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Abstract. It is shown that primitive ordinary homology classes in a simply-connected 4-manifolds
are often represented by infinitely many topologically isotopic, embedded 2-spheres that are not
smoothly isotopic, but that become smoothly isotopic after a single external stabilization, or after
summing with an unknotted surface of genus greater than half the square of the class.

1. Introduction

Embedded surfaces, especially 2-spheres, have been an essential part of the study of smooth
simply-connected 4-manifolds from the very beginning of the theory. Using Rohlin’s theorem [44],
Kervaire-Milnor [24] showed that not all 2-dimensional homology classes are represented by em-
bedded spheres. Shortly after, Wall [49] established a general existence result, showing that all
primitive ordinary classes in stabilized indefinite 4-manifolds are represented by spheres. Using
the Atiyah-Singer G-signature theorem [2], Rohlin [45] and Hsiang-Szczarba [23] provided further
restrictions on classes that could be represented by spheres, or even surfaces of higher genus, and
gauge theoretic techniques (when b`2 is odd) gave definitive genus bounds [27, 39, 40] in many cases.
A good overview of the existence questions can be found in [28, 19] and [31].

This paper addresses the uniqueness question for embedded spheres. We work throughout in
the smooth category; existence and uniqueness questions in the topological category were treated
by Lee and Wilczyiński in [29, 30]. To state our results, first recall some standard terminology. A
2-dimensional homology class α in a closed, simply-connected 4-manifold is primitive if it is not a
non-trivial multiple of another class, and is of divisibility d ě 0 if it is d times a primitive class. The
square of α is its self-intersection number, denoted α2. The class is characteristic if it is dual mod
2 to the second Stiefel-Whitney class of X, and is otherwise ordinary. Following Wall [48], α is of
type 0 or 1 according to whether its associated primitive class is ordinary or characteristic. Note
that all nonzero classes are of type 0 when X is even and of type 1 when X is odd with b2pXq “ 1;
otherwise X has classes of both types, of any given divisibility.

A closed oriented surface F embedded in X is simple, following [29, 30], if π1pX ´F q is abelian,
hence cyclic of order the divisibility of rF s P H2pXq. An external or internal stabilization of pX,F q
is the operation transforming pX,F q respectively to pX,F q# pS2ˆS2,∅q or to pX,F q# pS4, T 2q

(where T 2 is an unknotted torus in S4), while an external blowup transforms it to pX,F q#pCP 2
,∅q.

Two surfaces E and F in X are stably distinct if no diffeomorphism of X, even after arbitrarily
many external blowups, carries E to F .

Theorem A. There exist infinitely many closed simply-connected 4-manifolds X for which each
primitive ordinary class α in H2pXq is represented by infinitely many simple, stably distinct 2-
spheres that

1) become isotopic after one external stabilization,

2) become isotopic after at most tα2{2u` 1 internal stabilizations, and

3) intersect pairwise in at most 5ptα2{2u` 1q2 points,

The 4-manifolds exhibiting this property include all the reduced manifolds pCP 2 # qCP 2
for even

p ě 4, q ě 5p`2, and for odd p congruent to 3 mod 4 with p ě 7, q ě 5p`6 (see also Remark 4.3).
The analogous result holds for classes of square n ď 0 in ´X.

1All of the authors were supported by an AIM SQuaRE grant. 2Supported by NRF grant 2015R1D1A1A01059318
and BK21 PLUS SNU Mathematical Sciences Division. 3Partially supported by NSF Grant 1506328.
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Remarks 1.1. a) The spheres in Theorem A representing any given homology class are pairwise
topologically isotopic. Indeed this is true for any pair of homologous, simple, primitive 2-spheres
in an indefinite simply-connected 4-manifold X, and when X is strongly indefinite, for spheres of
arbitrary divisibility that are of square 0 and type 0 [29, 30, 20] (cf. Remark 3.6). Furthermore, it is
known that any pair of topologically isotopic 2-spheres in X become smoothly isotopic after some
number e of external stabilizations [43, Theorem 1.4], and also after some number i of internal
stabilizations [7, Theorem 1]. It is also evident that such spheres must intersect in at least |n|
points, where n is the square of the associated homology class, but they may have a larger minimal
geometric intersection number m (see [17, 22, 46] for some earlier work on such ‘excess intersec-
tions’). So the real content of the theorem is the construction of infinite families of topologically
isotopic but smoothly distinct spheres for which e “ 1, and i and m are uniformly bounded above
by, respectively, a linear and quadratic function of the self-intersection number n.

b) We do not know whether these bounds on i and m (defined in the preceding remark) can be
improved. But with regard to the external stabilization number e, the authors and H. Schwartz
have recently shown (building on Gabai’s work [16] on the 4-dimensional ‘light bulb’ theorem) that
one external stabilization is enough in general : Any pair of simple spheres representing a primitive
ordinary homology class in a 4-manifold become smoothly isotopic after summing with a single
S2ˆS2 [4]. This provides an alternative proof to the one given here, which predated it, of condition
1) , and considerably widens the class of 4-manifolds exhibiting this phenomena.

c) Examples of infinite families of homologous but smoothly distinct simple embedded 2-spheres
have been known for many years, following immediately from the foundational work of Wall [49]
and Donaldson [10][11]. The first such examples, however, satisfying conditions 1) and 3) in the
theorem (or any uniform “external stabilization” or ”excess intersection” bounds for that matter)
were constructed by the authors in [3], and later shown by Baykur and Sunukjian [7] to satisfy 2) .
These were spheres of square `1 in pCP 2 # qCP 2

for even p ě 4 with q ě 5p, a slightly broader
class of 4-manifolds than in Theorem A when p is even. By Wall’s work on quadratic forms [48]
and diffeomorphisms of 4-manifolds [49], it follows that all ordinary classes of square `1 in these
4-manifolds satisfy the conclusions of Theorem A; note that every class of square `1 in a simply-
connected 4-manifold is primitive, and any sphere S representing such a class is simple since the
meridian of S contracts in the boundary 3-sphere of a tubular neighborhood of S.

As an added feature it will be seen that any pair of spheres in such a family must intersect in
more than one point, and more generally any pair of spheres in the families constructed in this
paper representing classes of nonzero square n will have minimal geometric intersection number
strictly greater than |n| (see Proposition 3.3).

There is a similar stabilization result for spheres representing non-primitive homology classes of
square 0 (see also Remark 4.3b regarding classes of square ˘4).

Theorem B. There exist infinitely many closed simply-connected 4-manifolds X pincluding those
listed in Theorem A, as well as those with one fewer CP 2

– summandq for which each nontrivial class
in H2pXq of square 0 and type 0 is represented by infinitely many simple, stably distinct 2-spheres
that become isotopic after one external or d internal stabilizations, where d is the divisibility of the
class, and that pairwise intersect in at most 5d2 points.

Remark 1.2. Infinite families of smoothly non-isotopic (but topologically isotopic) surfaces of
higher genus have been known for some years. The rim surgery technique of Fintushel and Stern [15]
(see also [47]) gives examples for surfaces in primitive homology classes, while surfaces in non-
primitive classes were constructed by the annulus surgery technique of Finashin [34] and the twisted
rim surgery of Kim [35, 36].

These results suggest the following problems:
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Problem 1.3. Is there a 4-manifold for which every primitive ordinary homology class (of arbitrary
square) satisfies the conclusion of Theorem A, or one for which at least one primitive ordinary class
does not satisfy that conclusion.

Problem 1.4. Is it possible that any smoothly embedded surface of minimal genus in its homology
class in a 4-manifold is topologically isotopic to infinitely many smoothly distinct surfaces?

2. Preliminaries

Isotopy of surfaces in simply-connected 4-manifolds.

It is well known that any isotopy of a smooth simply-connected n-manifold X that moves a
point p around a loop can be replaced by an isotopy that fixes p. More precisely, the inclusion
DiffppXq Ă DiffpXq (where DiffpXq is the group of orientation preserving diffeomorphisms of X,
and DiffppXq is the subgroup of diffeomorphisms that fix p P X) induces an isomorphism

π0 DiffppXq – π0 DiffpXq

of the corresponding mapping class groups. To prove this, recall that “evaluation at p” defines a
bundle projection DiffpXq Ñ X with fiber DiffppXq (see e.g. [33, §4.2.3] for an elementary proof),
and so the result follows from the homotopy sequence of this fibration.

This result fails in general if p is replaced by an n-ball, but is true up to Dehn twists along the
boundary of the ball (cf. [3, Proposition 5.2]). This leads to a relative version of the above result:
Any isotopy of a submanifold F Ă X of codimension ě 2 that carries a disk D Ă F back to itself
can be replaced by an isotopy that fixes D. Here is a precise statement for the case needed here of
surfaces in 4-manifolds, with a short direct proof. We use the notation EmbpM,Nq for the space
of smooth embeddings of one manifold M in another N (with the C8 topology) and EmbDpM,Nq
for the subspace of embeddings that fix D ĂM .

Lemma 2.1. Let F be a surface embedded in a simply-connected 4-manifold X, and pB,Dq be a
standard (4-ball, 2-disk) pair in X with BXF “ D. Then the inclusion EmbDpF,Xq Ă EmbpF,Xq
induces an isomorphism

π0 EmbDpF,Xq – π0 EmbpF,Xq.

It follows that if two embeddings of F in X agree on D and are freely isotopic, then they are
ambiently isotopic fixing B.

Proof. By a theorem of Palais [42], EmbpF,Xq fibers over EmbpD,Xq with fiber EmbDpF,Xq, and
EmbpD,Xq in turn fibers over Embpp,Xq “ X (for any p P D) with fiber EmbppD,Xq. Noting
that EmbppD,Xq is homotopy equivalent to the Stiefel manifold V2pR4q of 2-frames in 4-space, and
that π1V2pR4q is trivial, the homotopy sequence of the second fibration shows that π1 EmbpD,Xq
is trivial. The first assertion in the lemma now follows from the homotopy sequence of the first
fibration, since π0 EmbpD,Xq is trivial by Palais’ disk theorem [41], and the last statement follows
from the relative isotopy extension theorem [21]. �

Remark 2.2. A useful consequence of this lemma (not specifically needed here but presumably
known to experts) is that pairwise connected sums of surfaces in simply-connected 4-manifolds are
well-defined up to isotopy, depending only on the isotopy classes of the original surfaces. To show
this, note that such sums can be constructed by first connected summing the ambient 4-manifolds
along 4-balls disjoint from the surfaces, and then tubing the surfaces together with a tube that
meets the separating 3-sphere in a single circle. From this perspective the claim is that the result
is independent of the tube, which follows easily from the lemma.
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Blowups, blowdowns, surgery and Gluck twists.

Let X be a 4-manifold. Blowing up a point p P X is the operation X ù X # CP 2
, which

replaces p by the 2-sphere CP 1
of square ´1. If p lies on a surface F Ă X of square n, then the

blowup transforms F into the surface F #CP 1
of square n´1. Blowups of the opposite orientation

X ù X # CP 2, referred to as anti-blowups or `1-blowups, are also allowed. Conversely, one
can blow down any 2-sphere S of square ˘1 to give the 4-manifold X{S, so written because this
operation collapses S to a point.

Now consider a 2-sphere S Ă X of square 0. There are two familiar operations that can be
performed on X along S:

‚ Surgery X ù X{S “ pX ´ intpS ˆD2qq Y B3 ˆ S1 (a rationale for this notation, the
same as for blowdowns, is given in Definition 3.1 below). This replaces S by a circle.

‚ Gluck twist X ù GluckXpSq “ pX´ intpS ˆD2qq Yτ SˆD
2 where τ : SˆS1 Ñ SˆS1

maps ps, θq to (rotθpsq, θq. This replaces S by another 2-sphere.

Surgery generally alters the algebraic topology of X. Gluck twists can alter the algebraic topology
as well – e.g. twisting a fiber in the trivial bundle S2ˆS2 yields the twisted bundle S2

rˆS2 – but
it is not known whether twisting a null-homologous sphere in an oriented 4-manifold X can ever
change the smooth topology of X. By restricting to null-homologous spheres, one has a natural
isomorphism H2pXq Ñ H2pGluckXpSqq preserving the intersection form, and in this case the twist
at least does not change the gauge-theoretic invariants of the 4-manifold. We record a quick proof
of this fact below, based on the blowup formula, for use in proving Proposition 3.3 below.

Lemma 2.3. (Folklore) If S is a null-homologous 2-sphere embedded in a 4-manifold X, then the
pDonaldson, Seiberg-Witten, or Bauer-Furutaq invariants of X and GluckXpSq agree.

If b`2 pXq ą 1, then the gauge theoretic invariants in the lemma are well-defined, but to compare
them on different manifolds requires an identification of the cohomology groups (to pick out basic
classes or KO-orientations in the case of Seiberg-Witten or Bauer-Furuta invariants, or to compare
polynomial invariants in the Yang-Mills setting). As remarked above, a null-homologous Gluck
twist provides such an identification. This identification is also needed when b`2 pXq “ 1, in which
case the invariants of X and GluckXpSq are to be computed in the corresponding chambers in
their cohomology groups. Note that the presence of a sphere of square 0 representing a nontrivial
homology class implies (when b`2 pXq ą 1) the vanishing of both Donaldson and Seiberg-Witten
invariants, so one could trivially extend the lemma to cover that case.

Proof of Lemma 2.3. A Gluck twist along S has the same effect as blowing up a point on S and
then blowing down the resulting sphere of square ´1 (the proper transform of S). This is a standard
argument in Kirby’s calculus of framed links [25] (see Figure 1 below, or [37, Proposition 6.2]).

blow up

point on S

0

S

´1

S ` E

´1

E

blow down

S+E
0

`1

Figure 1. A Gluck twist as a blowup and blowdown

It follows that the gauge theoretic invariants of GluckXpSq can be calculated from those of X
using the relevant blowup formulas [39, 12, 6]. For example, the Seiberg-Witten invariant for any
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characteristic K P H2pXq (letting K also denote the corresponding class in H2pGluckXpSq)) is

SWXpKq “ SWXpK ` Sq (since S is null-homologous)

“ SWX#CP 2pK ` S ` Eq “ SWpX#CP 2
q{pS`EqpKq “ SWGluckXpSqpKq

where E “ CP 1
Ă CP 2

. The proof for Donaldson and Bauer-Furuta invariants is similar. �

Wall’s transitivity results.

Theorems A and B assert that every homology class satisfying certain conditions is represented
by infinitely many smoothly distinct spheres. Our construction actually finds spheres in one such
class α, and then makes use of classic results of Wall to establish that all the classes satisfying
the given conditions are related to α by diffeomorphisms. We recall Wall’s results for the reader’s
convenience. Part a) is the ‘Conclusion’ on page 337 of [48], while part b) is Theorem 2 in [49].

Theorem 2.4.(Wall) a) The automorphisms of any unimodular, strongly indefinite form pmeaning
the rank and absolute signature of the form differ by at least 4q act transitively on elements of given
square, divisibility and type.

b) If X is a closed, simply-connected 4-manifold with an indefinite intersection form, then every
automorphism of the intersection form of X # pS2 ˆ S2q is realized by a diffeomorphism.

The manifolds discussed in Theorems A and B are completely decomposed as connected sums of
many copies of CP 2 and CP 2

, and in particular, can also be written as sums of indefinite manifolds
with S2 ˆ S2. Hence all results proved about spheres in a single class of given square, divisibility
and type, hold for spheres in any class of the same square, divisibility and type.

3. Building spheres of higher self-intersection and divisibility

This section develops the tools needed to establish Theorems A and B. The key is to “embellish”
a family of unit spheres (meaning embedded 2-spheres of square `1) in a 4-manifold X that satisfy
the conclusions of Theorem A (such as those produced by the authors in [3]) to produce families of
spheres in a suitable blowup of X of arbitrary nonnegative square that also satisfy these conclusions,
or of square 0 and arbitrary divisibility that satisfy the conclusions of Theorem B. We first extend
the notion of surgery along a sphere of square 0 to an operation “blowup-surgery” that applies to
spheres of arbitrary square; this operation will be used to distinguish the embellished spheres.

Blowup-surgery.

Definition 3.1. Blowup-surgery on a 4-manifold X along an embedded 2-sphere S of square n ě 0
is the operation of blowing up n points on S, and then surgering the resulting sphere of square 0.
This produces a 4-manifold denoted X{S (see the next remark). There is an analogous operation
for spheres of negative square, replacing the initial blowups with anti-blowups.

Remark 3.2. If S has square 0, then blowup-surgery is just regular surgery. If S has square ˘1,
then blowup-surgery along S has the same effect as blowing down S, as shown in Figure 2, whence
the common notation X{S for the result.

The families of homologous spheres constructed in the proofs of the theorems in the next section
are distinguished by the Seiberg-Witten invariants of their blowup-surgeries. It follows, as shown
in the next proposition, that any pair of such spheres of nonzero square n must intersect in strictly
more than |n| points; this complements the upper bound on their minimal geometric intersection
number provided by Theorem A.

Proposition 3.3. The minimal geometric intersection number of any pair of homologous 2-spheres
S and T of nonzero square n in a 4-manifold X whose blowup-surgeries have distinct nontrivial
Seiberg-Witten invariants must be strictly greater than |n|.
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blowup
1 0 ´1

surgery
´1

´1

Figure 2. Blowdown as a blowup-surgery

Proof. We may assume n ą 0, changing orientation if necessary. Now move S transverse to T so
that |SXT | “ m ě n. If m “ n, then blowing up n´1 of the points in SXT produces two spheres
P and Q of square `1 in Y “ X # pn´ 1qCP 2

that intersect in a single point. Let Q1 denote the
image of Q in the blowdown Y {P . By Remark 3.2, Y {P – X{S and Y {Q – X{T , so by hypothesis
Y {P and Y {Q have distinct Seiberg-Witten invariants. But Y {Q is obtained from Y {P by Gluck
twisting Q1, contradicting Lemma 2.3. Thus m ą n. �

Embellishing unit 2-spheres.

Fix a simpy-connected 4-manifold X, and set Xi “ X # iCP 2
. Any unit sphere S in X (that is,

an embedded 2-sphere of square `1) gives rise to two infinite sequences of simple 2-spheres

S1, S2, S3, . . . in X1 and S0, S1, S2, . . . in X2

where Sd has square 0 and divisibility d, while Sn has square n and represents a primitive ordinary
class. These spheres, the embellishments of S, will be constructed inside a once or twice blown up
tubular neighborhood of S.

Some care must be taken in defining these embellisments to insure that they depend up to isotopy
only on the isotopy class of S (see Proposition 3.5a) and to arrange for corresponding embellishments
of families of 2-spheres to lie in the same 4-manifold, not just diffeomorphic 4-manifolds. For these
purposes, fix a pair of base points p and q in X to be blown up to give X1 (blowing up p) and X2

(blowing up p and q), and then proceed as follows :

1) Isotop S so that it contains q but not p.

2) Choose a tubular neighborhood N of S containing both basepoints, and identify N with
pCP 2q˝ (the ˝ indicates that a small open 4-ball has been removed) in such a way that S
corresponds to a (projective) line. This identifies N i “ N # iCP 2

with pCP 2 # iCP 2
q˝.

3) Choose a line T in N disjoint from the base points, and for each integer d ě 1, a pencil P d

of d lines in N through p disjoint from q and S X T . The 2-dimensional (real) analogue of
this configuration Γ “ S Y T Y P d of 2-spheres is shown in Figure 3.

P d

S

T

q

p
N Ă X

Figure 3. Configuration Γ “ S Y T Y P d of projective lines in N “ pCP 2q˝ inside X

Now build Sd from the pencil P d by blowing up p. When d “ 1, this produces the 2-sphere
S1 Ă X1 with trivial normal bundle. When d ą 1, this yields d parallel copies of S1 which can
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then be joined together (oriented consistently) using trivial tubes to give Sd. Next build S2d from
S Y P d by blowing up both p and q and then smoothing the resulting configuration, i.e. replace
pairs of transverse disks near the double points by annuli. The sphere S2d`1 is built in the same
way from T Y P d. The results are shown in Figure 4 for the case d “ 2.

S5
S4S2

Figure 4. Some embellishments of S in N “ pCP 2q˝ inside X

Remarks 3.4. a) The tubular neighborhood N decomposes as a handlebody with one 0-handle
(the part of N shown in Figure 3, containing all the multiple points of the configuration Γ) and
one 2-handle, in which Γ appears (unaltered after the blowups) as parallel copies of the core of
the handle. This provides a viewpoint that is useful when analyzing the interactions between
embellishments of distinct unit spheres.

b) Another useful model for the embellishments of S arises from the well known fact that
CP 2 # 2CP 2

is diffeomorphic to Hn # CP 2
for any integer n, where Hn is the 2-sphere bundle

over the 2-sphere of Euler class n. Thus N2 can be identified with H˝n # CP 2
, in fact in a way

that identifies Sn with a section of Hn; this can be seen for example using the Kirby calculus. For
d ą 0, we use a diffeomorphism N1 “ pCP 2 # CP 2

q˝ – H˝1 that identifies S1 with a fiber of H1, so
identifies Sd with d fibers of H1 tubed together.

With these models in hand, it is easy to establish the following properties of the embellishments
of unit spheres :

Proposition 3.5. a) Isotopic unit spheres in X have isotopic embellishments in Xi “ X # iCP 2
.

b) The embellishments Sn and Sd of a unit sphere S in X are all simple pmeaning that their
complements have cyclic fundamental groupsq, and the Sn are also primitive and ordinary.

c) If S and T are unit spheres in X, then

mX1pSd, T dq ď mXpS, T q d
2 and mX2pSn, Tnq ď mXpS, T q ptn{2u` 1q2

where we write mY pE,F q for the minimal geometric intersection number of any pair of surfaces E
and F in a 4-manifold Y .

Proof. a) After positioning a unit sphere S Ă X as in step 1) above, the tubular neighborhood
theorem shows that the isotopy classes of its embellishments are not affected by the choices in the
subsequent steps of the construction. The fact that these isotopy classes are not affected by the
initial placement of S now follows from Lemma 2.1.

b) The sphere Sn Ă X2 is simple, primitive and ordinary since it is geometrically dual to a
sphere S1 of square 0. To show that Sd is simple requires a little more work. Viewing N1 “ H˝1 as
above, Sd is constructed by tubing together d copies F1 . . . Fd of the fiber of H1. The complement of
the union of the Fi in H1 is a trivial S2-bundle over the d-punctured sphere, with free fundamental
group of rank d´ 1. A natural presentation for this group is

px1, . . . , xd | x1 ¨ ¨ ¨xd “ 1q

where xi is the meridian of Fi. Tubing Fi to Fi`1 adds the relation xi “ xi`1. Thus π1pH1´S
dq “

px1 |x
d
1 “ 1q is cyclic, and so π1pX

1 ´ Sdq is as well, by van Kampen’s Theorem.
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c) We may assume that S and T have been moved (as in the first step of the construction of their
embellishments described above) to coincide along a 2-disk, and otherwise to intersect transversely
in m “ mXpS, T q points. We may also choose tubular neighborhoods that coincide along their
0-handles (as in Remark 3.4a) and whose 2-handles have m plumbed intersections. It is then clear
that embellishments of Sd and T d can be chosen that intersect in md2 points, since each transverse
double point in S X T yields a grid of d2 double points in Sd X T d, which establishes the first
inequality. The second follows by the same argument, with tn{2u` 1 in place of d. �

Remark 3.6. The arguments given above for Proposition 3.5 work equally in the smooth and
topological settings. Since the families of spheres of higher square and divisibility to be constructed
in our proofs of Theorems A and B below will be embellishments of families of unit primitive
spheres, pairwise topological isotopies for the latter easily yield the same for the former.

We now identify the manifolds produced by blowup-surgery along the embellishments of S Ă X
in terms of the blowdown X{S. Recall from Definition 3.1 and Remark 3.2 that blowup-surgery of
a 4-manifold Y along a 2-sphere T Ă Y , also denoted Y {T , coincides with ordinary surgery when
T has square 0, and with the blowdown of T when T has square ˘1.

Proposition 3.7. Let S be a unit sphere in a simply-connected 4-manifold X, with embellishments
Sd Ă X1 and Sn Ă X2, where Xi “ X # iCP 2

as above. Then the blowup-surgeries

a) X1{Sd – X{S #Qd

b) X2{Sn – X{S # pn` 1qCP 2

where Qd is a rational homology sphere with cyclic fundamental group. It follows that if T is another
unit sphere in X such that the blowdowns X{S and X{T are distinguished by their Seiberg-Witten
invariants, then the embellishments Sn and Tn are stably distinct for all n,† as are Sd and T d.

Proof. a) Viewing Sd Ă H˝1 “ N1 Ă X1, as in the proof of Proposition 3.5b, we have

X1{Sd “ pX ´Nq YN1{Sd – X{S #Qd

where Qd “ H1{S
d, the result of surgering H1 along Sd. But it was shown in that proof that

the fundamental group of the complement C “ H1 ´ Sd is cyclic, and this group is isomorphic
to π1pQdq by van Kampen’s Theorem. It follows by a standard argument that Qd is a rational
homology 4-sphere. Indeed (using rational coefficients) H1pCq “ 0, so H2pCq “ Q by the sequence
of the pair pH1, Cq, whence H2pQdq “ 0 by the sequence of the pair pQd, Cq; it follows by duality
that Qd has the rational homology of a 4-sphere, as asserted.

b) Viewing Sn as a section of Hn in N2 “ H˝n # CP 2
, as discussed above Proposition 3.5, the

calculation in Figure 5 shows Hn{Sn – nCP 2
. Thus N2{Sn “ H˝n{Sn # CP 2

– ppn` 1qCP 2
q˝, so

X2{Sn “ pX ´Nq YN2{Sn – X{S # pn` 1qCP 2

as asserted.

blowup

surgery

Sn

n

´1´1

00

n

´1 ´1

n

Figure 5. Hn{Sn – nCP 2

† Recall that this means they are not related by a diffeomorphism, even after arbitrarily many external blowups
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The last statement follows from the Seiberg-Witten blowup formula, and from an observation of
Kotschick, Morgan and Taubes (implicit in [26, Proposition 2]) that 4-manifolds distinguished by
their Seiberg-Witten invariants remain so after summing with any rational homology 4-sphere. �

Internal stabilization.

Embedded 2-spheres S of arbitrary square in a simply-connected 4-manifold X give rise to
sequences of surfaces in X

Sp0q “ S, Sp1q, Sp2q, . . .

where Spgq is of genus g, obtained from S by g successive internal stabilizations. The local nature
of this stabilization operation shows that isotopies of S induce isotopies of Spgq for every g. It
is known that for homologous 2-spheres S, T Ă X that are both simple (i.e. their complements
have cyclic fundamental groups), Spgq and T pgq are isotopic for some g [7, Theorem 1], but general
bounds on g have been hard to come by; it is even conceivable that g “ 1 is always enough. To
prove Theorems A and B, we will need to relate these bounds for a pair of unit spheres to the
bounds for their embellishments. To state our result, let gXpS, T q denote the minimal stabilization
genus os S and T , defined to be the smallest g ě 0 such that Spgq and T pgq are isotopic in X.

Proposition 3.8. If S and T are unit spheres in a simply-connected 4-manifold X, then

gX1pSd, T dq ď gXpS, T q d and gX2pSn, Tnq ď gXpS, T q ptn{2u` 1q

where Xi “ X # iCP 2
as usual.

Proof. Let g “ gXpS, T q. Thus Spgq and T pgq are isotopic in X, and for the first inequality,
it suffices to show that Sdpgdq and T dpgdq are isotopic in X1. The argument is similar to the
proof of Proposition 3.5c. Position S and T to agree along a 2-disk D, and choose their tubular
neighborhoods to have the same 0-handle B (as in Remark 3.4a) containing D as a proper unknotted
disk. Thus Sd and T d will agree inside the blowup B1 of B at p, and will otherwise consist of d
parallel copies of the cores DS and DT of their respective 2-handles.

Focusing on S for the moment, construct Spgq by performing the g internal stabilizations along
DS , so that a tubular neighborhood of Spgq can be seen as B with a generalized 2-handle H
(diffeomorphic to the thickening of a genus g surface minus a disk) attached. Similarly there is a
tubular neighborhood of Sdpgdq consisting of a neighborhood of Sd X B1 together with d parallel
copies of H; this layering of the tubes (as shown in Figure 6) can be arranged since the stabilizations
all correspond to the attachment of trivial 1-handles (see [9, 7]).

Now using an analogous model for T pgq and T dpgdq, any isotopy from Spgq to T pgq in X, chosen
to leave B fixed by Lemma 2.1, can be mirrored to produce one from Sdpgdq and T dpgdq in X1.
This establishes the first inequality in the proposition. As in the proof of Proposition 3.5c, the
second inequality follows by essentially the same argument, with tn{2u` 1 in place of d. �

S Spgq

Sdpgdq

d

Figure 6. Layered tubes
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Combining Propositions 3.5, 3.7 and 3.8, we immediately deduce :

Corollary 3.9. Let Si be any family of homologous unit spheres in a simply-connected 4-manifold
X, distinguished by the Seiberg-Witten invariants of their blowdowns X{Si and satisfying the three
conditions 1), 2) and 3) in Theorem A. Set Xi “ X # iCP 2

. Then for any nonnegative integer n,
the spheres Sin Ă X2 of square n satisfy the conclusion of Theorem A, and for any positive integer
d, the spheres Sdi Ă X1 of square 0 and divisibility d satisfy the conclusion of Theorem B.

4. Proofs of the theorems

For notational economy, set Xp,q “ pCP 2 #qCP 2
, and assume p, q ě 2. By Wall’s Theorem 2.4,

Theorem A holds for Xp,q provided it holds for a single primitive ordinary homology class in Xp,q

of each nonnegative square, and in turn by Corollary 3.9, provided it holds for a single such class
of square `1 in Xp,q´2. Similarly Theorem B holds for Xp,q provided it holds for a single primitive
ordinary class of square `1 in Xp,q´1. Furthermore, if these theorems hold for Xp,q then they hold
for Xp,r for any r ě q, by the “stably distinct” condition in the statements of the theorems.

Thus Theorems A and B can be proved as stated by producing a single infinite sequence S1, S2, . . .
of homologous unit spheres (that is, embedded 2-spheres of square `1) in each manifold of type

(a) Ak “ X2k,10k for k ě 2 and (b) Bk “ X4k`3,20k`19 for k ě 1

that blow down to give 4-manifolds that are smoothly distinct (even after blowups) and that
satisfy the three conditions in Theorem A. The authors’ explicit construction in [3], coupled
with the isotopy described in [7, §3.7], produced many such sequences Si in any manifold of type
Ak, one for each sequence of knots Ki in the 3-sphere with distinct Alexander polynomials. In
particular, the blowdowns Ak{Si were shown in [3] to be diffeomorphic to EpkqKi # CP 2

, where
EpkqK denotes Fintushel-Stern knot surgery [14] along a torus fiber in the elliptic surface Epkq.
Since the Alexander polynomials of the Ki are distinct, the manifolds Ak{Si have distinct Seiberg-
Witten invariants [14, 47] and so are pairwise nondiffeomorphic, even after any number of blowups.

Note that the third condition in Theorem A for this family of spheres Si is that their pairwise
minimal geometric intersection numbers mpSi, Sjq should be at most 5. This fact is implicit in
[3, Figure 13], and reduces to the claim that the two ribbon disks A0 and B0 shown there and
reproduced in Figure 7 below† can be positioned rel boundary to intersect in at most 4 points. To
see this, superimpose the immersed disks shown at the top of the figure. The result, drawn at the
bottom, shows that these disks meet in four arcs, just as thickening a pair of clasped disks D1YD2

bounded by the Hopf link yields four disks pD1ˆBIqYpD2ˆBIq that intersect in four arcs. Pushing
these disks into the 4-ball, one sees exactly one intersection point under each arc.

To produce a similar sequence of spheres in manifolds of type Bk, the knots Ki must be chosen
with more care. In particular, we require the blowdowns A2{Si of their associated knotted 2-spheres
Si Ă A2 (constructed in [3]) to have distinct “odd monopole counts”, defined as follows:

Definition 4.1. The odd monopole count SWoddpXq of a closed 4-manifold X with b`2 pXq ą 1 is
the number of Spinc-structures on X with odd Seiberg-Witten invariant.

For example the p2, 2í 1q torus knots work well since their Alexander polynomials pt2i´1`1q{pt`1q
have exactly 2í 1 non-zero coefficients, all odd, and there are two basic classes in A2{Si for each such
coefficient, with Seiberg-Witten invariant equal to that coefficient [14]. Thus SWoddpA2{Siq “ 4i´2.

† These disks are bounded by the same p´3, 3,´3q pretzel knot K0, and are obtained by pushing the immersed
disks shown in the figure (related by a 180 degree rotation about the indicated horizontal axis) into the 4-ball. Adding
a `1-framed 2-handle along K0 produces the blowup of the classical Mazur cork, containing spheres S0 and T0, which
can then be embedded in many different ways in the manifolds of type Ak and Bk to produce the spheres Si.

10
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´1{2 ´1{2

´1{2 ´1{2

´1{2

´1{2

A0 B0

A0 YB0

Figure 7. Ribbon disks

Now fix k ě 1, and view the spheres Si as lying in the A2– summand of the 4-manifold

Bk “ X4k`3,20k`19 – A2 # Ep2kq.

The last diffeomorphism exists since elliptic surfaces are almost completely decomposable [32]. To
complete the proof it suffices to show that for distinct values of i, the blowdowns

Bk{Si – pA2{Siq# Ep2kq

are smoothly distinct, since the other properties required of the spheres Si Ă Bk are inherited
from the corresponding properties of Si Ă A2. But this follows from Bauer’s calculation [6] of the
Bauer-Furuta invariant [5] for connected sums, using the following special case of [6, Prop. 4.5]:

Theorem 4.2. (Bauer) Let X and Y be simply-connected 4-manifolds of Seiberg-Witten simple
type (meaning that all their SW-basic classes have zero dimensional moduli spaces). Then the
number of Spinc structures on X#Y with nontrivial Bauer-Furuta invariant is equal to the product
SWoddpXqSWoddpY q if b`2 pXq ” b`2 pY q ” 3 pmod 4q, and is zero otherwise.

Noting that b`2 pA2{Siq “ 3 and b`2 pEp2kqq “ 4k´ 1 ” 3 pmod 4q, and that SWoddpA2{Siq “ 4i´ 2

and SWoddpEp2kqq ‰ 0, it follows that the Bk{Si for i “ 1, 2, . . . have distinct numbers of nontrivial
Bauer-Furuta invariants, so are smoothly distinct. �

Remarks 4.3. a) The family of manifolds with odd b`2 to which Theorems A and B apply can be
extended as follows. In applying Bauer’s Theorem 4.2, one could sum with a smooth hypersurface
Vd of CP 3 in place of an elliptic surface, with d chosen to be a multiple of 4 so that

b`2 pVdq “ dpd´ 2qpd´ 4q{3` d´ 1 ” 3 pmod 4q

(see [18, Theorem 1.3.8] for the topological invariants of hypersurfaces). Now Vd – Ep2q when
d “ 4, and is of general type when d ą 4, with Seiberg-Witten invariant 1 on the canonical Spinc

structure, so in all these cases SWoddpVdq is nonzero. Using Vd in this way (for d ą 0 divisible by
4) gives examples of families of spheres as in Theorem A in the manifolds Xp,q where

p “ 4` 1
3pd

3 ´ 6d2 ` 11d´ 3q and q ě 20` 1
3p2d

3 ´ 6d2 ` 7d´ 3q.

Note that for large d, the manifolds Xp,q have b´2 « 2b`2 , rather than b´2 « 5b`2 , so although sparser
than the families of 4-manifolds constructed in the proof above (p grows cubically rather than
linearly), these Xp,q have smaller b´2 {b

`
2 .

11



Auckly, Kim, Melvin and Ruberman

b) Theorem B also holds for any nonprimitive homology class of type 0 and self-intersection
`4 (or ´4, by reversing orientations). Indeed, the associated primitive class can be represented
by infinitely many spheres of self-intersection `1 as in Theorem A, each of which can be tubed
to an oriented pushoff of itself (the local model for this is a smooth degree two curve in CP 2) to
produce the desired spheres representing the non-primitive class. To distinguish these spheres, one
can either perform blowup-surgeries as before, or rational blow downs [13]. The stability properties
are proved as in Corollary 3.9.
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