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(0,sinh b) and ending at (0, —sinh b). These ellipses are nested, increasing in size with b.
Since cosh?b > sinh?b, it follows that |sin| achieves a maximum value of cosh at the
midpoint 7/2 4 im of the upper edge of the square.

’ Complex powers‘ For any two complex numbers b # 0 and p, define the complex number

W= erlost,

This is in general multivalued, since log is multivalued, with distinct values of b7 differing
by powers of e?™P. In particular, if p = n/d € Q (in lowest terms with n > 0) then b”
takes on exactly d values, namely the dth roots of b = b---b (n times). In all other cases
bP takes on infinitely many values. So bP is single valued iff p € Z.

Exercises Show (a) log(b?) = plogh, and (b) (bP)7 = bP9.

There are two kinds of associated functions: power functions (taking b as the variable)
and exponential functions (taking p as the variable):

For fixed p € C define pow,, : C — {0} — C by

pow,(z) = 2 = ePlosz,

As noted above, this is multivalued unless p € Z. The most important special cases are
p =n (nth power) and p = 1/n (nth roots) for n € Z.

For fixed nonzero b € C define exp, : C — C by
expy(z) = b* = e*losh,

This is always multivalued, taking on d values when z is rational of the form n/d (in lowest
terms) and infinitely many values for all other z.

Exercises Give geometric descriptions of @ pow,, and pow,, for n € Z , and
() exp, (hint: use the descriptions for m; and exp above)

C. Continuity

We begin with some basic “topology” in the plane. For any positive real number r and
point a € C, define the open disk

Dy(a) = {zeC : |z—a|<r} (denoted D(a;r) in MH)

consisting of all points in C at distance strictly less than r (the radius) from a (the center).
Also consider the associated closed disk and punctured open disk, defined by

Dy(a) = {zeC: |z—a| <7} and Dy(a) = {zeC:[0<|z—a| <7}
respectively. These disks are sketched below (exclude the points on the dotted boundaries).

FIGURE 6. Disks
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If r =1 or a =0, we may sometimes omit them from the notation. For example D,
unless otherwise specified, will denote the unit disk, of radius 1 centered at the origin 0.
These disks will help us understand the notions of open and closed subsets of C, limits of
complex functions and sequences, and continuous and differentiable functions.

Open and closed sets

Definition A subset A of C is open if each point in A is the center of some open disk
lying entirely inside A, or in symbols

Vae A,3r > 0 such that D,(a) c A,
and is closed if its complement C— A is open, i.e. Va ¢ A,3r > 0 such that D, (a) = C— A.

Exercise Show (using the triangle inequality) that open disks are open, and closed
disks are closed. Also show that open disks are not closed, and closed disks are not open.

More generally, the region strictly inside — or strictly outside — a smooth simple closed
curve in C is open. If one includes the points on the curve, then the resulting sets are
closed, since their complements will be open. Examples of such regions are sketched below.

open

open o closed

FIGURE 7. Open and closed sets

Needless to say, there are many other kinds of open and closed sets in C, but we will
not discuss these now.

Exercises @ Show that the union or intersection of any two open sets is open, and
that the union or intersection of any two closed sets is closed.|

(b) Show that the only subsets of C that are both open and closed (clopen for short) are
C itself and the empty set @.

(c) Show that a subset of C is open if and only if it is a union of (possibly infinitely
many) open disks, and closed if and only if it contains all its limit points. Here a point a
is called a limit point of A — C if there are points in A “arbitrarily close” to a, i.e. if for
all » > 0, the punctured disk br(a) has non-empty intersection with A.

T In fact the union of an arbitrary collection of open sets (even possibly infinitely many of them) is open.
This is not true for closed sets; for example the union of the closed disks 51_1/n(0), forn=1,2,3,...,1s
the open unit disk D = D1(0), which is not closed. Similarly the intersection of an arbitrary collection of
closed sets is closed, while the analogous statement for open sets is false in general.



COMPLEX ANALYSIS

Limits
If f: A— Cis a complex function, and a and b are complex numbers, we write
lim f(z) = b (or equivalently, f(z) — bas z — a)
z—a
to mean, intuitively, that “f(z) approaches b as z approaches a”.T More precisely, this
means that for every positive real number ¢, there should exists a positive real number §

(depending on ¢) such that f maps all the points in A that are within a distance ¢ of a,
excluding a itself, to within a distance € of b. In other words, Ve > 0, 3 > 0 such that

(A Ds(a)) = D.(b),

or equivalently 0 < |z —a| < d = |f(z) — b| < €. Note that a need not be in A, but it is
implicitly assumed that a is at least a limit point of A.

Also important is the notion of the limit of a sequence z1, 29, 23, . .. of complex numbers.
We write
lim z, = b (or equivalently, z, — b as n — o0)
n—ao0

to mean Ve > 0 In (again depending on &) such that z; € D.(b) for all k > n.

The usual limit laws hold: the limit of a sum, difference, product or quotient, is the
sum, difference, product or quotient of the limits (provided they exist). You are asked to
prove this for sums in the homework.

Continuity

We say that a complex function f : A — C is continuous at a point « if it is defined
at a (i.e. a € A) and lim,_,, f(z) = f(a). It is said to be a continuous function if it is
continuous at every point in A.

Exercise Show that a complex function is continuous (in the sense defined above) if and
only if its real and imaginary parts are continuous (in the sense defined in multivariable
calculus). Using this fact, it is easy to show that the functions considered above (exp, log,
trig and hyperbolic trig functions, power functions, etc.) are all continuous.

There is an elegant reformulation of continuity for functions whose domains are open:

1.2 Theorem Let A be open. Then f: A — C is continuous <= f~Y(U) is open for
each open subset U of C.

Proof (=) Let U < C be open. Given a € f~1(U) (meaning f(a) € U), we must show
that 36 > 0 such that Ds(a) = f~1(U). To see this, observe that

e U is open and f(a) € U = Je > 0 such that D.(f(a)) c U.
e Aisopen and a € A = 34; > 0 such that Dy, (a) c A
e f is continuous at a = 3d3 > 0 such that f(A n Ds,(a)) < D:(f(a)).
Thus taking § = min(dy, d2), we have f(Ds(a)) = D-(f(a)) < U, i.e. Ds(a) = f~1(U).
(«=) Let a € A and ¢ > 0. By hypothesis f~1(D.(f(a)) is open, so 3§ > 0 such that
Ds(a) = f7H(D:(f(a)),
that is, f(Ds(a)) € Ds(f(a)). Thus f is continuous at a. O

 Note that unlike the real case, where z can only approach a from the right or left, in the complex case
it can approach a in many different ways, e.g. from the left, right, top or bottom, or perhaps spiraling in.
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Remark The theorem holds for general A if the conclusion “f~!(U) is open” is
replaced with “f~1(U) is open relative to A” (meaning that f~1(U) is the intersection
of an open set with A).

Corollary If f and g are continuous functions, then so is f og.
Proof Apply the theorem twice, noting that (f o g)~*(U) = f~1(g~*(U)). O

Uniform Continuity

The continuity of f : A — C, spelled out, means that Ve > 0 and a € A, 3§ > 0 such
that ... The 0 may very well depend on both ¢ and a. If there is a § that will work for
all a, that is, if Ve > 0, 3 > 0 such that

f(Ds(a)) € D:(f(a)) for all a € A,

or equivalently |[a—b| < § = |f(a)—f(b)| < €, then we say that f is uniformly continuous.
Note that all that has changed is that the quantifiers ¥V a and 3§ have been swapped. This
is a very important notion in the theoretical study of complex analysis.

Example The function Dy (0) — C that sends z to 1/z is continuous but not uniformly
continuous; the reader should draw a picture to see why.

We introduce two other important topological notions before moving on:

Connectedness

Definition A subset A c C is path-connected if any two points z,w € A can be joined
by a path in A, meaning a continuous function v : [a,b] — A (in the sense of multivariable
calculus, viewing A = R?) with v(a) = z and (b) = w. If 4 can always be chosen to
be smooth (i.e. which, at least for now, will mean differentiable), then we say that A is
smoothly path-connected.

Remark Slightly more general is the notion of A being connected. This means that
the only subsets of A that are clopen (both closed and open) relative to A are A and @.
It can be shown that

smoothly path-connected = path-connected = connected
while the converses fail. For open sets, however, these notions coincide (exercise).
Definition A region in C is a subset that is both open and connected. By the preceding

remark, it follows that regions are smoothly path-connected. The domains of most of the
functions considered in this course will be regions.

It is straightforward to show that continuous functions preserve connectedness,
i.e. A connected and f : A — C continuous = f(A) is connected, and the analogous
statement is true for path-connectedness (exercise).

Compactness

Definition A subset A  C is compact if every open cover of A (meaning a collection
of open sets whose union contains A) has a finite subcover (meaning a finite subcollection
of these sets whose union still contains A).

It is straightforward to show that continuous functions preserve compactness,
i.e. A compact and f: A — C continuous = f(A) is compact (exercise).

10
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There is a useful characterization of compact subsets of C that is often taken as the
definition in elementary courses. It uses the notion of a bounded subset of C, meaning a
subset that is contained in some disk (possibly of very large, but finite, radius).

1.3 Theorem (Heine-Borel) A < C is compact if and only if it is closed and bounded.

This result is proved in every elementary topology course, but we do not prove it here.
We do, however, prove the following useful theorem which shows how compactness plays
a role in the study of continuous functions:

1.4 Theorem A continuous complex function f is uniformly continuous on any com-
pact subset A of its domain.

Proof Let € > 0. For each z € A, choose ¢, > 0 such that
f(Ds.(2)) < Depp(f(2)).

The collection of all the disks Ds_/5(z) for z € A forms an open cover of A. Since A is
compact, A lies in the union of finitely many of these disks, say with centers z1,..., z,.
Set 0, = 0., and 6 = min(d1/2,...,d,/2).

Now consider any pair of points a,b € A with |a — b| < 4. Certainly a lies in some
Ds, /2(z1), and so a fortiori in Ds, (21). We claim that b also lies in Ds, (21). Indeed

|b*2k‘ < |b*a|+|a*2k’ < 5+5k/2 < 6.
Therefore [ f(a) — f(b)] < [f(a) — f(z)| + | f(z) = f(0)| <&/2+¢e/2=e¢. O

D. Differentiability

Definition Let f: A — C with A open. We say f is differentiable at a point a in A if
i £ = 1(@) fa+h) - f))

z—a Zz—Qa h
exists, and when it does, it is denoted f’(a) or df /dz (a) and called the derivative of f at
a. Using basic properties of limits, it is easy to show that differentiability at a point
implies continuity at that point (HW).

(or equivalently ]llir%

If f is differentiable at it every point in its domain A, then the resulting function
f = dfjdz: A — C

is called the derivative of f, and f is said to be differentiable (or synonymously analytic or
holomorphic) on AT A quick exercise with limits shows that the derivative of any constant
function is zero, and that (cf)(z) = c¢f’(2) for any constant ¢. In addition, we have:

1.5 Theorem (Rules of Differentiation) If f, g are analytic on A, B respectively, then

(a) (sum and difference rules) f + g is analytic on An B, and (f £g) = f' +¢'.
(b) (product rule) fg is analytic on A~ B, and (fg) = f'g + f¢'.
(c) (quotient rule) fg is analytic on A~ B — g=1(0), and (f/9) = (f'g — fg')g>.
(d) (chain rule) go f is analytic on f~1(B), and (go f) = (¢’ o f)g’, i.e.

(9o V(@) = ¢(Fa)f'(a) forallac f(B).

T Note however that analytic at a means differentiable on some open set containing a.

11
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The proof of (b) is a HW problem, and (a) and (c) are left as exercises. To prove (d),
first note that f and g are continuous, since they are differentiable. Setting w = f(z) and
b= f(a), we must show

" 9(w) — 9(0)

z—a
As long as w # b, the fraction on the left can be written as the product of two fractions,
(g(w) — g(b))/(w —b) and (f(2) — f(a))/(z — a), the second of which approaches f’(a) as
z — a. But unfortunately w might equal b for z’s arbitrarily close to a. To get around
this, we introduce a new function h : B — C, defined by

— g(0)f'(@) as z — a

o)~ o) o
h(w) = w—b
g'(b) if w="h.

This function is continuous (at b by the defiinition of ¢’(b), and at all other points in B
since ¢ is continuous). Now the fraction on the left in (%) can be rewritten as

h(w) f(zi : Z:(a).
and h(w) = h(f(z)) goes to h(f(a)) = h(b) = ¢'(b) as z — a, as desired. O

Remark The same argument shows that if v : [a,b] — A is a smooth path and
f: A — Cis analytic, then f o~ is differentiable with (f ov)'(¢t) = f'(v(¢))Y (¢).

1.6 Corollary (Zero Derivative Theorem) If f : A — C is analytic and f'(z) = 0 for
all z € A, then f is constant on any connected open subset U of A.

Proof Given two points w, z € U, let «y : [0,1] — U be a smooth path with v(0) = w
and (1) = z. By the chain rule (in the form of the preceding remark) we have, for all ¢,

(foy)®) = f(Y(®' () = 0-9(t) = 0
and so (v o) (t) = (vo~)'(t) = 0 where u and v are the real and imaginary parts of f.
From calculus (in particular the mean value theorem) it follows that u and v are constant
functions of ¢, and so f is as well. Therefore f(w) = f(2). Since w and z were arbitrary,
it follows that f is constant on U. g

At the opposite extreme, if f/(z) # 0 for all z € A, then f is “angle preserving” (or
“conformal”) in the following sense:

Definition A function f : A — C is said to be conformal at z € A if there exists an
angle 0 € [0,27) and a scalar r > 0 such that near z, the map f (infinitesimally) rotates
by 6 and dilates by r. More precisely, for every curve v : R — A satisfying v(0) = 2z and
7'(0) # 0, the image curve p := f o~ is differentiable at 0 with x/(0) # 0, and

W (0)] = r|5/(0)]  and  arg(u'(0)) = arg(+'(0)) + 6.

In particular, f preserves angles between intersecting curves.

1.7 Corollary (Conformal Mapping Theorem) If f is analytic at z and f'(z) # 0, then
f is conformal at z with 0 = arg f'(z) and r = |f'(z)| (in the definition above).

Proof For any smooth curve v through z as in the definition, with image curve u = fory,
we have p/(0) = f'(2)7/(0), by the chain rule. The result follows by the analysis of
multiplication by f’(z) as discussed on page 3. O

12
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The Cauchy-Riemann (CR) Equations

These fundamental equations characterize the analyticity of a complex function in terms
of the partial derivatives of its real and imaginary parts.

1.8 Cauchy—Riemann Theorem A complex function f = u + iv is analytic if and
only if it is differentiable as a real function and satisfies the Cauchy—Riemann Equations

Uy = Uy and Uy = —Ug
where subscripts denote partial derivatives. In this case f' = fo = up+1vy = fy = vy—iuy.

Before giving the proof, we recall that a real function f: A — R?, with A < R? open,
is said to be differentiable if it is differentiable at each point a € A, where differentiability
at a means that there exists a linear map 7' : R?> — R? such that

fla+h)— f(a) = T(h)

flLii% ] =0 (note that h € R?)

(cf. Chapter 2 in Spivak’s Calculus on Manifolds). It is easy to show that 7" is unique if it
exists.T It is typically denoted df,, and is called the derivative (or differential) of f at a.

Fact (See Spivak, for example) If f is differentiable with components u and v (i.e.
f(z,y) = (u(z,y),v(x,y))) then all the partial derivatives ug, vy, uy, v, exist, and df, (for
each a) is represented with respect to the standard basis of R? by the Jacobian matrix

= (0 i) (et = (7).

Conversely, if all the partials of f exist and are continuous, then f is differentiable.

Note: The CR equations just say that Jf is an “amplitwist” matriz, meaning
its second column is its first rotated a quarter turn counterclockwise.

Proof (of the Cauchy-Riemann Theorem) Suppose f is analytic at z with f/(z) = a+1b.
This means that limy,_o(f(z + h) — f(2))/h = a + ib, or equivalently

fern-r- (5 )n N

a

CFth) = f(5)— (a+ )k
L 7] = b ]

where we have identified C with R? in the second limit. Thus f is differentiable as a real

function with
_fa =b\ _ [fuz uy
= () = ()

and so u; = vy and v, = —uy.
Conversely, if f is differentiable as a real function and satisfies the CR equations, then
o fua uy) _ (ug Uy
- = <vaj vy> <vaj Uy >

so viewing f as a complex function we have

[+ 0) = f(2) = (g +iv)h

lim 0
h—0 h
so f'(z) exists and equals uy + (v, = vy — uy. O

T If S is another such linear map, then limp_o((S(h) — T(h))/|h|) = 0 (by taking the difference of the
defining limits for 7" and S). Replacing h by tu, where v = h/|h| and ¢ is real, and letting ¢ — 0, we see
(using the linearity of S and T") that S(u) = T'(v). Thus S = T on all unit vectors, and so S =T

13
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Applications (derivatives of exp, trig functions, log and power functions)
(D Recall that e* = u + jv where (for z = z + iy) u = e®cosy and v = e“siny. The
functions v and v are continuously differentiable with
Uy = €'cosy = vy and uy = —e’siny = —u,.
Thus e is analytic by the CR Theorem, with

de®/dz = ug +ivy; = e*(cosy +isiny) = e°.

@ Using the rules of differentiation, we deduce from @ that the sine function is analytic,
with sin’ = cos: By the chain rule de*%*/dz = tie®*, so by 1.5(a), sin is analytic with

. 2‘612 _ (_Zeflz) e’LZ + e*’LZ
sin'z = ‘ = = Cos 2.
29 2
. . . / / .
Similarly cos’ = —sin, tan’ = sec? (where sec = 1/ cos), sinh’ = cosh, cosh’ = sinh, etc.

(3) The logarithm (any branch) is analytic at any z # 0, with
log/(z) = 1/z.

There are several (instructive) ways to see this.

@ For example, away from the imaginary axis (where z = 0) we have log = u + v
where u = log (2% + y?)%? and v = arctan(y/z) (for some branch of arctan), which are
continuously differentiable with

x 1/z y —y/a?

R R 7 i e B R e 72 L

and so the CR Theorem gives the result in this region.

@ To give a proof for all z = retf = 0, one can use the Polar Cauchy-Riemann EquationsT

1 1
Ur = — Vg and Up = ——Ug
r r

(also useful in physics). Since log z = u + v where u = logr and v = 6, we check that

u, = 1/r = vg/r and vy = 0 = —ug/r

so log is analytic. We can now compute log’(z) by approaching z = re'

e.g. along the ray (r + t)e' as t — 0:

in any manner,

. (log(r +1t) +1i0) — (logr + i0) 1 1 1
log'(z) = %E% tet? ~ et log'(r) = re %
(Note: MH’s proof on page 83 is flawed because arctan(y/x) is undefined when z = 0.)

(¢) One can also compute log’ using the Inverse Function Theorem (see below).

(4) For b nonzero, dz°/dz = de®1°8* /dz = bzb/b (by the chain rule) which equals b2"~1.

T These follow from the usual CR equations using the change of variables x = rcosf, y = rsin: The
chain rule gives
Up  Ug\ _ [Uz Uy cos —rsinf
(vr v9> - (vz vy) <sin9 rcosf )
Ur  Ue/T\ | [Us Uy cos —sinf
<vr 1)9/7") - (vz vy) <sin9 cos 6 > ’

and the polar CR equations follow, since the product of an amplitwist matrix and a rotation matrix is an
amplitwist matrix.

or equivalently

14
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For another application of the CR equations, observe that if f = u + iv is analytic,
then the level sets of u and v are orthogonal. Indeed, from calculus we know that
these sets are perpendicular to the gradient vector fields of u and v, so it suffices to show

(Ugzs Uy) + (Vg Vy) = Ugly + Uyvy = 0

which is immediate from the CR equations. As an example, any branch of the function
arcsin is analytic (by the inverse function theorem below) and so this shows that the
ellipses and hyperbolas drawn in Figure 5 are orthogonal.

We conclude this section with two more important results about analytic functions that
can be proved using the CR Theorem :

1.9 _Inverse Function Theorem If f is analytic at z (meaning differentiable near z)
with f'(z) # 0, then there exist open sets U containing z, and V containing w = f(z),
such that f : U — V is bijective and f=1:V — U is analytic with (f~1) (w) = 1/f(z).

This is rather tricky to prove. One approach (taken in MH) is to appeal to the real
version of this theorem, where the hypothesis f/(z) # 0 is replaced with det(df.) # 0,
and the conclusion (f~!)(w) = 1/f'(2) is replaced with (df '), = df;!. Then one only
need observe that the amplitwist matrix representing multiplication by f’(z) has nonzero
determinant (namely |f’(z)|) and that its inverse is also an amplitwist matrix, and then
appeal to the CR Theorem. But of course one must still prove the real inverse function
theorem, which is hard. We do not give the proof here.

Applications @ Using the fact that log and exp are inverse functions, this theorem
gives an alternative proof to the one above that (any branch of) log is analytic, and that

log'(2) = 1/exp/(log z) = 1/exp(log z) = 1/z.

(2) If f is analytic with f’ # 0 everywhere in some open set A, then f(A) is open. Indeed
we can assume that the open sets U in the theorem lie in A, and so f(A) is the union of
all the corresponding open sets V', and so is open.’

(3) Combining this theorem with Corollary 1.6 (the zero derivative theorem) it is easy to
prove that if f is analytic on a connected open set A with constant modulus (meaning |f|
is constant on A), then f is constant on A. The proof is asked for in the homework.

Harmonic functions Let A be an open set in R%2. A twice continuously differentiable
function h : A — R (a.k.a. a C?-function) is harmonic if

Ah = hgp+hyy = 0
at every point in A. Here the double subscripts indicate second order partial derivatives

(s0 hyy = 0?h/0x?, etc.). The differential operator A is called the Laplacian, and is one
of the most important operators in mathematics and physics.

1.10 Theorem If f = u + iv is analytic, then u and v are harmonic. Conversely, if u
1s harmonic on an open disk D, then there exists a harmonic function v on D, unique up
to adding a constant, such that u + iv is analytic; we call v the harmonic conjugate of u.

Proof The first statement follows from the CR equations: uz; = vy, and uyy = —vay,
and these add up to zero by the equality of mixed partials (from in multivariable calculus).
Similarly vz + vyy = 0. The second statement follows from the basic existence and
uniqueness theorems for differential equations, but we do not prove it here. ]

t This is a special case of the “Open Mapping Theorem” (to be proved later) that states that any
nonconstant analytic function on a connected open set is an “open map”, i.e. maps open sets to open sets.

15
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*Remark (starred sections are optional for undergraduates)

The conjugate v of a given harmonic function u can be found by integration. First compute
w = § —u, dz (with a fixed constant of integration) and set h = u; —w,, which is a function
of y only since hy = Ugy — Wyz = Ugz + Uyy = 0. Then

v = w—fh(y)dy.

To see that that f = w + dv is analytic, compute v, = w; = —uy and vy, = wy + h = Uy,
which are the Cauchy-Riemann equations.

Note that v is defined up to adding a real constant, or equivalently, f is defined up to
adding a purely imaginary constant.

Ahlfors describes a simpler way to find f, without integrating. First assume that u is

defined at (0,0). Then
f(z) = u(z/2,2/2i) — u(0,0).
This formula is derived using the following magic. Set z = x + iy and z = © — iy. If
f(2) = u(z,y) + iv(x,y) is analytic, then setting f(2) = u(x,y) — iv(x,y) we have
u(z,y) = 3(f(2) + f(2)).

It is reasonable to assume (and can in fact be shown) that this last identity holds for all
complex z and y. Taking x = 2/2 and y = z/2i, and so z = z/2 + i(z/2i) = z + iy and
Z=ux—iy=2/2—1i(z/2i) = 0, we find that u(z/2, 2/2i) = 3(f(2) + f(0)). Since f can
be changed by adding an imaginary constant, we may assume that f(0) is real, and so
f(0) = u(0,0). This gives the stated formula.

If u is not defined at (0, 0), then ug = wo T is, for a suitable translation 7 of R2. By the
argument above there is an analytic fy with real part ug. Then w is the real part of the
analytic function f = fy o771, where 7 is now viewed as a translation of C.

2. INTEGRATION

A. Contour Integrals

Definition A contour is a smooth map v : [a,b] — C, meaning that +' exists and is
continuous and nonzero on (a,b), and that the one-sided limits of 4’ exist at the endpoints
a and b. There is a natural orientation on the image curve C = Im(y), from z = ~v(a)
toward w = ~y(b), indicated by putting an arrow on C; we say that ~ is a contour from
z to w. If z = w, then v is called a closed contour. If v(s) # ~(t) except when s = ¢
(or possibly s,t = a,b in some order; i.e. C' does not “intersect itself”) then ~ is called a
simple contour.

Remark We often blur the distinction between the map v and the oriented curve C,
and talk about “the curve 7” to mean C. Strictly speaking, v is just one of infinitely
many possible parametrizations of C'. For example any map o p, where p : [¢,d] — [a, b]
is smooth with p(c) = a and p(d) = b, is a reparametrization of C.

Given a contour 7 : [a,b] — C and a function f that is continuous on ~, define
b
| = s = [ romma
v Y a

 Note that the integrand is complex, and is computed in terms of real integrals by defining §(u(¢) +
iv(t))dt := (u(t)dt +i§o(t) dt.
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An easy calculus exercise shows that the result is independent of the parametrization
of C = Im(v), and so we can write SC in place of Sv‘ If C is closed, we sometimes
write <§C, or even just § if C' is understood from the context. The reader should compare
this definition of contour integrals with definition of line integrals of vector fields, where
complex multiplication is replaced by the dot product. It is also instructive to write down
the definition as a limit of Riemann sums.

Examples (1) Let S be the oriented line segment in the complex plane from 1 to 4,
parametrized by o(t) =1+ ¢(i —1) = (1 —¢) + it for £ € [0,1]. Then

1

fszdz = dez = L((l—t)+zt)(—1+z)dt
1

Jl(—l—i—i(l—%))dt = (—t+i(t—1t?)) = -1
0 0

(2) Let C be the counterclockwise oriented unit circle, parametrized by 7(t) = e for
t € [0,27]. Then
2m

1 1 o

iﬁdz = fdz = J —iedt = it| = 2mi.
z r 2 0o €

C

0

Remark It is sometimes convenient to use piecewise smooth maps vy : [a,b] — C
to parametrize a curve C (especially if C' has corners), meaning ~ is smooth on each
subinterval [ag, ar11] of a partition a = a; < --+ < a,, = b of [a, b]; the one-sided limits of
~' need not agree at ay,...,a,. We will continue to call such maps “contours”, and define

[r-1r-2()

2.1 Fundamental Theorem of Contour Integrals If f is continuous in a region A
and has an antiderivative F there (meaning F is analytic on A and F' = f) and v is a
contour in A (meaning its image lies in A) from z to w, then

Lf=Fwﬂﬁ

where v, = v|[ak, ak+1].

Note : This theorem shows that Sﬂ/ f is the same for any contour v from z to w in A,
provided f has an antiderivative (a.k.a. a primitive) throughout A.

Proof First assume v is smooth.

- b b
ff fﬂwwwﬁ=wawwwﬁ
b

a

- [Fon it £ Fon® - (Fo@ = Fe) - Fla),
a
In the piecewise smooth case, one obtains a sum that telescopes. O
. 1, 1 1
Examples (from above, again) (1) | z = 57 = 575 = —1.
o 1
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1
@ We can’t use 2.1 to compute jg — dz since log is not single valued on the unit circle.
z

2.2 Estimation Theorem If : [a,b] — C is a contour of length L := S |7/ (t)|dt and
f is a continuous function on vy with |f(z)] < M for all z on vy, then

| <

Proof By definition, ‘SW f} =
inequality follows from the general fact that

't)dt] < S IF(v)Y (1)|dt where the

b
< j 9(t)dt.

for any continuous function g : [a,b] — C.T Since the norm is multiplicative, we have

f\ f|f NI >|dt<Mfw Mldt - ML O

B. Cauchy’s Theorem

Classical statement: If f is analytic on and inside a simple closed contour -, then

Lf(z) dz = 0.

But what does “inside” mean? We take a more modern approach.

Homotopic contours

Let z and w be two points in a region A < C. Two contours 7, ¢ : [a,b] — A from z to
w are homotopic (written v ~ §) in A if there exists a one-parameter family of contours
vs ¢ [a,b] = A, s € [0,1], all from z to w, such that vy =7, 711 = d, and the function

H:[a,b] x[0,1] — A (s,t) — s(t)

is continuous. Such a map H is called a homotopy from ~ to 6.

If z = w (so v is closed) then -« is null-homotopic in A if v ~ * where * denotes the
constant contour at z, i.e. x(t) = z for all ¢. If every closed contour in A is null-homotopic,
then we say that A is simply connected. Intuitively, this means that every closed loop in
A can be shrunk in A to a point.

2.3 Cauchy’s Theorem If f is analytic on a simply connected region A, then

L f(z)dz =

T This is well known if g is real valued. For g complex valued, suppose S g(t)dt = re'?. Then

Lb g(t) dt‘ = r = Re(r) = Re <e*i9 f ' g(t) dt) = Re Ub e g(t) dt)

- LbRe (e”g(t))dt < Lb e“g(t)|dt = Lb\g(t)\dt.

for any closed contour v in A.
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Remark The same conclusion holds if we allow there to be one point a € A where f,
though still continuous, need not be assumed to be differentiable. We refer to this as the
generalized Cauchy’s Theorem.

Below we will give the classic proof due to Goursat in 1883 for the case when A is a
disk, and then use this special case to prove the following powerful generalization:

2.4 Deformation Theorem If f is analytic on an arbitrary region A, and v and §
are homotopic contours in A, then

Lf(z)dz - Lf(z)dz.

In particular Sﬂ/ f =0 for any null-homotopic closed contour in A.

Note that 2.3 follows immediately from the last statement in 2.4, which in turn follows
from the first statement since v ~ % implies that Sﬂ/ f =17 =0 (since #(t) = 0 for all ¢).

The deformation theorem is often used to simplify the computation of contour integrals
by replacing the contour with a “simpler” one homotopic to . For example, if v is any
contour “encircling” the origin once counterclockwise, then

1
fdz = 2w
v 2

since v is homotopic to a counterclockwise circle C' centered at the origin, and it is easy
to show SC dz/z = 27i as in example @ above. Other examples appear in the homework.

Here is one very useful application of Cauchy’s Theorem:

2.5 Primitive Theorem If f is analytic on a simply connected region A, then f has
a primitive F (i.e. F' = f) on A, unique up to adding a constant.

Proof Pick a € A and set
F(z) = f f(z)dz
where Sz means S,Y for any contour in A from a to z. This is well defined by Cauchy.

We claim F' = f. Using any contour to get from a to a given z, and extending this by
a straight line from there to z + h (for suitably small h), we see that

1
Flz+h)— F(z) - L (= + th)h dt.

Therefore, using the estimation theorem we compute

§o(f(z +th) — f(2)hdt
h

F(z+h)— F(2)
=IO e -

o+ th) = f(2)]h]

<
treI%O,l] |h

which tends to 0 as h — 0, by the continuity of f at z, and so F'(z) = f(z).
If G’ = f as well, then (F — G)' =0 = F — G is constant since A is connected. [J

T If § is another such path, then v — §, meaning traverse v from a to z and then § “backwards” from z
back to a, is a closed path in A, and so SW_(S f = 0. But this is equal to Sw f=1Ssf, s0 SW =57

19



BrRYN MAWR COLLEGE

2.6 Corollary Let A be a simply connected region not containing 0. Then there exists
a continuous function £ : A — C, unique up to addition of multiples of 2mwi, such that
') = 2. (We call £ a generalized branch of the logarithm.)

Proof By the theorem, 3 p: A — C with p/(z) = 1/2. Fix any a € A, and set
{(z) = p(z) — p(a) +log(a)
for any branch of log defined at a. Then
U(z) =1/z and et(a) = elogl@) —

In fact e*) = 2 for all z € A. To see this, set q(z) = e/*)/z. Then ¢/(z) = 0 by the
quotient rule, so ¢ is constant. Therefore ¢(z) = ¢(a) = 1, and so e/(*) = 2. O

Before giving the promised proof of Cauchy’s Theorem (and the Deformation Theorem)
we discuss some other remarkable consequences.

C. Cauchy’s Integral Formula

If f is analytic at z, then Cauchy’s integral formula expresses the value of f at z in
terms of the values of f on any closed curve “encircling” z; it is remarkable that this is
possible, underscoring the rigidity of analytic functions.

To state this formula precisely, consider a closed contour 7 : [a,b] — C and a point z
not on 7. Define the index (or winding number) of v about z to be

I(v,

(—z

This definition (motivated by our previous computation I(y,0) = 1 when ~ is the
counterclockwise unit circle centered at the origin) is reasonable in view of the fact that
I(v, z) is always an integer. Indeed 1(v, z) = g(b)/27i, where

_ Loge = [
e I L ol

/

By the Fundamental Theorem of Calculus, g
v (s) — ¢ (s)(v(s) — z) = 0. This implies that b’/

hs) = e ¥ (y(s) - 2).

Thus & is constant, so h(a) = h(b). Since v(a) = y(b), it follows that e=9() = ¢=9(®) =
—0 = 1. Therefore g(b) = 2min for some n € Z, so 1(y, z) = n, as claimed. O

(s) = ¥ (s)/(y(s) — z), or equivalently
(s) = 0 where

2.7 Cauchy’s Integral Formula Let f : A — C be analytic. Then for any z € A and
any null-homotopic closed contour v in A that does not pass through z,

100:2) 1) = 5 [ 2 ac.

Proof Set
f(Q) = f(2) .
£
0o -4 = N7
7(2) if ¢ = 2



COMPLEX ANALYSIS

which is continuous on A and analytic on A — {z}. By the generalized Cauchy Theorem

0 - Lg - L&dc—Lﬁdc - Lg(_cldc—%if(dl(%d

and the formula follows. O

2.8 Cauchy’s Derivative Formula Let f : A — C be analytic. Then all derivatives
f%) for k=1,2,... exist, and for any z and y as in 2.7,

1(,2) f9() = o= [ A

270 L (C— z)k+1

dc .

This follows immediately from the integral formula 2.7 and the following technical result
that allows one to differentiate under the integral sign:

2.9 Interchange Lemma Let g(z,() be a continuous function of z and ¢ for z in an
open set A and ( on a contour C. If g is analytic in z for each fized (, then

d 0
= se0a = | Feow.

Proof Fix ze€ A and let D be an open disk in A containing z. Then for each ¢ on C,

9(2,0) = 1 L g(T,C)d

2ri D T—%2

by Cauchy’s integral formula applied to g(-, (). Setting G(z) = f 9(z,¢)d¢, we have
C

G(z) = %J fD P ) dr dc

- J f dC dr (by Fubini’s theorem)
271'2 oD C T—2

= d7‘
2mi aDT—Z

and so G also satisfies Cauchy’s integral formula.

Once we know this about G, it follows that G is analytic at z with
1 [ 60
2 Jop (17— 2)?

(*) G'(2) =

(which is first case of the derivative formula for G). To see this, let r = radius(D) and
M = max;cop |G(7)|. Then for h nonzero with |h| < r/2,we compute, using Cauchy’s
integral formula for G (established above) and the Estimation Theorem,

G(z+h) —G() 1 G(7)
i i o
1 G(7) 1 1 h :
o LD h <T—(z+h) T— 2 (T—Z)2>d
1 G(r)h 1 Ml 2M
T o LD (r—(z+h)(r —2)2 dTl S 3G T 2 7

which goes to 0 as h — 0. This proves ().
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Thus

dj (z,0)d¢ = G'(z) J J dCdT

dz Cg ’ B () 2772 OD (1 — 2)2
= J J =5 drd(

27i op (T—2)
_ 9.0 g
a Jc (27” LD (T—Z)Q = c 0z FAGRAS
where the last equality follows from (x) applied to g(-, (). O

D. Consequences of Cauchy’s Formulas

From the Integral Formula‘

2.10 Mean Value Property (MVP) If f is analytic on a region containing a closed
disk D centered at a point z, then f(z) is the average of the values of f on 0D, meaning

1 2m
f(z) = 2 ), f(z+re?)do
where r is the radius of D.
1 Q)

2wt Jop C— 2

Proof By Cauchy’s Integral Formula, we have f(z) = dc.

Parametrizing 0D by z + re' for 6 € [0, 27] gives

21
_I_
flz) = — 7]0(2 Ze ) rie'® do
2mt Jg re’
and the result follows by canceling rie?” from numerator and denominator. (|

2.11 Maximum Principle Let A be a region with compact closure A (the closure of
A is A together with all its limit points) and f : A — C be a continuous, non-constant
function that is analytic on A. Then f assumes its mazimum modulus only at points on
the boundary 0A := A — A.

Proof Let M = max, ;|f(z)|and B = {z€ A : |f(z)| = M}. We must show B = &.

First note that B is closed in A, since B = f~}(M) n A, and f~1(M) is closed in C
since f is continuous. We claim that B is open as well. If not, then we could find a disk
D c A, say of radius r, centered at a point z € B but having points in ¢D that are not in
B. But then by the Mean Value Property,

21

27 Jo

2w

) 1 : 1
f(z+7“ew)d9‘ < — |f(z+redh < 2—27rM =M
T

7)) = )

a contradiction, since |f(z)| = M. Thus B is both open and closed in A.

Since A is connected, B = @ or A. But if B = A, then |f| would be constant on A,
which would imply (e.g. by previous homework) that f is constant. Therefore B = . O
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* Application of the Maximum Principle

The Maximum Principle can be applied to study analytic functions on the open unit
disc D = D;(0).

2.12 Schwarz Lemma If f : D — D is analytic with f(0) = 0, then
[f(2)| <2l and |f(0)] <1

If either |f(z]| = |z| for some z # 0 or |f'(0)] = 1, then f is a rotation (i.e. f(z) = uz for
some unit complex number w). In particular, if f: D — D is analytic with f(0) =0 and
1/(0) = 1, then f is the identity function.

Proof Apply the Maximum Principle to the function
z)/z ifz#0
o(z) = {11
f(0) ifz=0

restricted to the discs D,(0) as r — 1. The details are left to the reader. O

Remark The Maximum Principle fails for unbounded regions, e.g. for A the infinite
horizontal strip {z : Im(z) € (—7/2,7/2)}. Indeed the function

f:A — C givenby f(z2)= ele”)

is bounded on dA but unbounded on A (exercise). Under suitable restrictions on f (for
example requiring that f be bounded on dA and not grow “too fast” on A) one can still
conclude that f assumes its maximum modulus on 0A; these variations on the Maximum
Principle go under the name Phragmén-Lindelof Principles.

’From the Derivative Formula‘

2.13 Morera’s Theorem (Converse of Cauchy’s Theorem) If f is continuous on a
region A, and Sv f =0 for all closed contours in A, then f is analytic on A.

Proof Fix a € A and define F': A — C by
F(z) = J f(z)dz

where Sz means Sw for any contour v in A from a to z.

The vanishing integral hypothesis shows that F' is well defined, and as in the proof of
the Primitive Theorem 2.5, F’ = f. In particular F is analytic, so by Cauchy’s derivative
theorem, so is f = F". g

2.14 Corollary If f is continuous on a region A and analytic on A — {a} for some
point a € A, then f is in fact analytic at a as well.

Proof This is immediate from the generalized Cauchy Theorem and Morera’s Theorem
applied to f on an open disk in A containing a. O

2.15 Liouville’s Theorem If f : C — C is analytic and bounded (meaning there exists
a constant M with |f(z)| < M for all z € C) then f is constant.
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Proof For any z € C and any r > 0, we have

1
L 1O
21 Jop,(z) (€ — 2)
by Cauchy’s Derivative Theorem and the Estimation Theorem. Since this goes to 0 as
r — o0, this shows that f’(z) = 0 for all z, and so f is constant. O

< 1 5 M M
< —2mr—= = —
or r2 r

') =

Remarks (@ The proof shows that if f is analytic on a disk D of radius r, and assumes
a maximum value of M on 0D, then |f'(z)] < M/r. A similar argument using the higher
order derivative formulas shows that |f*)(2)| < k!M/rF for all k > 0. These are known
as Cauchy’s Inequalities.

® An analytic function defined on all of C is also called an entire function. Thus
Liouville’s Theorem says that bounded entire functions are constant.

2.16 Fundamental Theorem of Algebra Any non-constant complex polynomial

p(z) = po+pz+-+pp2"

has at least one complex root.

Remark If z; is such a root, then p(z) factors as (z — z1)q(z) for some polynomial g of
degree n — 1. Repeating, we see that there is a factorization p(z) = pn(z —21) - -+ (2 — zn),
where z1,..., 2, are the roots of p “with multiplicities” (i.e. each root z; is repeated m;
times, where m;, its multiplicity, is the least positive integer such that p(mi)(zi) # 0).

Proof If p were never zero, then f = 1/p would be an entire function. Furthermore, f
would be bounded. Indeed

1 1/2"

lim f(z) = lim = lim /2

200 2> po+ v+ Pp2™ 2> po/zm 4 -+ pp

= 0/pn =0

and so f would be bounded outside some closed disk D < C, but f is certainly bounded
on D since it is continuous and D is compact. This would force f to be constant, by
Liouville’s Theorem, and so p would be constant, a contradiction. [l

*2.17 Lucas’s Theorem The smallest convex polygon that contains all the roots of a

polynomial p(z) also contains all the roots of its derivative p’(z). (This is the analogue of
Rolle’s Theorem in real variable calculus.)

Proof It suffices to show that if all the roots of p lie in a closed half plane H, and z ¢ H,
then p’(z) # 0. Rotating H by a suitable angle 6 converts it into an upper half-plane at
some height r above the real axis, and so w € H <= Im(wz) > r where w = exp(if). In
particular, for any root z; of p we have

Im(w(z — 2;)) = Im(wz) —Im(wz;)) < 0
and so Im(1/w(z — %)) > 0. A quick calculation shows that if z1, ..., 2, is the full list of
roots of p with multiplicities, i.e. p(z) = pp(z — 21) -+ (2 — 2zp,), then
/ 1 1
P(z) _ P ’
p(2) z—2 z— zp
It follows that Im(p'(2)/wp(z)) > 0, and so p'(z) # 0. O
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’Computing integrals of rational functions‘

Let f(z) = p(z)/q(z) be a rational function, that is p(z) and ¢(z) are polynomials,
which we can take to be relatively prime. We wish to compute the integral Sﬁ/ f for any
simple closed contour v on which f is defined (i.e. on which ¢ is nonzero). To do so in
general, we must assume that we know the roots z1,..., 2, of ¢, and their multiplicities
mi,...,my. This means that for each i = 1,...,n, we can write f(2) = fi(2)/(z — z;)™,
where fi(z) = f(2)(z — z;)™ is a rational function that does not have z; as a root of its
denominator.

Now suppose that the roots z1, ..., z; lie inside ~, while 2z, 1, ..., 2, lie outside. Choose
small disks D; centered at the z;, and arcs «; joining 0D; to . We can assume that these
disks and arcs are disjoint (except at the starting points of the arcs) and that they all lie
inside v (except at the endpoints of the arcs). This partitions « into subarcs 71, ..., so
that v = 41 + - - - %, and produces a null-homotopic curve 71 + -+ + 73 in C — {21, ..., z,},
where 7; = v; — a; — 0D; + «;, as shown in the figure. We say  is homologous to > dD;

FiGure 8. Homologous contours

(written v ~ >;0D;) in C — {z1,..., z,}. By Cauchy’s Theorem and Derivative Formula,

< X filz) s M men,
Lf(Z)dZ - ;LDif(Z)dz - Z-_ZlLDi (z—zi)™ 2, (mi—l)!fi (=)

i=1

E. Proof of Cauchy’s Theorem

We begin with a very special case, proved by Goursat in 1883.

2.18 Goursat’s Lemma (Cauchy’s Theorem for a Triangle) If f is analytic in a region
A and A is a triangle in A, then SaA f=0.

Proof Construct a sequence of triangles A = Ag D A D Ay O --- | with boundary
lengths L = Ly > L1 > Lo > --- such that
1 1
L, =—1L d = — .
n on an J;}An f| qn LA f‘

T Divide A into four congruent triangles A* (k =1,...,4) oriented so that §, f = >, §, .+
[So FI <201 Sonr fl. Let Ay = A¥ with |, f| maximal. Continue with A; in place of A, etc.

f. Then
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Choose a point a € A in the intersection of all the A,’s (it exists because the A,’s are
compact). Since f is differentiable at a, every € > 0 has a ¢ > 0 such that

z—al <3 = |f(z) = fa) = f(@)(z —a)| < e|z—al.

For n satisfying L/2" < §, we have |z —a| < L,, = L/2" < ¢ for every z € 0/\,,, and so

Juo,?

(The first equality follows from Theorem 2.1, since f(a) and f'(a)(z — a) have primitives
and 04\, is closed, and the inequality follows from the Estimation Theorem.) It follows
that |, f| <eL?. Since this is true for all £, we have §,, f = 0. O

f (f(2) — f(a) — f'(a)(z — ) dz| < eL? = eL?/a»
o,

All the other versions of Cauchy’s Theorem follow from Goursat’s Lemma.

Proof of the generalized Goursat Lemma for a Triangle Let a be a “bad” point inside
A where we only assume that f is continuous. For any ¢ > 0, consider a small triangle
A" around a with boundary length less than ¢/M, where M is the maximum modulus of
f on A. Now chop up the rest of A into triangles A1, Ag, ..., s0o SaAk f =0 for all & by

Goursat’s Lemma. Hence
€
f—i—ff—‘ff‘éM—a.
jA/ Zk: A N, M

N

Since € was arbitrary, §, f = 0. O

Proof of Cauchy’s Theorem in a Disk D (This includes the generalized version.) Pick
a point a in D, and for every z € D let [a, z] be the oriented line segment from a to z. Set

F(z) = f
[a,7]
By Goursat’s Lemma F(z + h) — F(z) = S[Z o+p) J for any small h, and so as in the proof
of the Primitive Theorem 2.5, we see that F' is an antiderivative of f in D. Therefore
S,Y f =0 for all closed v in D, by the Fundamental Theorem of Contour Integrals. g

Proof of the Deformation Theorem (Sketch) Let
H:R — A  where R = [0,1] x [0,1] (“R” for “rectangle”)

be a homotopy between contours vp,v1 : [0,1] — A, keeping the endpoints z = vy(0) =
71(0) and w = 7;(1) = 1(1) fixed. There exist open disks sets Dy, < A, for k =1,...,m,
such that H(R) € Dy U --+ U Dy, (note that H(R) is compact since R is compact), and
so R=HYDy)u---uH D).

Pick n so large that each rectangle R, , = [p/n, (p+1)/n] x [¢/n, (¢+1)/n] € H (D),
or equivalently H (R, ,) < Dy, for some k. Set v = H|0R and ~,, = H|0R, 4. It can be
arranged (adjusting H and n) that v and ~, , are piecewise smooth.

It follows from Cauchy’s Theorem in a disk that

f=0 andso Lf:Z(L f>=0.
v \J

But setting \;(t) = H(i,t) for i = 0 and 1 (which are constant paths at z an w) we have
Y=9%+A—71— Ao and so 0 = Swf = S,Yof~|—()—571 f — 0. Therefore Svof = 871 f. O

Tp.q
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3. SERIES
A. Basic Notions
Numerical Sequences and Series
A sequence zp, z1, 22,... (abbreviated z,) of complex numbers is said to converge to

z € C, written lim,, .o 2, = 2, or 2z, — 2, if
Ve >0, 3N such that n > N = |z, — z| < e.

If VM, 3N such that n > N = |z,|] > M, we say z, diverges to o, and write
lim,, o 2, = 0, or z, — . In either case, the limit z is unique if it exists (A inequality).

A priori weaker than convergence is the condition that z, be a Cauchy sequence, i.e.

Ve >0, 3N such that p,q > N = |z, — 24| <,

also written limy, ;. (2, — 24) = 0, or simply 2, — 2z, — 0. But the completeness of R
shows that these notions are in fact equivalent: every Cauchy sequence converges to a
unique complex number, and conversely, every convergent sequence is Cauchy — an easy
exercise again using the A inequality. So we accept without proof this powerful criterion
for convergence, useful because it does not require a knowledge of the limiting value.

3.1a) Cauchy Criterion z, converges <= z, is a Cauchy sequence.

Remark The usual limit theorems hold: The limit of a sum of two convergent sequences
is the sum of the limits, and similarly for differences, products and quotients (when the
denominator’s limit is nonzero). Also if z, — z, then (21 + -+ z,) — z as well (HW).

A series z1 + z3 + z3 + - - - (abbreviated 2;?:0 zn) converges to z, written ZZO:O Zn = Z,
if its sequence of partial sums 21, 21 + 22, 21 + 22 + 2z3,... converges to z. The Cauchy
criterion translates into the following:

3.1b) Cauchy Criterion for Series >z, converges <= Ve > 0, 3N such that
N <p<q=|X]_, 2| <e, which we also simply write as 31 _ z, — 0.

A series ) zn converges absolutely if the associated real series >, " |2n| converges.
Since

q q
| > 2l < ) lzal,
n=p n=p
the Cauchy criterion for series shows that absolute convergence implies convergence.
Thus all the tests (ratio, root, integral, comparison) for convergence of real series can be
used in analyzing complex series.

Example Fix z € C. Then },°_, 2" /n! converges absolutely, by the ratio test:

0]
|27 /nl| on+1 ’

Below we show that this series converges to €.

Sequences and Series of Functions

A sequence of complex functions f,, : A — C is said to converge pointwise to f, written
limy, o fr, = f or fru = f,if fu(z) = f(z) for every z € A. It converges uniformly to f,
written limy, o fr, =4 for fru =y f,if Ve >0, IN such that n > N = |f,(2)—f(2)| < e

27



BrRYN MAWR COLLEGE

for all z € A. The difference is that for uniform convergence, N is independent of z. If
fn —u f on all compact subsets of A (or equivalently on all closed disks in A), then we
say f, converges almost uniformly to f on A, and write f, —4, f.

Example The sequence f,(z) = |z|™ converges pointwise on the closed unit disk D to
the function that is 1 on the boundary ¢D and 0 on the inside D°. This convergence is not
uniform, since if it were, then for any € > 0 there would exist an n such that |z|” < ¢ for all
z € D°. But for z = £"/™ this would imply ¢ < €, a contradiction. This example illustrates
the fact that the limit of a sequence of continuous functions need not be continuous. We
will see below, however, that continuity is preserved under uniform limits.

The series > fn is said to converge pointwise to f, written >, o f, = f, if the
sequence of partial sums fo, fo+ fi1, fo+ f1+ f2,... converges pointwise to f. Similarly
for uniform (or almost uniform) convergence, written > oo fn =u f (0r D o_g fr =au f)-

For pointwise convergence, the Cauchy criterion can be applied at each point in A
separately. For uniform convergence , we have the following:

3.2 Uniform Cauchy Criterion a) (for sequences) f,, converges uniformly <=
Ve >0, 3N such that p,q > N = |f,(2) — fq(2)| <€ for all z € A.

b) (for series) >, fn converges uniformly <= Ve > 0,3 N such that N < p < ¢ =

|20, fu(2)| <& forall z € A.

Proof b) follows from a) applied to the partial sums. For a) (=) suppose f, — f.
Fix € > 0. Then 3 N such that n > N = |f,,(2) — f(2)| < ¢&/2 for all z € A, and so

[fp(2) = fo(2)] < [fp(2) = F(D) +|f(2) = fo(2)] < e/2+¢/2 = ¢
for all p,q > N and z € A, by the A inequality.

(«<=) Let f be the pointwise limit of f,, which exists by the Cauchy Criterion 3.1a.
Fix ¢ > 0. Choose N so that p,q > N = |fp(2) — fq(2)| < €/2 for all z € A. Now fix
z € A, and choose ¢ > N so that |f,(z) — f(2)| <&/2. Then p > N —

[fo(2) = F(2)] < |fp(2) = fq(2)[ + | fq(2) = F(2)| < €/2+¢/2 = &

Since N is independent of z, we have f, —, f. O

3.3 Weierstrass M-test (Uniform comparison test) Let f, : A — C be a sequence of
functions. If 3 M, € R such that >, M,, converges and |fn(z)| < M, for all z € A, then
> fn converses absolutely and uniformly on A.

Proof Let ¢ > 0. Choose N such that ¢ = p > N = Zizp M,, < e (the Cauchy
criterion for the convergence of Y} M,,). Then
q

D £ < D) < DM, < e

n=p

The result follows by 3.2b. g

Example Fix r < 1. Then the M-test with M, = r" shows that the series >, ;2"
converges uniformly to 1/(1 — z) for |z| < r, and so almost uniformly for |z| < 1.

3.4 Weierstrass’ Theorem Let f, : A — C be a sequence of functions.

a) If f, converges uniformly to a function f, then
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e fn continuous => [ continuous and S7 fn— Sv f for any contour v in A

o fn analytic = f analytic and f! —q4y f'7
b) If >, fn converges uniformly to a function f, then

e f, continuous = f continuous and ZS,Y fn = Sw f for any contour v in A
e fn analytic = f analytic and Y. f, =4 '

Thus one can integrate or differentiate a uniformly convergent series term by term.

Proof a) First assume the f, are continuous, and fix ¢ > 0. Since f, —, f, by
hypothesis, we can choose n so that |f,(z) — f(2)| < ¢&/3 for all z € A. Now for any a € A,
the continuity of f,, at a = 36 > 0 such that |f,(z) — fn(a)| < /3 whenever |z —a| < §,
so in that case

1f(2) = fla)] < [f(2) = fu(2)| + [fn(2) = fula)| + [ fn(a) — f(a)]
< €¢/3+¢/34+¢/3 = ¢

Therefore f is continuous at a.
Next choose N so that n > N = |f,,(2) — f(2)| < /L for all z € A, where L is the
length of . Then ‘Sv fn — Svf’ = ‘Sy(fn -1 ‘ < L(e/L) = ¢ and so Sv fn— Sv f

Next assume the f, are analytic. Then certainly the f, are continuous, and so f is
continuous by the previous argument. By Cauchy’s Theorem, SV fn = 0 for every null-

homotopic closed curve v in A. This implies Sw f = 0 by the previous argument, and so f
is analytic, by Morera’s Theorem.

Now fix closed disks D < A of radius r and F < int D, and € > 0. Then for any z € E,

we have
! ! _ 1 fn(C) B f(C)
1 Er
< %271'7“7’-72 = £

for n chosen large enough so that |f,({) — f(¢)| < er for ¢ € dD (uniform convergence of
fn— fon dD). Thus f/ — f" uniformly on E, and thus almost uniformly on A.

For b), apply a) to the sequence of partial sums (exercise). O

Example The Riemann (-function

() = )

n=1
is analytic in the open right half plane H = {z : Re(z) > 1}.

Proof Tt suffices to show that ((z) converges uniformly on any closed disk D < H.
Clearly 3p € R with p > 1 such that Re(z) > p for all z € D. Also

11/ = 1/nfeE) < 1/nP

Now taking M, = 1/nP, the Weierstrass M-test gives uniform convergence. U
t In short: lim(§ fn) = {(lim f») and lim f,, = (lim f,)’
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B. Taylor’s and Laurent’s Theorems

Let f: A — C be analytic.

3.5 Taylor’s Theorem If D is an open disk! in A with center a, then for all z € D,

- ) L[S
fz) = ngo Sz —a)where fo = o5 | T gt %

for any (positively oriented) circle vy in D with center a.

Remark Cauchy’s Derivative Formula shows that f,, can be expressed in terms of the
nth derivative of f at a: f, = £ (a)/n!. This yields the familiar expansion

O fn)
f(z) = Z / n‘(a) (z —a)” for all z € D.
n=0 '

As an immediate consequence we see that if f and all its derivatives vanish at a, then f =0
on D. On the other hand, if f*)(a) # 0 for some (smallest) k, then we claim that f(z) # 0
for all z # a sufficiently close to a; indeed Taylor’s theorem gives f(2) = (z — a)¥¢(2),
where ¢ : D — C is analytic with ¢(a) # 0, and the claim follows from the continuity
of ¢. This implies the remarkable “rigidity” property of analytic functions, that they are
determined by their values on “small” subsets of their domains:

Identity Theorem If two analytic functions g and h defined on an open connected set
A agree on a sequence of points in A that converge to a point in A, then g = h everywhere
in A. In particular the zeros of any nonconstant analytic function f : A — C are isolated.

Proof The first statement follows from the second applied to f = g— h, so we prove the
latter. As noted above, if a is a zero of f that is not isolated, then f = 0 in some neigh-
borhood of a. Therefore the set of non-isolated zeros form an open (and clearly closed)
subset of A, and so must be empty by the connectedness of A, since f is nonconstant. [

3.6 Laurent’s Theorem If R is an open annulus’ in A with center a (i.e. the region
between two concentric circles centered at a) then for all z € R,

for fn as defined in Taylor’s Theorem, where v is any circle in A centered at a.

To prove Taylor’s and Laurent’s theorems, we appeal to the following;:
3.7 Lemma If z is any point not on -y, then
1 £(0) Zn>0 fa(z—a)™  for z inside
— f AT
21 )y ¢ — 2

Z,Ko fa(z —a)™  for z outside

Note: we only need continuity of f on  for the lemma.

T The disk D in 3.5 can be replaced by C, and the annulus R in 3.6 can be replaced by the region
outside a circle, a punctured disk, or C—point. In other words, the radii can go to 0 or to oo.
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Proof For z inside v we compute

1 1 1 z—a)"
3 (2 —a)

-z (-al-(z-a)/((—a) a Z(¢—ayH
by the Weierstrass M-test (see the example below 3.3), and so by Theorem 3.4b

i), L :Z(;f@_f‘?dc) = 3 e ar

=0 n=0

Interchanging the role of C and z, we see that for z outside v we have

: > A W
C—Z - z—ak“ - _an+1

k>0 n<0

where the last equality follows by setting n = —(k + 1). It follows exactly as above that

2mJC—zd< ” Efn(z—a)”

for z outside 7. O

Q
IS

Proof (of Taylor’s Theorem) Fix z € D. Let 7 be a circle in D with center at a and z
inside 7. Then by Lemma 3.7,

f(z) = Z (z—a)". O

CIF 2m C— Z au

Proof (of Laurent’s Theorem) Fix z € R. Let v and I" be concentric circles in D
centered at a with z outside v but inside I'. Then by Lemma 3.7,

1 = "
1(z) CIF 27TZLC—7: 2mj§—z dc au Z falz=a)". O

n=—aw

Example Since exp is entire and exp(™ (0) = exp(0) = 1, we have

ef = Yz 2"/t
for all z € C; the convergence is uniform on any compact subset of C. This is the Taylor

expansion of e* about the origin. We can use it to find the Laurent expansion of e'/# in
C — {0}, as follows: For all z # 0 in C,

el/z = ZnZO (1/’2)”/”' = ZnSO Zn/|n|‘ .
Note that it is difficult to find this directly, since the integrals defining the coefficients are
difficult to compute. However, if we knew the uniqueness of the Laurent expansion (see
below) then we could conclude that §2""e!/?dz = 2ri/n! for all n > 0.

C. Power Series and Laurent Series

Definition A Laurent series is an infinite series of the form

0

2 an(z —a)".

n=—aoo

We say that the series is centered at a. If a, = 0 for all n < 0, then this is simply called
a power series. If a,, = 0 for all n > 0 it is called a negative power series.
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Power Series

The radius of convergence of a power series ), _,an(z —a)" is

R := sup{r>0: Z |an| 7™ converges }1

n=0

which is a non-negative real number or co. The open disk Dgr(a) is called the disk of
convergence of the series, and the set of all z € C at which the series converges is called
its domain of convergence.

3.8 Theorem The power series Y, -, an(z — a)" converges absolutely and almost
uniformly on its disk D of convergence, and diverges on C — D.

It follows that the domain C' of convergence of the series satisfies D = C' < D.

Proof Let D = Dg(a), and fix r < R. By definition of R, we can find w € D at a
distance s > r from a such that )] a,(w — a)™ converges. Then a,(w — z)™ — 0, and so
3 M such that |a,(w —a)"| < M for all n. Now if |z — a| < r, then

n

n
< M <C> .
s
Since Y, M(r/s)" is a convergent (geometric) series, the M-test shows that > a,(z —a)”
converges uniformly and absolutely on D,.(a).

) z—a

lan(z = a)"| = lan(w —a)

—a

For the last assertion, note that if the series converges at a point w at a distance s > R
from a, then the argument above shows that it also converges absolutely at any closer
point to a, contradicting the definition of R. ]

3.9 Corollary a) The power series 3.~ an(z —a)" defines an analytic function f(z)
within in its disk D of convergence, with f'(z) = Y}, ~onan(z —a)"~'. These two series
have the same radius of convergence. Furthermore,

1 f(©)

o2 L (C— a)k+1

d¢ = f®(a)/k!

ap =

for each k = 0.

b) A complex function is analytic at a point a € C <= it can be expanded in a power
series Y an(z — a)™ in some open disk centered at a. The series expansion in (=) is
unique, and valid in any open disk lying in the domain of analyticity of the function.

Proof a) The first statement follows from the theorem and Weierstrass’ Theorem 3.4b.
To prove the second, suppose that the derived series converged at some w outside D. Then
Ina,(w—a)" !} - 0 = |a,(w — a)?| — 0, which would imply as in the proof of 3.8 that
the original series converged absolutely at any point closer to a than w, and therefore at
points not in D, a contradiction. The last statement follows from Taylor’s Theorem and
the Cauchy Derivative Formula.

b) (=) follows from Taylor’s Theorem, and (<) from part a) of this corollary. The
last statement also follows from these two results. O

t The classical Cauchy-Hadamard Theorem gives the explicit formula R = (limsup |an ™) 7.
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Negative Power Series

The radius of divergence of a negative power series >, _,an(z —a)" is

S = inf{s>0: Z |an| s™ converges }.
n<0
Thus S > 0 when the set on the right is nonempty, or oo (by definition) when it is empty.
The (infinite) open annulus A = {z : |z| > S} is called the annulus of convergence of the
series, and its complement, the open disk Dg(a), is called its disk of divergence. The set
of all z € C at which the series converges is called its domain of convergence.

3.8 Theorem The negative series Y, _,an(z — a)” converges absolutely and almost
uniformly on its annulus A of convergence, and diverges on C — A.

It follows that the domain C' of convergence of the series satisfies A = C' c A.

3.9’ Corollary The negative power series .. o an(z—a)" defines an analytic function
f(2) within in its annulus A of convergence, with f'(z) =Y, _q nan(z —a)"~*. These two
series have the same radius of divergence. Furthermore, for any positively oriented circle
~v in A centered at a we have

LG
2mi ), (¢ —a)F+!

for each k < 0, and so this negative series expansion of f is unique.

dg

ap =

The proofs of 3.8 and 3.9" are analogous to 3.8 and 3.9 (exercise).

Remark Perhaps it is clearer to replace a,, by b_,, and so

@) = Mo = Ay B

= (z—a)n z—a (z—a)?

, o b1 B 2by _
R CEr L
where 27ib, = § f(C)(¢ — a)"~1d¢ for each n > 1.

Laurent Series

A Laurent series > > an(z —a)™ is just the sum of a positive power series — say with
radius of convergence R — and a negative one — say with radius of divergence S. The
negative part is called the principal part of the Laurent series.

If R > S, then the Laurent series converges in the annulus {z : S < |z — a| < R} and

is unique by Corollaries 3.9 and 3.9’. From Laurent’s Theorem 3.6, we conclude:

3.10 Theorem For any complex analytic function f : A — C and any point a € C (not
necessarily in A), the function f can be expanded uniquely in a Laurent series within any
open annulus contained in A and centered at a.

Computing Taylor and Laurent series

It is generally inconvenient (if not impossible) to compute these series directly from
the formulas for their coefficients given in Theorems 3.8 and 3.8'. There are several other
methods for making these computations. We illustrate these using the known Taylor series

D e*=3,207"/ntonC,and @) 1/(1 —z) =3, 2" on |z] < 1.
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1
’Substitute in a known series‘ (@) (from @) el/z = 1+7+W+--- for z # 0.
z Iz
1 2
®) (from @) = 1—z+2"—+--- forlz] <1
1+ 2

’Multiply series together‘ (or add, subtract, or divide)

Zanz—a Zb z—a)" = 2 (Zakbnk> (z—a)"
k—

n=0 n=0 n=0

with radius of convergence > the minimum of the two radii for the series on the left.
n 3 4
z

@) (from ©) ze* = ZZZ— = z+z +Z—+—+
n! 3!
n=0
. 2 23 24 o
@(from@) Since e** —Cosz+zsmz—1+zz—§—z§+ﬁ+za__++
— 11— 22 24 q . _ 23 o]
cosz = 5—%?—4—--- an sinz = y—i-———i----
and so
. _ 1 1\ 5 1 1 1 5
coszsinz = 2z — a—i-g z° + 5-1-2'3'4_5' —t...
1 1 22)3
= 5811122’ = 2<2z—(32!) +_...>
for all z € C.

Differentiate or integrate a known series (term by term) ‘ f

Differentiating (1), we have

1
s = 142243224 for |z] <1
(1—-2)?
while integrating, we have
1 1
—log(1 — %) =z+522+§z3+~- for |z| < 1.

D. Zeros and Isolated Singularities

Let f be a complex function and a be a point in C.

If f is defined and analytic at a, then we call a an analytic point of f. If in addition
f(a) =0, we call it a zero of f. If f is not defined at a but is defined and analytic near a,
then we call a an isolated singularity of f.

t Can integrate term by term: if > an(z —a)™ converges absolutely, then so does )| a—:l (z—a)""!
n
since
a z—a
ooy = ot 5

and |z —a|/(n +1) — 0.
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In this section we will assume that f is analytic in a region A except at finitely many

isolated singularities a1, . .., as in A.T For any point a € A, consider the Laurent expansion
0
1 f(Q)
f(Z) = Z CLn(Z — (I)n where ap = % . m dC

n=—o0
for a suitably small disk D surrounding a, and set

o(f,a) = min{neZ : a, # 0}

where by convention min(&) = —o0. Note that |o(f,a) >0 < lim(z —a)f(z) =0].

z—a

Define the principal part and residue of f at a to be

PP(f,a) = Zan(z—a)" and Res(f,a) = a—1 = 2%” an(z)dz.
n<0

Note that when o(f,a) = —1 (which means f is either analytic at a or, in the terminology
introduced below, f has a removable singularity or a simple pole at a) we can compute:

Res(f,a) = lim(z - a)f()|.

The importance of the residues at the isolated singularities aq,...,as arises from the
following observation: If v is a simple closed contour in A that is null-homotopic in A and
does not pass through any of the az’s, then by the argument on page 24 we can compute

S

| #erde = 20 Y Res i a0).
v k=1

In words, “the integral 57 f is 2mi times the sum of the residues of f inside ~.” This is

the classical Residue Theorem, which has many useful applications; see the next chapter.

The modern version of the theorem just allows for non-simple contours.

Zeros If f is analytic at a € A, then o(f,a) = 0. The Laurent expansion is then just the
Taylor expansion of f about a, and so of course Res(f,a) = 0. If in addition a is a zero
of f, and so o(f,a) > 0, then o(f,a) (which is easily computed using derivatives; it is the
smallest positive integer m such that f(™(a) # 0) is called the order or multiplicity of a.
A zero of order 1 is also called a simple zero.

For example sin z has simple zeros at the integer multiples of 7, whereas sin?z has zeros
of order 2 at these points (exercise).

Note that near a zero a of order m, we can write
f(z) = (z—a)"(z)

where ©(z) = >} o anik(z —a)" is analytic at a with p(a) # 0. Conversely, if f(z) can
be so written, then by taking derivatives we see that f has a zero of order m at a.

Isolated singularities An isolated singularity a of f is classified as a

removable singularity , pole , or essential singularity

according to whether o(f,a) = 0, < 0 but finite, or —co. If a is a pole, then the positive
integer |o(f,a)| is called the order of a. A pole of order 1 is also called a simple pole.
Sometimes a removable singularity is called a pole of order 0.

T This is restrictive; for example csc(1/z) on C — 0 has isolated singularities at 1/n for all n € Z.
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For example sinz/z = 1 — 22/3! + —.-. has a removable singularity at 0, whereas
cosz/z =1/z—2z/2 + —--- and e = ... 4 1/2!2% + 1/z + 1 have, resp., a simple pole
and an essential singularity at 0. We can then read off Res(cos z/z,0) = 1 = Res(e!/?,0).

3.11 Theorem If f has a removable singularity or a pole at a, then o(f,a) =k if and
only if 3¢, analytic at a, with ¢(a) # 0 and f(z) = (z — a)*p(2) for all z # a near a.

Proof (=) Referring to the Laurent series above, we take ¢(z) = >}, - anik(z —a)".

(«=) Since p(2) is analytic at a, f(z)/(z — a)" is certainly bounded near a. Therefore,
for sufficiently large M and sufficiently small r

1 f(Q) 1 f(Q)
nl = |7—= —_— = |— d
lan] 2mi LDr(a) (¢ —a)tt dC‘ 2mi LDT(Q) (¢ —a)k(¢ —a)nti-k ¢
1 M
< 52777‘ rn|+1|k = | M|k

which goes to 0 as 7 — 0, so a, = 0 for n < k. Therefore p(z) = f(2)/(z — a)F =
ar + agy1(z —a) + - --. Letting z — a gives ax # 0, and so o(f,a) = k. O

3.12 Corollary If f and g are analytic in a region A except at a finite number of
(possibly different) isolated singularities, then the same is true of fg and f/g, and

o(fg,a) = o(f,a) +olg,a)  and  o(f/g,a) = o(f,a)—o(g,a)

for any a € A that is not an essential singularity of f or of g.
Proof Setting n = o(f,a) and d = o(g, a), we have by Theorem 3.11

fz) = (z=a)"(z) and  g(z) = (z—a)"(2)

for z near a, with ¢ and v analytic and nonzero at a. Therefore

f(2)g(2) = (z—a)" p(2)p(z)  and  f(2)/g(2) = (2 —a)" Up(2)/9(z)

for z # a near a, and the result follows since ¢ and ¢/ are nonzero at a. O

3.13 Casorati-Weierstrass Theorem If f has an essential singularity at a, then for
any b € C, there exists a sequence a, — a such that f(a,) — b1

Proof If not, then g(z) = 1/(f(z) — b) is analytic and bounded on some punctured
neighborhood of a. But then (z — a)g(z) — 0 as z — a, which implies that ¢ has a
removable singularity at a, and so f(z) = b — 1/g(z) is either analytic or has a pole at a,
by 3.12, a contradiction. ([l

This has a remarkable generalization, whose proof * we do not give here:

3.14 Picard’s Theorem If f has an essential singularity at a, then for any b € C,
with one possible exception, there exists a sequence a, — a such that f(a,) = b for all n.

fIn topological terms, this says that the image under f of any neighborhood of a is dense in C.
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4. CALCULUS OF RESIDUES

A. The Residue Theorem

On page 34 we stated the classical version of the theorem. Here is the modern version:

4.1 Residue Theorem Let f: A — C be analytic on A —{a1,...,as} and v be a null
homotopic closed contour in A not passing through any of the ar’s. Then

J f(z)dz = 2mi Z Res(f, ar)I(v, ax) .

k=1

Note that we do not assume that v is simple. If it is, and is oriented counterclockwise,
then this says that the integral of f around « is equal to 27¢ times the sum of the residues
at the singularities of f inside 7, as previously noted (and proved).

Proof For each k = 1,...,s, let p; denote the principal part of f at ar. Then pg
converges on C — ay, and uniformly on ~, by Theorem 3.8', so

f pr = 2miRes(f, ap)I(f, ax).
~
Now the function g = f — ) py has a removable singularity at each a; since it has a finite

limit as z — a; (namely ¢; = (f — p;)(a;) — Xp.; Pr(a;)) and so becomes analytic on A
by setting g(a;) equal to that limit (by Corollary 2.13). Thus by Cauchy’s Theorem

0= [g= 1= [Sn = [1-3[m = | 1-2mi S Resf ol )

where Y = >7_; and all the integrals are along ~. This completes the proof. O

B. Computing Residues

Recall that the residue of f at an isolated singularity a is the coefficient c¢_1 of (z —a) ™!

in the Laurent expansion f(z) = Y,°___ ¢,(z —a)", and is given by integral formula
1

Res(f,a) = f F(0)d¢
Y

2mi

for any suitably small, positively oriented circle y centered at a. Unfortunately this integral
is generally hard to compute. Easier approaches:

(1) Check whether a is a removable singularity; if it is, then Res(f,a) = 0. As noted
above, a is removable if and only if lim, ,,(z — a)f(z) = 0, and this limit is sometimes
easy to compute. For example f(z) = (e* —1)/sin z has a removable singularity (and thus
zero residue) at 0 since lim,_,g z(e* — 1)/sinz = 0.

() If f = g/h with g and h analytic and g(a) = 0, then there is a formula for Res(f, a)
in terms of the derivatives of g and h at a, obtained as follows. Suppose that
o(g,a) = r and o(h,a) = s, andset p = s—r

which equals —o(f,a) by Corollary 3.12. (Recall that r and s are just the orders of the
first nonvanishing derivatives of g and h at a.) Then a is a removable singularity if p = 0,
in which case of course Res(f,a) = 0.
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If p > 0, then a is a pole of order p, and then the Taylor expansions

f(z) = Z fulz —a)™, 29(2) = Zgn(z—a)” and h(z) = Zhn(z—a)”,

e n=r nzs
Where g?’l = g(n) (a)/n' a.nd hn = h(n) (a)/nl , y1€ld
(f—p(z—a)fp—i—...>(h5(2:—a)5+...) :gr(z_a)’f'_i__”'

since fh = g. Expanding out, one can then solve for f_; in terms of the g,’s and h;,’s.

Simple poles Assume a is a simple pole (that is p = 1, and so s = r + 1). Then
(Faz—a) 4 ) (s —a) +) = gz —a) +--
Therefore f_1hs = g,, and so

(r)
Res(f,a) = f*l = %: = SZ(S)EZ;’

or simply g(a)/h’(a) when r = 0 and s = 1, e.g. for 1/h(z) when h has a simple zero at a.
Exercises: Show (a) Res(e?/sinz,0) =1 (b) Res(z/(cosz —1),0) = —2.
Higher order poles To state the residue formula in general, we use matrices: We must

solve the equation fH = §, where f = (f=p---f=1), §= (9r---gs—1) and H is the upper
triangular p x p matrix with hg’s on the diagonal, hsy1’s on the first superdiagonal, etc.:

hs hs+1 T hs+p—1
0o . - :
(f» = )| = (g - gs-1)
D T hen
o --- 0 hs

By Cramer’s rule Res(f,a) = f_1 =det Hy/ det H = det Hy / h¥ where Hy is the matrix
obtained from H by replacing the last row with g.

For example, if a is a double pole (that is p = 2, and so s = r + 2) then

det <Z ZHi) gr+1hs — grh
T T+ T s — Yrlts
Res(f,a) = f1 = e = S et

S S

Exercises: Show (a) Res(e?/(z —1)2,1) = e (b) Res((e* —1)/sin®z,0) = 1/2.

In the next two sections, we discuss some applications of the residue theorem.

C. The Argument Principle and Rouché’s Theorem

Let f : A — C be analytic except at finitely many poles. Then f is said to be
meromorphic in A. (Note that we do not allow essential singularities in A.) For sim-
plicity we also assume that f has only finitely many zeros in A.

Now let « is a null-homotopic closed curve in A that does not pass through any of the
zeros or poles of f. Consider the integral

1 [ f'(2)
— dz
2mi )y f(2)
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If ~y is parametrized by «(t) for ¢ € [a, b], then this integral can be written as

R T DS W V51 () DS Y S DR
2mi Jo (D)) "= ), (f o) () =55 Mzd = 1(f7,0).

Thus it can be interpreted as the winding number of f oy about 0, or equivalently, the
total change in the argument of f as -y is traversed.

4.2 Argument Principle If f is meromorphic in A with zeros aj and poles by, (each
repeated as many times as its order indicates) then

I(fon,0) = Zj I(’Yvaj) _Zkl(’%bk)

for every null-homotopic closed curve that does not pass through any of the zeros or poles.

Proof If a is a zero of order m, then as noted on page 34, f(z) = (z—a)™p(z), where ¢ is
analytic and nonzero at a, and so f'(a) = m(z—a)™ 1p(2) + (2 — a)™¢' (). Consequently
f(2)/f(z) =m/(z —a) + ¢'(2)/p(z), and so f’/f has a simple pole at a with residue m.
The same calculation for a pole b of order p shows that f’'/f has a simple pole at b with
residue —p. The result is now immediate from the residue theorem. O

Here is a useful application of this principle (which we state in a slightly unusual way):

4.3 Rouché’s Theorem Let f be analytic in a region A, and v be a null-homotopic
simple closed curve in A. If f can be written as the sum of two analytic functions g and h
with |g| > |h| on 7y, then f and g have the same number of zeros (counting multiplicities)
enclosed in 7.

Proof By the hypothesis, f and g are zero-free on v (since |f| = |g+ h| = |g| — |h| > 0
and |g| > |h| = 0 on ). Set ¢ = f/g. Then since |f — g| = |h| < |g| on 7, we see (dividing
by |g|) that |¢—1| < 1 on 7, and so the curve go-y lies in the open disc of radius 1 centered
at 1. Thus I(qo,0) = 0, and so by the argument principle ¢ = f/g has an equal number
of zeros and poles inside v (counting multiplicities, where we define the multiplicity of a
pole to be its order). But the zeros of ¢ are just the zeros of f, while the poles of ¢ are
the zeros of g, and the result follows. O

Example Let f(2) = 2° + 322 + 72 — 2.

(1) How many roots does f have inside the unit circle C? Go for the largest single term:
Since |7z| = 7 on C, while |2° + 322 — 2| < |2°| +]32%| +2 = 6 on C, we see that f has the
same number of roots inside C' as does 7z, namely one.

(2) How many roots of f have modulus between 1 and 27 Noting that |2°] = 32 on 2C,
while |32% + 7z — 2| < |32%| +|72| + 2 = 28 on 2C, we see that f has the same number of
roots inside 2C as z°, namely 5. Therefore, using (1), we see that f has 4 = 5 — 1 roots
of modulus between 1 and 2.

D. Evaluation of Definite Integrals

The residue theorem provides an efficient tool for computing real definite integrals of
many different types. We illustrate this technique, following Ahlfors, first for certain
trigonometric integrals, and then for two types of improper integrals.
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Trigonometric Integrals Consider any integral

2m
R(cos,sin @) do
0
where R(z,y) is a rational function of two variables. The substitution z = %, dz = ie??df
(and so df = dz/iz) transforms it into a contour integral around the unit circle C:

2427t z2—27t
ff;f(z)dz where f(z)zR( +2 Y )1

Therefore by the residue theorem, the value of the original integral is just 27¢ times the
sum of the residues of f(z) inside C.

12

/2 1 2w 1/4 )
Example Evaluate I = Jo md& = L 2052 df , for which

1/4 B 1z ~9(2)

f(z) = ((z—z_1>2+2> N T 102241 h(2)
2i

Now h(z) factors as (22 — r)(2% — s) where r = 5 — /24 and of s = 5 + 1/24. Thus f has
4 simple poles at £4/r and £4/s, and only the first two lie inside C. We compute

N R N
Res(f,i\/;) = h’(iﬁ) - +2/7(r — s) - 2(r — s) o 4@.

Therefore I = 2mi(—i/2v/24) = m/+/24.

4 1
For homework you are asked to evaluate I = J df , which is easier.

o cosf+2

Improper Integrals Let R(x) = P(x)/Q(x), where P and @ are polynomials of degree
p and ¢, and @ is nonzero on R (so necessarily of even degree). We consider two types of
improper integrals:

Q0

I =f R(z)dx where ¢ =>p+2
—00
0

I, = j R(z)e™®dx  where ¢ = p+ 17 and w is a positive real number
-0

By definition, these are the limits of the corresponding finite integrals from —r to s, as r
and s tend independently to co. In fact I1 can be equivalently be defined as the limit of
the integral from —r to r as r — oo (since the half improper integrals from 0 to +0o0 both
converge). This is not the case for Is.

(1) For I the procedure is to integrate the analogous complex function R(z) over a
contour C, consisting of the directed line segment [—r,r] along the real axis, followed by

T The integral I5 is the value at w of the Fourier transform of R, usually denoted
. 0 ) o0 o0
R(w) = J R(z)e"“*dx = J R(z) cos(w) da:—l—if R(z) sin(wz) dz .
—00 — 00

—00

This transform is of great importance in PDE’s (solutions to the heat equation), theoretical physics,
quantum mechanics, etc.
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the semicircular arc A, from r to —r in the upper half plane. For r large enough, C, will
contain all the poles of R (which are among the zeros of Q) and so

J R(z)dz = 2miRes;(R)

r

where Res (R) is the sum of the residues of R at all its poles in the upper half plane.
Also if 7 is large enough, then for some constant ¢, |R(z)| < ¢/r? for all z on A, (since
q = p+ 2) and so we can estimate

LT R(2)d=

Since this goes to 0 as r — o0, it follows that

I = lim R(z)dz = 2miRes;(R).

r—00 C
r

0
P
Example Evaluate f ngg dz where P(z) = 2?—2+2 and Q(z) = 2%+ 1022 +9.
o Qx

Note that Q(z) = (22 + 1)(2% + 9), and so it has roots +i and +3i. By the discussion
above, the answer is 27¢ times the sum of the residues of R at ¢ and 3i, which are

P(i 1—i P(3i ~7— 3
Res(R.i) — Q’((Zi)) _ 16; and  Res(R,3i) = Q,((?)?) = _48Z.Z

and so the integral equals 27 ((1 —¢)/16¢ + (7 + 37)/48i) = 5w /12.

For homework you are asked to evaluate the analogous integral when P(z) = 2? + z +1
and Q(z) = 2 + 5z + 4.

(2) For Iy, note that |[e™?| = e=*¥ (for z = z + iy) is bounded in the upper half plane,
so the same estimates as above show that

e}

I, = f R(z)e"“* dx = 2mi Resy (R(z)e"™?)
—a0

provided ¢ = p+ 2. In fact the same result holds when ¢ = p+ 1, but in this case, as noted

above, we must compute
S

r,llinoo B R(z)e" dx .

For this computation, it is more convenient to use the rectangular contours
Yrsy = |1 8]+ [s,s+iy] + [s + iy, —r +iy] + [-r + iy, —r] (where r,s,y > 0).

Since ¢ = p + 1, there is a constant C such that |R(z)| < C/|z| for |z| sufficiently large.
Hence the integral along the right vertical side [s, s + iy] can be estimated

) 4 ) . Y
f R(z)e"™* dz f R(s + it)e™ s+ dt‘ < CJ e vtdt < g(1 —e )
[s,5+iy] 0 s Jo ws
which is less than C/ws since y > 0. Similarly the integral along the left vertical side
is bounded in absolute value by C/wr. The integral along the top is easily seen to be

bounded in absolute value by Ce™“¥(r + s)/y, which for fixed r and s tends to 0 as
y — o0. Therefore

I, — 2miResy (R(2)e™?)| < C(1jwr + 1/ws).

for sufficiently large » and s. Letting  and s go to 00, we see that Iy = 2mi Resy (R(z)e®).
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5. CONFORMAL MAPS

Let A < C be open and connected and f : A — C be continuously differentiable (when
viewed as a real function) with df, nonsingular at some a € A. For our present purposes,
we define the notion of “conformality” slightly differently (a priori) than we did in §1.D.

Definition The function f is conformal at a if it is analytic at a with f’(a) # 0.

We now introduce two notions of a more geometric nature that are closely related to this
analytic definition. Consider any parametrized contour « passing through a, say v(0) = a,
with 4/(0) # 0. Thus +/(0) can be viewed as the velocity vector of a particle moving
through a at time zero.

We will use the classical expressions for functions in terms of variables, using subscripts
to denote derivatives. Thus if z = x +iy = y(¢) and w = u+iv = f(z), then we will write
2zt for v/ (), w, for f'(2) (if it exists), w; for (f o) (t), w, for 0f/0x, etc. The hypotheses
7' (0) # 0 and df, nonsingular show that z; # 0 at 0 and w, # 0 at a, so by the chain rule,
w # 0 at 0 as well.

In this notation, the two Cauchy-Riemann equations u, = vy, uy = —v; can be written
in complex form as the single equation wy, = iw,.

Definition Given w = f(z), z = v(t) with 7(0) = a as above, we say the function f

(a) rotates uniformly at a if arg(wy/z;) is independent of « at t = 0.

(b) dilates uniformly at a if |w/2| is independent of v at ¢ = 0.
It is understood that both z; and w; are nonzero at ¢ = 0.
5.1 Conformal Criterion If f is conformal at a, then it rotates and dilates uniformly

at a. Conversely, (a) if f rotates uniformly at a, then it is conformal at a, and (b) if f
dilates uniformly at a, then either f or f is conformal at a.

Proof The first statement is just the “Conformal Mapping Theorem” (Corollary 1.7)
proved using the chain rule on page 12.

For (a), assume that f rotates uniformly at a. Then by the chain rule
Wy = Wely + WyYr = %(wz —dwy) (2 + 1Y) + %(wx + fwy) (xp — 1Yy).

Setting ¢ = 3(wy — iwy) and r = 3(w, + iwy), we see that wy/z = ¢ + rz/% which
describes a circle of radius r (centered at c) as z; varies. This has constant argument if
and only if » = 0, that is if and only if wy = ‘w,, which is just the Cauchy-Riemann
equation. Therefore f is analytic at a, and the chain rule implies that f’(a) is nonzero,
since z; and w; are nonzero by hypothesis.

For (b), assume that f dilates uniformly at a. Then as above we see that either r = 0
or ¢ = 0. In the former case we conclude that f is conformal at a, as above, while in the
latter case we have w, = —iw,, and so f is conformal at a. ([l
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