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Blowing Up and Down in 4-Manifolds

By
Paul Michael Melvin

Abstract

This paper is concerned with the topology of 4-dimen-
sional manifolds. 1In pafticular we are Interested in links
of 2-spheres in simply connected Q-manifoids.

Our motivating question is whether or not there exist

inequivalent unit links (21l components with self inter-

section F1) which are concordant. A positive answer would
preovide a counterexample to the 5-dimensional h-cobordism
con jecture,

Our principal result states that any two unit links
which can be Joined by a concordance with simply connected
levels must be eguivalent.

The proof uses the technique of blowing up points and
blowing down spheres in L-manifolds, together with some
results on extending diffeomorphisms of 3-manifclds. The
underlying approach is Yconstructive” handlebody theory.

As an additional result, unrelated to our main line
of thought, we show that the 3-dimensional oriented bordism
group of diffeomorphisms vanishes.

Finally, we apply our resulis to show that certain

homotopy 4-spheres arising naturally from knots of Z-spheres

2@(17(4/57

in SLP are gtandard,
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€1, Definitions and Outline of Results

Thé general purpose of this paper is to study simply
connected M-Qanifolds from the point of view of links of
2-spheres in 4-manifolds. Our principal tcol will be the
technique of blowing up. This we define below in a purely
Topological way, lgnoring the complex siructure that comes
into play in the QSual definitions from algebraic geometry.

Our setting will be the smooth category, unless speci-
" fied otherwise. We write 3M for the boundary of a
(smooth) manifold M. If M is oriented, then -M will
denote the same manifold with the opposite orientation.
For any pair of oriented manifoids M and N, ahd any cr-
ientation reversing diffeomorphism h:3N—23M , we may
Torm a closed manifold M‘H/N from the disjcint union of
M and N by identifying points in 3N with their images
under h in 3M. Thig has a unique smooth structure
compatible with the inclusions Wb—}NPEfNQ—-N.

There are twe ways of blowing up a point x in a

4-manifold M (replacing a 4-ball about x by a Hopf disc
bundle with one of the two possible orientations). These

yield The connected sum ¢f M near x with either CP2
or -CPZ. We assume that the connected sum is taken away

from the standard i‘CP1 ( Z, = 0 in homogeneous coordi-



nates [ZO' Zes 251 in +op? ), which will be called the

image of x.

If S is a Z2-manifold in M, then we may blow up a

point on S by taking the connected sum pairwise with

(iCPz, P), where P is a projective line cutting topl
in one point (e.g. 2z, =0 ). S # P 1is then called the

image of 3.

We may invert this construction., Let T be a link
of Z2-spheres in the interior of M all of whose compcnents
have self intersection 1. Such a link will be called
a unit link. By M/T we denote the 4-manifold gotten

from M Dy blowing down {i} (replacing a tubular neighbor-

hood of each 2-sphere S in T by a 4-ball — the center

of this ball is called the image of S)., M/T is well

defined since rﬁ = 0 [Cerf]. The reader is cautioned not
to confuse M/T with the quotient space of M obtained

by -identifying T %o a point. Here we identify each com-—
ponent of T <To g different point.

Note that M - T sits naturally in M/T as the



complement of a collection of points, the images of the
components of T. Blowing up these points in M/T appro-

priately yields M. In particular
_ . 2 2
M =M/T # p(CP") # q(~-CP")

where p 1is the number of components of T with gelf
intersection +1 and g 1is the number with self inter-
gsection -1,

Simiiarly if we first blow up a collection of points
in M and then blow down . their images, then we get M
back again.

We call twe links TO and Tl in M equivalent if

there is a diffeomorphism of M carrying one ontc the
other. IT is clear that M/TG and M/T1 are diffeomor-
phic if T

and T are equivalent unit links. Conver-

0 1
sely, if MN/T, and M/T1 are diffeomorphic, then by
homogeneity there is a diffeomorphism carrying M - NO

to M - Nl’ where Ni is an open tubular neighberhood of
Ti' i =0, 1. S8ince Pu = 0, this extends to a diffeomor~-
phism of M carrying T, to Tl' Thug for unit links,
Ty eand T, are equivalent if and only if M/T, = M/Tl.

Two links TO and T in M are concordant if

1
there is a proper embedding f:TxI— MxI with f£(Tx1i)

and Tixi equivalent in Mxi , i =0, 1, Here I de-
notes the unit interval [0, 1] and proper means that
£ (3(MxI)) = 3(TxI). Note that we are using concordance

in a weaker sense than usual as M may have diffeomor-

2



phisms which are not isotopic to the identity.
For unit links, concordance has the following inter-
pretation

Theorem 2.1 If TO and T are unit links in a

1
closed, simply connected 4-manifold M, then Ty and T,

are concordant if and only if M/TO and M/T1 are h-

cobordant.

The proof'will be given in §2.

This 1ink setting applies %o any h~cobordant, closed,
simply connected 4-manifolds My and My. TFor it follows
from [Wall] that M, and M, become diffeomorphic after
blowing up sufficiently many points in each. Thus there
are unit links Ty and. Tl in some closed, simply connected
h-manifold M such that M, = M/Ti-, i =0, 1. Hence
Theorem 2.1 shows that the 5-dimensional h-cobordism con-

Jecture is equivalent to

Conjecture 1 Concordant unit links in a closed,

simply connected 4-manifold are equivalent.

In searching for counterexamples we need only con-
sider unit links in connected sumg of CP° and ~CP2,
for we may insure that the common manifold M, obtained
as ébove by blowing up points in two h-cobordant manifolds

MO and Ml’ is such a manifold. In effect we first blow



up two points with opposite orientations, obtaining h-co-

?, i=20, 1, with iso-

pordant manifolds M, # CP° # -CP
morphic odd, indefinite intersection forms. By the classi-
fication of integral, unimodular, symmetric bilinear forms,

these forms are isomorphic to some

BH e (el .« . &(1)

[Husemdller - Milnor] and so the M, # CP # -CP* are

also h-cobordant to a connected sum of copies of CP2 and

2

~CP [Walll. As above, blowing up extra points if necessary,

we obtain M and unit links T, with l\J'I/T:.L =M, ,1=0,1,
“where M 1is a connected sum of copies of CP2 and -CPZ.
At the end of §2, we show that the notions of con-
cordance, homotopy, and homology are all equivalent for
unit links in a closed, simply connected 4-manifold M.
In particular, if the homology classes represented by the
components of two uﬁit links TO and T1 are the same,
then M/T, and M/T1 are h-cobordant. Thus, for example,
the existence of two inequivalent but homologous unit knots
in a closed, simply connected 4-manifold would yield =z
counterekample to the 5-dimensional h-cobordism conjecture.
Conversely, any counterexample whiéh stabilizes after
- forming the conhected sum with one #CP° must arise in
this way,
On the positive side we have Theorem 5.2 below.
First we need a definition, . Note that any concordance

f¢TxT—> MxI may be adjusted by a small isctopy {(relative



- to the boundary) so that gf is a Morse function, where
Q:MxI+~—=T is projection. Such a concordance will be

called generic. Let the genus of f Ybe the maximal genus

of the components of the 2-manifolds (qf) L(t) , where <
ranges over all regular values of qf. Let n be some

non-negative integer.

Definition Two links in a 4-manifold are n-concordant

if there is a generic concordance of genus n between them.

Note that concordant links in a 4-manifold are n-
concordant for some n. Thus the following result may be
viewed as the first step in a prcof of the h-cobordism

conjecture,

Theorem 5.2 O=-concordant unit links in a 4-manifold

are equivaglent.

In §3 we give some preliminary results on extending
diffeomorphisms of closed 3-manifolds to L-manifolds which
they bound.

We digress in §4 (uéing the point of view of §3) o
give a proéf of the vanishing of the 3-dimensional orisnted
.bordism group of diffeomorphisms,

In §5 we give the proof of Theorem 5,2 using the
tools developed in §3,

We now specialize 10 the case of unit links in CP2



(or equivalently in -CP2, as orientation makes no differ-
ence in our considerations) where any unit link has exact-
ly one component S (homologous to the standardly embedded
cPl). It is easy to see that blowing down S in CP°

yields a homotopy 4-sphere 2. 3, is h-cobordant to st

1

[Wall] so Theorem 2.1 shows that S is concordant to CP

Thus for CP2 Conjecture 1 reads

Conjecture 2 Any unit knot in CP2 is equivalent

to CP1 (cf, Problem 4.23 in [Kirbyzj)a

A discussion of some conjectures related to Conjecture
2 will be given in 8. In particular we will consider the
special case of knoits in CP2 which intersect CPl in
exactly one point. We show that Conjecture 2 in this case
is equivalent to a problem of Herman Gluck about knotted
I

2-gspheres in 8.

Precisely, let p(G) denote the diffeomorphism of

32 which rotates 5@ about its polar axis through an
angle of @ ¢ Si. Thus /nz31—+ S0(3) represents the non-
4
tTrivial element of ﬂlSO(B)e Given a 2-sphere S in Sq,
2. 02 2

chOOSe an embeddeq S7xB with S"%0 = § gnd define

3 = (¥ - Szxint(Bz})\%/Sszz

1 2

where the map *t:SEXS —>5%xsT  is given by T(s,8) =
(f(e)(s);ﬁ )._ Gluck shows that TS is a well defined

homotopy 4-sphere and asks



4? [Gluck]

Question Is TS =S

An affirmative answer is known for spun knots [Gluck]
and more generally twist spun knots [Gordon].

We shall prove

L

Proposition 6,2 If S is a knot in S and S

is the unit knot in CP2 obtained by blowing up & point
on S , then CP/S' =78,

Note that any knot in CP2 which intersects CP1
in one point arises in this way.
As a corollary 1o the Proposition and o Theorem 5.2

we have TS = S#

for knots 3 in SLIr which are, O-concor-
dant to the unknot.*

In fact the pfoof of Theorem 5.2 will show more., We
define two links T, and Ti 10 be cobordant if there
is a 3-manifold N properly embedded in .MXI with

NA~Mxi = T.l . There 18 as above the notion of n-cobordant

links. The O-cobordism classes of 2-spheres in Su form
a semigroup € wunder connected sum., Let H denote the

semigroup of homotopy 4-spheres 2, under connected sum,

* A subclass of these knots called ribbon knots has been
in {Yajimal] and {Yanagawa] . These knots can in fact be
spun (in the sense of [Gluck]l) and are thus determined by
thelr complements.



for which 3 # CP2 = CP2. Then we have

Theorem 6.3 < defines a semigroup homomorphism

~:C-—=>H .

Corollary 6.4 If S is a knot in st which is in-
I

vertible in C, then =8 is homeomorphic to S7.

In §7 we will give an alternate approach to Gluck's
question in terms of handlebody theory. We Shéw, under
certaln severe restrictions on the critical points of an
embedded 2-sphere S in 34’ that 8 can be built
without 3-handles. This reduces the question of the homeo-

morphism type of #35 1o an algebraic problem,

4



2. Concordance and h-Cobordism

First we generalize the notions of blowing up and
down to concordances of points and links in 5-manifolds.
et W be a 5-manifold with non-empty boundary.

A concordance of a closed k-manifold Co in W is an

embedding‘ T:1CpxI—>W which is proper (f_l(BW) = CoxﬁI);
The image of T is a proper (k+1)-submanifold € of W,
also sometimes called theiconcordance.

e proceed as in §1, crossing our constructions with
the unit interval.

If 3C is a finite collection of points in W
(k = 0) we may blow up C by replacing a tubular neigh-
borhocod of each arc in C with HxI attached along
dHxT, where H ié the Hopf disc bundle with either orien-
tation. Once we choose orientations, this is well defined
since ) = 0 [Cerf] and Ty =0 [Smale] .

If 3C is a unit link in oW (k = 2). then we may

form a 5-manifold W/C by blowing down C (replacing a

Tubular neigiorhood of each component of C by a 3-ball
B¥%T attached along S7xI). W/C is well defined, as
above, and ~ 3(W/C) = 3W/3C. If we view W - C as the
complement in W/C of a concordance of points, C', then

W is obtained from W/C by blowing up C' appropriately.

10



Theorem 2.1 If TO and T1 are unit links in a

closed, simply connected 4-manifold M, then T, and T1
are concordant if and only if M/TO and M/T1 are

h-cobordant.

Procf First suppose that Ty and T1 are concor-

-dant. Let U denote the complement in MxI of an open
tubular neighborhood N of this concerdance C. Blowing
down C we obtain a simply connected 5-manifold W with
boundary M/TO\J-M/T1. Let C' denote the resulting
concordance of points. Then N' =W - U 1is an open tubu-

- lar neighborhood for €' in W,

C-\ [ (/_\ CI
' _
W) B L

MKO‘/ KW‘I‘Q

The relative Mayer Vietoris sequence for (N, N Mx0)

and (U, UMNMx0) in MxI (cf. D.187 in [Spanier]) shows
that H,(U, UMMx0) = 0. The corresponding sequence in
W o for (N', N'N\MWT,) and (U, UNMN/T,) now gives
H, (W, M/TO) = 0, It follows from theorems of Hurewicz
and Whitehead that W is an h-cobordism,

Conversely, suppose W 1is an h-cobordism between
M/T, and M/Ti. For i =20, 1, let p, and 4; denote
the number of components of Ti with self interseciion

+1 and -1, respectively. It is clear from rank and

11



signature considerations that Py = Py and q, = Qq -
Thus there is & concordance in W between the points in
the image of T, and those in the image of Tl’ which
when blown up appropriaftely yields a 5-manifold V with
. boundary M ssr-M and a concordance in V betweeh Ty
and"Tl. As above we see that V is an h=-cobordism.
It follows from [Barden] that V must be diffeomorphic
toe MxI, z2nd so -f;m';gd" T1 are concordant.

Remark 2.2 . If T0 and T are concordant links,

1
then they are homotopic, up to equivalence. In effect, if

T:ITxT~—>»MxI is the concordance and p:MxI->M is pro-
jection, then pf 1is a homotopy between Ty and T4
(where Ti is equivalent %o Ti).

Furthermore it is clear that homotopic links Té and

T are componentwiSe homologous, in the sense that the

1
maps

CHo(Tg)

' :::::% H, (M)
'HZ(Tl)

induced by the inclusions have the same image.
Now the first part of Theorem 2.1 may be proved ag
follows, using the a priori weaker hypothesis that Ty

and T, are componentwise homologous. The intersection

1
form on M splits as the orthogonal direct sum of the

intersection forms on W - Ni and Ni’ where N.l denotes

12
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an open tubular neighborhood of Ti in M, 1 =0, 1,

Thus the maps

Ho(M - N

2

0)\
A7

Hy(M - Nl)

H, (M)

induced by the inclusions must also have the same image,
and so M - N, and M-— Nl have isomorphic forms.
Since M/Ti = (M - Ni)\./Ll——balls, M/T, and M/T1 also
have isomorphic forms. Therefore they are h-cobordant
[wa1i]. v

It follows from Theorem 2.1 that the notions of con-

cordance, homotopy, and componentwise homology are the same,

up to equivalence, for unit links in closed, simply

connected 4=manifolds.

13



§3. Extending Diffeomorphisms of 3-Manifolds

In fthe next two sections we explore the problem of
extending diffeomorphisms of 3-manifolds to 4-manifolds
which they bound. We will make use of the methcds deve-
loped in this section to prove (via Lemma 5.1) the main
results of the paper in §5 and §6. The following section
(§4) will not be used in the sequel, but is of indepen-
dent interest,

Let Q be an oriented L4-manifold with boundary, and
let h ©be an orientation preserving diffeomorphism of

9Q. We are interested in the following

Question 3.1 Does h extend to an orientation

preserving diffeomorphism of Q %

The answer 1is well known to be "no” in general, even

if h induces the identity on homotopy groups. For ex~

ample the "twist" diffeomorphism 7 of 2(S%xB%) = sxsl

defined in §i does not extend to S°xB°, This may be

seen Dby observing that the two manifolds

S = (S2XB2)‘»/ (SszZ)
1d
T = (S%xB%) ggf(sszz)

1k



are hot diffeomorphic. In fact S and T are Jjust the
two 2-sphere bumdles over 82, which are not even homo-
topy equivalent. It follows that ¥ does not even ex—
tend to a homotopy equivalence of 82XB2.

Thus one may attack this problem from a homotopy
theoretic point of view, loocking for obsitructions to ex~
tending h %o a homotopy equivalence. J. Morgan, for
example, has pursued this approach in the case of simply
connected Q (unpublished), as have Cappell - Shaneson
and Gordon for certain bundles @ over the circle
[Cappell-Shaneson] [Gordon) .

We take a different tact, as we shall need pesitive
results for certain explicit examples of 4-manifolds Q

and diffeomorphisms h of 9Q. If, for example, all the
avallable obstructions to extending a particular h
vanish (or we do not know how to calculate them), then
there is some hope that h will extend.

We give a constructive method for how to proceed

when @ and h satisfy the following conditions

(1) Q is obtéined from the 4-ball by adding
2~handles

(2) h is given as the restriction of an explicit
diffeomorphism of a 4~manifold P obtained from Q by
blowing up points. By "explicit" we mean given as a
sequence of handle slides (sece Remark 3.3 (5) below for

details).

15



Preliminary Definitions and Discussion

Let Q %be an oriented 4-manifold.

By [(Q) we denote the set of diffecmorphism classes
of pairs (M, Q) with M - Q = -Q., Thus M is formed
by identifying Q@ with =-Q by some orientation preser-

ving diffeomorphism of 3Q.

Next consider triples (P, T, Ti) where T, and T,

are unit links in an oriented 4-manifold P with P/T0

and P/T1 diffeomorphic to Q. Two triples (P, T,, Ti)

and (P', T4, Tj) are equivalent if there is a diffeomor-

phism f:P-—P' with £(T,) isotopic to T{, i = 0, 1.
Let A(Q) denote the set of equivalence classes of such
triples}

There is a (well defined) map

A =5 )

‘given by (P, Ty, T,) = ((P g “P)/(T 2 ~T4), P/T{). In
other words, (P, Ty Tl) is obtained from the double of
P by blowing down Ty in one copy of P and Ti- in

the other.

16
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The relevance of X 1o the gquestion of extending diffeo-
morphisms of 2Q will be explained below.
First consider the group Diff(3Q) of orientation

preserving diffeomorphisms of 9Q. Let
Diff(Q) —» Diff(3Q)

denote the restriction homomorphism. Then we have

Proposition 3.2 The double cosets of the image R

of r in Diff(dQ) are in one to one correspondence .e. RhR

- with the elements of ['(Q).

Proof Let [h] denote the double coset represen-

should be the

ted by a diffeomorphism h of Q. Then the map
boundary of Q

[h] —— (@ -2, Q)

sets up the desired correspondence. It is surjective
gince every element (M, Q) in [Q) is diffeomorphic

to a pair (Qy -9, Q), for some h. It is injective


Paul  Melvin


should be the boundary of Q

R

i.e. RhR
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because (Q.\g-/"Q, Q) and (Q\H"‘Q, Q) are pairwise
diffeomorphic if and only if there are diffeomorphisms

F and G of @

L4

G

with g = (@ T2Q)n(FlaQ), i.e. [g]

r[h] .

Thus the elements of FP(Q) may be thought of as
diffeomorphismse of 2Q up to composition on either side
by di:ffeomorphisms which extend to Q. In particular,
the element (Q Y5 9 Q) corresponds to the diffeomor-
phisms of 8§ which extend to Q. We denote it by 1.

Now we may interpret oC:A(Q)=—>»T(Q) as a restriection
map. in the folléwing sense. For any element (P, T, Tl)
of A(Q) choose a diffeomorphism h:P->P for which
h(Ti) = Tg. - It is straightforward to verify (along the
lines of 3.2) that (P, T, T,) = [h{3Q] for any such
h, where 3Q and 93P ( :BP/_TO ) are identified using

any diffeomorphism between Q and P/TO.
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Kirby's Calculus
We now restrict our attention to 4-manifolds Q

obtained by adding 2~handles to the 4-ball. Such a mani-

fold may be described by a framed link in SB, consisting

of the attaching circles of the 2~handles together with
(integer) framings for their normal bundles. The 4-manifold
obtained from g given framed link 1 will be denoted by

My »

For example, the framed link

defines the disc bundle over S% with Euler class k.

We will assume that the reader is somewhat familiar
with this point of view, as developed in [Kirbyi]. We
recall the two operations 0, and 0O, (the Calculus)
defined there.

The first pperation 01 changes a framed link L
by adding an unkhotted circle K Witﬁ framing +1 which
lies in a 3~ball disjoint from L. In ML it corresponds
t0 blowing up a point.

The inverse operation 011 removes a component K

of L as above and corresponds to blowing down a 2-sphere

S in- ML'
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In particular, S is Just the core of the 2-handle
over K together Wifh an unknotted disc in .BLP bounded
by K (this characterizes S wup to isotbpy). We say
that K represents S , and denote S by [K]. Analo-

gously, if L, 1s a sublink of L whose components are

unknotted and mutually unlinked, then L, represents a

link [LO] of 2—sphereé in M; consisting of the cores
of the 2-handles attached to L, together with the ob-
vious cellection of discs in Bu bounded by ILj,.

The second operation 02 replaces some component J
of L by dJ', a band connected sum of J with the push
off of some ofher component K. The framings change
accordingly (see [Kirbyll for details). We say that the
resulting link L' 1is obtained by sliding J over K
since it corresponds to sliding the associated 2-handles
in ML over each other. Note that ML and ML' are
diffeomorphic.

The theorem in [Kirbyll states that BML and My,
are diffeomorphic (preserving the natural orientations
induced from the orientation on B@) if and only if
there is‘a gequence of operations Ofi and 02 carrying

L to L'. We call such a sequence P =2 path in the

Calculus and usually denote L' by p(L).

We will aséume that all our paths p are ordered,
in the sense that they may be written as a "composition”
of paths p = PgPsPy where P, involves only blowing up

(01), D,  involves only sliding (0,), and py involves



- only blowing down (0;1)n (Hence p 1is ordered up, slide,
down!)
Now we make some important remarks, all of which will

be referred to in the sequel.

Remarks 3.3 (1) If Q = M; for some framed link L,

then the‘double Q‘zg -2 of Q may be gotten by attaching
2~handles tc Q along the boundaries of the cocores of

the 2~handles of Q = My, and then capping off with a
L-handle. These new 2-handles will be called the dual

handles to the 2-handles in ML' It follows easily that,
without the 4-handle, the double of Q may be described
by the framed link L s I1¥*, where 1¥*¥ 1ig a ccllection of
meridians for the'COmpOnentS of L, each with framing zero,

For example 0

>/

)

In the sgsequel L¥ will always denote the attaching circles
for the dual Z2-handles.

Thug we have

Mo xd M T Mo

where ™ denotes capping off.

21
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(2) If we wish to blow up a point on the 2-sphere
[K1 represented by some (unknotted) component K of a
framed 1ink L, then we add to L a meridian of K with

rframing *q

This may be thought of as a composition of operations

0 and O

1 2

o (i::::i:jﬁzjzﬁ
The image of [X1 wunder this blowing up is the 2-sphere

represented by the "same" circle K (whose framing has

changed by 1),

(3) To blow down the 2-sphere [K] represented by
an unknotted component K of I with framing 1, we

slide over K every component of L which links K,
~1
1 2
reader may verlify that this has the effect of giving all

thereby freeing K o be blown down using O The

the components which link K a full left or righ+t handed

twist (changing the framings accordingly) and then
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removing K (cf. Propositions 14 and 13 in [Kirbyg ).

For example

(4) Suppose L is a framed link., The previous

remark shows how To blow down the 2-sphere {[K] represen-
ted bj an appropriate component K of L. Consider the
"dual" 2-sphere [K]* in the double MLEE’-ML of M,
that is the reflected image of [K] through ONM..

We assert that blowing down ([X]1#* in the double
ﬁL\IL* of ML has the effect of removing the dual handle

over KX¥, That is

By /TR, W) = (g e = ey, M)

down duai

For example




First observe that we may assume that XK is free
from the other components of L, as we may slide any

component of L over K without touching {X]. That is
(mp, K1) % (Mg, (K1)

for any path p sliding components of L - K over K.

Now for the framed knot X, we have

(M L/ ¥, 1) % (B, )
“ 2

_ o - 0p% # -0P%, and [k*] = -cpl

The result follows easily.

(5) As we remarked above, if p is a path in the
Calculus (starting at L) which consists only of handle
slides (p = pS),lthen ML and Mp(L) are diffeomorphic.

In fact there is a natural diffeomorphism (up tec isotopy)
hpsz“_*_%'Mp(L)

defined as follows, TFor simplicity we assume that bp
congists of a single handle slide of acomponent J of L
over Some‘othef component K. In general hp will be a
composition of the diffeomorphisms obtained from these
"elementary" paths.

Off of a collar neighborhood U of ML -7 in
ML -7 let hp be the identity., On U define hp to
be an isotopy (given by the particular handle slide)

carrying J to 7p(J). Now hp extends over the 2-handle

2k



attached to J.
We call any such diffeomorphism of M; an explicit

diffeomorphism.

(6) Suppose J and K are unknotted and unlinked
components of a framed link L and p is the elementary
path consisting of a single slide of J over K along

the trivial band

Here [kl denotes Xk full twiste., For example,

N
I
— SRS

Consider the 2-sphere S in ML obtalned by trivially
tubing together [J] and {[K]. Then it is not difficult

to verify that
_ -1
5 = [p(9)]

We leave this to the reader.
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Extending Diffeomorphisms

Henceforth we fix a framed link I and set Q = ML'

Ay, = A land ry = P(ML).

Definition 3.4 By a 1loop in the Calculus
at L)

p(L) = L

(based

we mean an ordered path p in the Calculus with

(equality means isotopy). Let.dnL denote the

set of all such loops.

Consider the map

Ly, —> Ay,
given by

AR) = G, (1), Lry (D) - L], ny

Mp p, (L) - p(w)])
S

For example, if p

K

is the path

T J=itvage
y " g o
SNGD
. 4 blow -
bitw vp 0
> 6::1\!:% dawn (K}
on [¥ '
0 {see 3.3 (2}) !
then A(p) = My, LJ], [K]).

Now set ¥ = df , where 0(:/\1'“‘? r’L is the map defined

earlier in this section, We obtain a diagram
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sl N

o

For p in L., the element T(p) may be interpre-
ted (using the remarks following Proposition 3.2) as the
restriction to BN&' of an explicit diffeomorphism h:P—P
where P is obtained‘by blowing up points in M;. In
particular, P ﬁ-Mpu(L) and h = h—lq, where g is any

Py

natural identification of Mpu(L) with Mpspu(L)

by a diffeomorphism of SE carrying (pu(L), L) +to

(p,p, (L), p(L)).

In other words, any loop p in the Calculus (based

induced

at L) defines an equivalence class (§(p)) of diffeo~-
morphisms of 'bML. The question of whether these diffeo-
morphisms extend to M, is just the question of whether
5TP) =1 in PL'

Observe that the theorem in [Kirby,] shows that
ﬁdﬁi“a'AL is surjective, We will see in the next section
that oAy =>T  is also surjective. It follows that §
is surjective, and so every diffeomorphism of BN&J arises
as above from a loop in the Calculus.

Thus Question 3.1 for @ = M; reduces to the problem
of identifying the kernel ¥ (1) of ¥,

We give a sufficient condition for a loop to be in

kerﬁ‘ in Proposition 3.7 below. But first we need a



couple of lemmas and a definition.

Lemma 3.5 Suppose that L, and L1 are disjoint
framed links, and p 1is a path in the Calculius starting
at LO\J*Ll and consisting only of handle slides over
components of Lgy. Then there is a pairwise diffeo-

morphism

h
(MLOuu_L1 ' MLO) f**P—}(Mp(LOu L)’ Mo (zy) )

Remark If we add a collar to the boundary of the
first factor of each pair, then the same result holds

allowing components of L1 to slide over each other.

Proof of 3.5 We may assume that p consists of a

single handle slide of scme J over K. The general
result fellows by induction.

There are two possibilities. Either J and K
are both in LO, or J 1is in L1 and K 1is in LO‘
In either case, p vrestricts to an operation on Lo~ J,
and so there is an explicit diffeomorphism (see Remark

3.3 (5))
h ~ M
%o“" T —FP>%p(Lyv 3)

which may be chosen to be the identity on L1 - Jd, Thus

hp extends over the handles attached to L, - J. Clearly

1
hp(MLO - J) - Mp(LO - g) and hp(MthfJ) - MLO\JJ’ 80

28
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in both cases above we have hpMLO = MP(LO)'

Suppose L is a sublink of some framed 1ink L',
and p is in JﬁL. Let 7p(L') denote any framed link
obtained by "carrylng along" the components of L' - I
while performing the operations of p. There is a choice
involved whenever we slide handles, as the bands along
which we slide may link L' —lL arbitrarily. Conse-
quently p(L') is not uniquely defined. However I is
alwaye a sublink (p(L)) of p{(L'), and it is not diffi-
cult to show that the pair (M, p.ys M) is well defined
up to diffecmorphism,

In fact, each cholce for p(L') corresponds to an
(ordered) path in the Calculus from L' +to p{(L').

For any such path p', the previous lemma provides a

diffeomorphism h = h_,
Ps

h
(Mp&(Lt)s Mpu(L))’" Q(Mpép&(L:)v Mpspu(L))
It follows from the proof of the lemma that for any other

diffeomorphism g = h arising from ancther such path

q.
8
g', we have

ng M) =1

where T 1s the collection of 2-spheres [pspu(L) - p(L)]

1

in MPSPH(L); induces g

pairwise diffeomorphism between (Mp'(L')’ ML) and

to be blown down. Thus hg

(MQ'(L'), ML)-



Now specializing to the case L' = Lul¥*, we see that
(Mp(L\JL*)’ M) is well defined, up to diffeomorphism,
- A -
for any p in £;. Therefore (Mp(Lqu*)’ M;) defines

an element of PL‘ This gives a useful form for the

nap K'.IIL“") r‘L'

Lemma 3.6 ¥(p) = (ﬁp(LuL%)' )

Proof Recall ¥ =df, and so setting T, = lp (L)-L)

| -1 L
and T, = hpsfpspu(L) p(L)], we have

(2) = (00, (1) 3 M (1))/ (B0 =T0) s My (1)/7y)

= Uy @ywp, (@ (P~ To) s My (1)/Ty)

which by Remark 3.3 (&)

- (Mpu(L)\J(pu(L)*-L*)/Ti’ Mpu(L)/Ti)
= 0 (more)/T Yo (2)/Ty)

P

= ('Mpspu(LVL*)/hPs (T,), MPsPu(L)/hPs(Tl) )
which by Remark 3.3 (3)

w

= (Mp(LvL*) . ML) .

Combining 3.5 and 3.6, we have

30



Preposition 3.7 If p is in &1L and LwIL* can

be obtained from p(L~~IL*) by sliding components of

p(L~1#*) over components of p(L) = L, then ¥(p) = 1.

Example 3.8 let Q = MK y where K 1s the right

handed trefoil with framing 1

K

O

Therr 8Q is the Poincard homology 3~sphere. We show
that there are diffeomorphisms of &Q of orders 2, 3,
and 5 which extend to diffeomorphisms of Q.

The ones of order 2 and 3 are easy to construct
(without using 3.7). For example, to obtain one of
crder 2 we observe that the trefoil has a 2-fold symme-

try of rotation about an unknotted cirele C in 59

C

T
It follows that there is an orientation preserving invo-

lution on BLP mapping K to itself. This clearly extends

over the 2-handle attached to K, yielding an involution

31
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on Q. The restriction of this involution to 9Q is
the desired diffecmorphism of 0Q of order 2.
A similar argument, exploiting the 3~fold symmetry

of the trefoil

==

provides g diffeomorphism of 9Q of order 3 which ex-
tends to Q.

Now consider d8Q as the 5-fold ecyclic branched cover
of the trefoil (see for example [Kirby-Scharlemann]).
Any covering translation h of 9Q provides a diffeo~
morphism of order 5. We describe one such h explicitly
below.

We may view the 5-fold cover of the trefoil as the
boundary of the 4-manifold P given by the following

framed link I of five circles




33
A generator for the covering translations on BML
may be given as the restriction of the obvious diffeomor-—
phism g of M; of order 5 obtained (as in the cases
above) from the 5-fold symmetry of L about an unknotted
cirele € in 82
C
f;iﬂ
\\\\\ggiéija
g »%

Now there 1s a path ap, in the Calculus from X

to 1L as follows
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If q' denotes the "inverse"” path to g acting on
g(L), then the composed path b, = 4d'd is an element of
o (K)* Observe that the diffeomorphism

u

h — M

pg P, (K) P, (K)

. . -1
s st h
is Jju q

= 9Q 1is periocdic of order 5.

ghq, and so its restriction h <o ’BMPU(K)

To verify that h extends to Q, it suffices (by
Proposition 3.7) to check that the loop p ='pdpspu5,{),K
(where pq 1s the obvious blowing down) is in kery
for ‘J‘.QK—> PK‘ as defined above,

We calculate KwX* and P(KwK¥*) +o be

Kok' F(KUK“

where the dual circles are dotted., Sliding the dotted

circle in p(KwK#*) over the trefoil once we get




which may be isotoped to

Thus

p € ker¥ and h extends.

36
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§4. A Digression
In this section we prove the following theorem.

Theorem 4.1 Let h:N->N %be an orientation pre-

serving diffeomorphism of a closed, orientable 3-manifold.
Then for some simply connected 4-manifold P, there
is an orientation preserving diffecmorphism H:P—>»P and

a diffeomorphism i1:N—>» P for which

H|3P = ihi”?

Remark This extends the work of M., Kreck on oriented
bordism of diffeomorphisms of odd dimensional manifolds.,

We recall that two pairs (N7

3 hi), where hy is g diffeo-

morphism of N., are bordant if there is an (n+1)-manifold
V and a diffeomorphism H of V such that 3V = Noxz—Nl
and H Ni = hi' Bordism classes of diffeomorphisms of
n—manifoclds form an abeiian group Zﬁn under disjoint

union. The main result of [Kreck] is that
~
=20 Gl
An _n@ n+l

for n odd and # 3. Here [}, denotes oriented bordism

A~
of manifolds and £}, denotes the kernel of the signature



homomorphism (3, - 7. Theorem 4.1 shows that ZXB = 0,

which removes the restriction n # 3 above.

Before giving the proof of 4.1 we need a lemma..

(-4 .
Recall the map A{Q) —> ["(Q) defined in the last section.

Lemma 4.2 If Q 1is a compact, simply connected

L-manifold, then
>4
AQ) —> T(Q)
is surjective.

Proof Without loss of generality, we may assume

that the intersection form on Q is odd, for it is evi-
dent that the lemma must held for Q if it holds for
Q # cp°,

Let (M, Q) ©be an element of [(Q). By Novikov

additivity the signature of M is zero, and so M bounds

- a 5-manifold W [Rohlin}. We may assume (afier surger-

ing W if necessary) that there is a Morse funciion
f:w —>f1, 1]
satisfying

(1) £ 1(~1, 1)AW is an open tubular neighborhood
Mx(-1, 1) of 3Q = 8Ax0 with £ (%) = 2axt
(2) Every critical point of f is of index 2 or 3,

with values less or greater than zero, respectively
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Let P denote the 4-manifold £ 1(0)

1

f
—p 0
-4

Consider the 5-manifolds W, = £ T[-t, t] for

t ¢ (0, 1]1. For t small, W, = PxI, and so awt =

t

P Y4 “P. As *¥t crosses a critical value of f, a

3-handle is added to Wt with attaching map in P or -P,
The effect on'awt of adding this 3~handle is to

blow down a pailr of unit knots in P or =P, For, in-

verting the picture, it suffices to show that the effect

on the boundary of a 5-manifeold of adding a 2-handie is

to blow up a pair of points, provided the boundary is simply

connected and has an odd intersection form (%he qu, are

odd since Q is). The first condition shows that adding

a 2-handle results in taking the connected sum on the

boundary with a 2-sphere bundie T over 52. The second

condition shows that we may choose T to be the non-trivial

bundle. But then T = CP® # -CP®, and so the net effect

is to blow up a pair of points.

Continuing in this way we obtain unit links T, and

Ti in P for which

_(P\Tg “P)/(Tpw =Ty = W, =M



Lo

Since Ty and T1 lie away from ©¢P, this diffeomor-

phism identifies P/T1 with Q.

Proof of Theorem 4,1 Choose any compact, simply

connected 4-manifold & with 2Q = N. By Lemma 4.2, if

we blow up sufficiently many pcints in Q we obLain a
(simply connected) 4-manifold P with unit links T, and
T, for which ((Pyy ~P)/(T,w-To), B/T,) and (A -Q, Q)
are pailrwise diffeomorphic. In particular P/T, and P/T1
are diffeomorphic to Q, so there is a diffeomorphism G

of P carrying T1 to Ty-

We now have the following diagram of pairwise

diffeomorphisms

((P 3y -P)/(2p2-Tg), B/T) —> (A -4, Q)

igwe ! l

((PygpP)/(Ty-1y), B/Ty) —> (»/Tg -P/Ty, B/Ty)

where g denotes the canonical diffeomorphism of B(P/Tl)
induced by G|?P.

Therefcre there are diffeomorphisms
e
Q= B/T4
il

for which g[2(B/T,) = (f"llaq)h(e"ilacp/q}i)). T+ follows
that  (efg)|3(P/T) = (e]dQ)n(e™ 2 (p/T))).
Now ef naturally induces a diffeomorphism F of P.

Setting i = e|N (recall that N =3Q) and H = Fg



we have

as desired.

H|3P = ihi

b1



§5. O-Concordance

Let f£:TxI —>MxI be a generic concordance between

two links T, and T of 2-spheres in a 4-manifold M

G
(see §1), and let

1

MxT ——3y, T

» |

M

be the projections. For every regular value t aof gf,

set
T, = (%) (af)"1(%).

T is an orientable 2-manifold in M. We may arrange

+
that the critical points of af have distinct values and

that for any two critical points x and ¥
index(x) < index(y) = qf(x) < qf(y).

Then for any critical value s corresponding to a criti-
cal point of index J, and for &> 0 sufficiently small,

To4g 1s obtained (up to isotopy) by adding an embedded

j~handle %o Ts—e in M. Such a concordance will be
called nice.,

If £ is a O-concordance, then each Tt is a link
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of Z-spheres in M. The basic idea of the proof of
Theorenm 5.2 below is to blow down each regular level of
the concordance and to show tﬁat the resulting 4-manifolds
db not change as we cross the critical levels. The only
difficulty is that Tt will generzally not be a unit link,
and so we do not know how to blow it down.

We may, however, generalize the rotion of blowing
down to arbitrary links T as follows. Roughly speaking,
we blow up as few points as possible on T +to give each
component self intersection 1, and then blow down the
resulting (unit) 1link.

Precisely, if T consists of only one 2-sphere §
with self intersection k, let (M', S') denote the

pairwise connected sum
' : 2
(M'! S ) = (M! S) # I’(i'(CP ’ P))

where r = |lkl - 1|, P 1is a projective line cutting fopl
in one point (see §i), and the sign is chosen to agree
with the sign of k. For k = 0 we choocse the positive
orientation.

If T has more than one component, we iterate the

process above to obtain (M', T') with T' a unit link.

We call T' +the image of T, Now define

M/T = M'/T!

Note that it follows from the proof of Proposition 6.2

that the opposite choice of orientation in defining (M', S')
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for the case %k = 0 does not change M/S, essentially
because ’1”5'130(3) = 7/2%2.
Now we come t0 the chief ingredient in the proofs

of Theorem 5.2 and Theorem 6.3 in the next section.

Lemma 5.1 Let 8 DbYe a critical value df a nice
O-~concordance f:TxI—-»MxI.

Then MN/T and M/Ts+e are diffeomorphic for

S—&
sufficiently small .

Proof By duality we may assume that the index J

of the critical point with value s 1s 0 or 1.
Choose £ small encugh so that s is the only

critical value in the interval J = [s-g, s+€], Let

*

T, = (p£) (af) " 1(J)

where p and g denocte the projections M@E-Mxl-gaI.

We may adjust £ by a level preserving isotopy so that
Ty = T _.~H, where H = B9xB7"J  is an embedded j~handle
- 0 or 1) with |

o
l

T, NH = HpdgplTd

- L wpdon3Td Jenn3~1]
Tore = (Tgo ~ 2872377 1)u BIx2B

The isotopy class of each Tt remains unchanged, and so

M/Tt remains unchanged.



-
I
2l

> O p ot D> O

(=0 7 SPEP

The component of any regular neighborhood of TJ in
M which contains the handle H is a 4-manifeld P, It
is evident that the links Totg coincide outside P. We

let T = Tsie - P denote this common link, and set

Tg=Tq, -~ T and T, =T,

The rough idea now is that M/Ts+a is obtained from

—T'

M/T

g-g¢ Dy removing P/T, and replacing it with P/Ti.

We will see that P/T, and P/T1 are diffeomorphic, and

so the problem of showing that MN/T and M/T are

= hadlh - s+¢g

diffeomorphic reduces +o showing that a particular diffeo=
morphism of 8(P/T;) extends.

The outline of the rest of the proof is as follows.
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We first blow up appropriate points in PcM +o obtain

P'eM' -and unit links TO' and T,' in P' for which_

1

M'~P"=M-P and
M/, = M'/(TwTy)
M/T, e = M'/(DoT])

We then show that there is a diffeomorphism h of P!
with h(T§) =T/ and h|2P’ = identity.
Assuming this, the lemma follows easily. Extending
h over M' - P' by the identity, we obtain a diffeomor-
phism of M' carrying TwTy to T\JTi. The equations dis-
played above then yield a diffecmorphism between M/Ts-i
and M/TS+£.
S50 we must consitruct Té, Tic:P' and h as above.
We consider the two cases j = 0 or 1.
If j =0, then P is a 4-ball with Ty empty and
T, an unknotted 2-sphere S inside P, Clearly S must
have self intersection zero. Blowing up one point x on
S we obtain P’, a projective plane cp? with a 4-ball B
removed. Setting Tg = image of x and Ti = image of S,
we easily see that the properties above are satisfied.
Now Té and Ti are simply a pair of projective lines,
and so there ié a linear isomorphism of cp? carrying one
T the other. Adjusting by an isotopy so as to map B 1o
itself by the identity, this restricts to the desired

diffeomorphism h of P°'.

If j =1, then H joins the two components S,

L6
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and 8§ of T,, one of which (SO) must have self inter-

1
section zerc since f 1is a concordance. If k is the
self intersection of the other component (Sl), then P
is diffeomorphic to the boundary connected sum of 82232
and the disc bundle over 82 with Euler class k. In other
words, P may be described by the framed link of two un-

knotted circles KO\/»K1

« 5
k£ fi: :: - . (:::::::::>
0. k
with 8; = [K;] represented by X; (see §3). Now T,
congists of a single 2-sphere S (with self intersection
k) obtained by trivially tubing together Sy and S, and

so S is isotopic to h;l[p(Kl)] where q 'is the handle
slide

0O 0-0<C

(see §3.3 (6)).

Blowing up r

Ko
K,P(t

t[kl - 1! points Xgp " 0 0y X,

on $,MS and one point x on Sy - S, as indicated

below
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we obtain P', which may be described by the framed link

L' (depending on k)

(kyo)

Set T) = image of Ty and T, = image of T1(=S)\jimage
of x. Then we have Té represented by the link Lo indi-
cated above, and Ti
cated in the following link description of P' (arising

represented by the link Li indi-

from M instead of }
q(K VK, ) MKOU K,
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(k<o)

(k=0)

It is clear that Té, TiCZP' satisfy the desired
properties. To construct h:P'—>P' with h{T}) = i

and h]BP' = identity it suffices to show that
(P', T4, T;) € kerX

where 0{:A(PY/T6)—?W1(P'/T5) is the map constructed in §3.

For o{(P', T4, T;
[ P o | ' -t ' ' ' Tt

between ((P 9 °F )/(Tixf T4}, P /Ti) and ((P T3 F )/

(Té\/—Té), P'/Té). Since F4 = 0, this induces a diffeo-

) = 1 yields a pairwise diffeomorphism

morphism of pairs (P'~Ea'-P’, Tix}~T6)*§-(P'§é—P', Ty~ ~T4)

which carries P' %o itself. In cother words, there are



50

diffeomorphisms f and g of P' with f(Ti) = T4,
g(Ty) =Ty, and £ =g on PP'. Then h = £ ‘g is the
desired diffeomorphism of P'.

We observed above that P' =M ,, and T} = (L.
The second link description above for P' wuses the same
link L', and 1is obtained from the first by the following
loop p, in the Calculus (based at L'). We illustrate

the case K>0. The other two cases are completely ana-

logous.

, y
Clearly T! = h ~[{L,1, for L, as above.
1 Py 1 1
Let Pq be the path in fthe Calculus which blows down

Ly. Set L = pd(LO), so that M = P'/Té. If p, denotes



the "inverse” path from I to L', then we obtain a loop

D = pyP P, in the Calculus based at L, i.e. p ¢ “OI

Since pu(L) - L =1L,, it is evident that ﬁ(p) = (P',Té,Til),
where 3:Q —>A; is the map defined in §3'.

We now apply Proposition 3.7 to show
D £ ker?f

where ¥ =o!/5. This gives (P', T§, Ti) & ker/3, and the
lemma follows.
Explicitly, we start with L (once again we only

carry out the case kD> 0; the others are analogous)

€« T circles

o

Now ILwI* is given by

where the dual circles are dotted.
Next we construct P(LwI*) =as the final picture in

the following sequence

51



Now LwL¥ is obtained from p(Lw1*) as specified
in 3.7 by sliding all the circles with framing -2 (in-
cluding the dual circle) over the (undotted) circle with

framing zero

52



Thus p ¢ kerﬁﬁ as degsired.

Inductive application of this lemma to a O-concordance

of unit links yields

Theorem 5.2 O-concordant unit links in a 4-manifold

are equivalent.
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1

§6. Embedding CP~ in cp? and Gluck's Construction

In this section we discuss the following conjecture

(which was the starting point of our investigations).

Conjecture 6.1 Let f:CP;—~§CP2 be a degree one

embedding., Then there is a diffeomorphism h:CP2— 0p2
with hf = £, voivsion

This is merely a restatement of Conjecture 2 in 81,
that every unit knot in CP2 is equivalent to CPl.

We may reformulate this conjecture in terms of equi-
variant knot theory of 3-spheres in 85. Recall +that 55,
viewed ag the unit sphere-in 03, has a natural S1 action
induced by unit complex multiplication. cp? may be de-
fined as the quotient of §° by this action. In fact S5
is a principal £0(2) bundle over CPZ, with the orbits
0f the action as fibers. The pull back of this bundle

1

under any embedding £:CP ~%-CP2 has Euler number equal

" to the degree of the embedding.* Thus degree one embeddings

* The only degrees d realized by embeddings are a2 2
[Tristram]



pull back the Hopf bundle, inducing an equivariant embed-

ding of the 3-sphere in §°

#(30) = 83 —u g5

Lo

cpl — 5 p?
£

Now any diffeomorphism of CP2 lifts t0 an eguivariant

diffeomorphism of S5, and conversely any equivariant

diffeomorphism of 5 projects to a diffeomorphism of CP2.

Therefore Conjecture 6.1 is equivalent %o the assertion
that there is (up to equivariant diffeomorphism of 85)
only one enivariant embedding of 87 in s°.

Unfortunately, the conjecture is Probably less +tract-
able in this form, as most equivariant probiems ére studied
by factoring out by the group action, which brings us back
to where we started,

We observe that if 6.1 fails, then there is a homo-

topy H-sphere 2. ( # st )  for which
CP? # 5 = cp?

In particular, 2 is obtained by blowing down £(CPL) in
CP°. Thus 6.1 would follow from the irreducibility of cp?,
More generally, the equality cp? # 5, = cP° would
give CP* # k3 = 0P® for any k 2 0. Thus 6.1 would fol-
low merely frdm the existence of a bound on the number of
factors possible in a connected sum decomposition of CPZ,

(Every compact 3-manifold has such a bound [Kneser] ).
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We may study the homotopy 4-sphere X = cp?/f(cpl)
from a somewhat different point of view, under the addi-
tional assumption that f£(CPY) and OP} meet in exactly
one point. We do not know if this can always be arranged.
To conform with the notation of §1 we set S' = £(cpl).
Then the image of S' when blowing down CP1 in CPZ
is a 2-sphere § in s*, (In other words S' is gotten
by blowing up a point of S.) Recalling from $1 H. Gluck's

construction of a homotopy 4-sphere oS from a 2-sphere

S in Su, we have

Proposition 6.2 CP2/S' = ¢S

Remark In the notation of §5 this says s”/s = 'S

Proof of 6.2 View Su ags a handlebody H built on

a tubular neighborhood SZXB2 of S = Ssz. Recall from

2

_§3 that S°%xB may be gotien by attaching a 2-handle %o

the 4-ball along an unknotted circle K with framing zero.
K
o)
We may obtain S by giving all the attaching maps of
H a full twist (right or left handed as N,80(3) = z/2z)
as they pass through a spanning disc for X in 83, But

by Remarks 3.3 (2) and (3), this is also the handlebody

structure for CPZ/S' as indicated below
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. The reader may verify that the framings on the

2-handles agree, and so CPZ/S' =g,

As an immediate conseguence, we observe that the

homotopy spheres obtained by Gluck's construction “stabilize”

(become standard) after blowing up one point. That is

vs # cp? = 5% # cp?
Recall that every homotopy 4-sphere stabilizes if we blow
up sufficiently many points.

We now invoke Theorem 5.2 together with the previous
proposition to deduce that O-concordant 2—-spheres SO and
S1 in S}"L yield diffeomorphic homotopy spheres TS, and

181. In particular

{8, #S) TSy # T8,

and so T defines a2 homomorphism from the semigroup of
O-concordance classeés of knois in S& (under pairwise
connected sum) t¢ the semigroup H of homotopy 4-spheres

which stabilize after blowing up one point.
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Alternatively, this may be deduced directly from
Lemma 5.1. In fact we may conclude more. Obgerve that
the only place in the proof-of 5.1 where it is essential
that we are dealing with g concordance (rather than an
arbitrary cobordism) is where we need a particular com-
ponent of arregular cross section to have self intersec-
tion zero., But the regular cross sections of any O-co-
hordism befweeﬁ linké with zero self intersection auto-
matically have self intersection zerof% Thus Lemma 5.1\
holds for such cobordisms, and letting € denote the

4

O-cobordism classes of knots in SLL we have

Theorem 6.3 T defines a semigroup homomorphism

sl

[N

Pl s ol

ki
oG gt

T:C—=>H

We do not know very much about the semigroup C.

If it were trivial, then S = s

N

for every knot S in
S, which would answer a question of H. Gluck (seegl).
If it were a group, then we would atleast answer Gluck's
question topologically. This follows from the following

corollary to 6.3.

Corollary 6.4 If S 1is a knot in s which is in-

vertible in C, then S is homeomorphic to Sh.

Proof TLet S' be an inverse for £ in C, that is

S #S' and the unknot So are O-cobordant. Then



[47]
]

T(Sy)

il

T(S #8')

=TS #71s°

The topological Shonflies theorem in SQ

the result.

now gives
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§7. Handlebody Structure for ©S

In this section we continue investigating the homotopy
h-gphere TS which arises from Gluck's construction on an
embedded Z2-gphere S in Sq.

View 54 as the unit sphere in R5. Let Ri denote

the hyperspace Ruxt C R?, Set S% = Suf\Ri and Bi =
s”rx(gg%Rg) , for 0<t4l. The points (0,0,0,0,1) and

(0,0,0,0,~1) will be called the north and south poles

of S@, respectively.

We may adjust 8 Dby an isotepy so that

(1) The poles of s* 4o not 1lie on S
(2) qlS:S——bR is a Morse function, where qES“L-aR
is the restriciion of the projection R5-—?R onto the

lagt factor.,

Such an embedding will be called generic.
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It is convenient to introduce a more restriciive
class of embeddings. Consider the projection (for any

0<t <)
84 ~ poles —jiﬁé-s%

along trajectories of grad{g). We say that a generic

It

SCS is a critical level embedding if

*(1) »pls is a transverse immersion
(2) There is a handlebody structure H for S
(induced by Q[S) such that p embeds any union of handles

of equal index in H.

In particular, it follows that the projection (under
p) of the 1 and 2~handles of H is a ribbon surface of
genus zero in Sz whose boundary ie the unlink,

As in §5, we say that S is nice if the critical

values of ¢|8 are distine’ and increase with the index
of their corresponding critical points,

It is well known that any generic embedding S CLS“
may be moved by an isotopy to a nice critical level embed-

ding. In fact this can be done without changing the number

~or indices of the critical points of qlS,

Example 7.1 Consider the knotted 2-sphere shown

in crossection below
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3 3 3 : 3

S o) . 3
.2/§ “/3 ' SO ‘ S ‘(’3 Safg

This is Example 12 in [Fox]. It may be isotoped to

the nice critical level embedding shown below

G
AV

e\ e}
3 3 3 : 3
S 5 3
33 S‘fs | SO . Ss‘/a S 275
The reader may verify that tThe two circles in 82/3

bound disjoint disecs.

Proposition 7.2 If S has a generic embedding in Sq

with fewer than three local minima, then €8 can be built

without 3-~handles.

Remark The proposition applies to the knot in
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Example 7.1, which has two critical points of index

zero. We will carry 1t along to elucidate the proof.

Proof (Sketch) By the remarks above 7.1, we may

assume that the inclusion of S in 84 is a nice critical
level embedding,

Fix a handlebody structure for S (as in the def-
inition above) so that D = Bir\s is a O-handle, for
some t. Setting B = Bié, it follows that (B,.D) is an
unknotted ball pair.

Now we may construct in a natural way a handlébody
presentation for 84 with one less 1-handle than the
number of O~handles in S.

The construction proceéds roughly as follows.. We
start with B as our O-handle.

We then add a "distinguished” 2-handle consisting of
the part of an appropriate tubular neighborhood of 8
which lies outside of B, This 2-handle is attached to

an unknotted circle K in ©B.
[k
0

Clearly K represents S (in the sense of §3).
Next we add l-handles "linking" each O-handle in &

(other than D).



2—h.andle

\/ c’sh u|shed

4-hand (2

The core of a typical such 1-handle is shown in crossec-

tion below (the thin line)

LI } v &
B eritiea

tovel loyel

For convenience we denote the attaching map in 9B by

an unknotted circle with a dot on it.

1'53“413 V;‘ K

0

This circle is just a meridisn for an arc joining the two

points in fhe attaching sphere (SO) of the 1-handle.
It is understooed that any attachihg maps which link this
circle are actually passing over the 1—handle;

In a similar way we add Z-handles "linking" each

1-handle in S
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,//// .
\tL/ —
S

4 »ad 2- handies for st

and 3~handles linking each 2-handle ({the picture is
harder to draw).
This leaves a 4-ball, which caps off the picture.
The proof of Proposition 6.2 applied to this handle-
body presentation of s¥ ohows that TS is Formed with
gt

the same number of handles as y the only difference

being the atiaching maps near X.

1 3nd 2-hendes fex TS
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We now note that any l1-handle in Su is geometri-
cally cancelled by one of the 2-handles after an appro-

priate isotopy, as indicated below.

can

This relies on the fact that the attaching maps of the
2~-nandles are in the form of ribbons.,

Cbserve that the same thing occurs in TS5 if we
first slide the corresponding 2-~handle in S over K,

a8 shown below

20, 7
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Thus we may cancel one of the l-~handles in 8 with
a Z2~handle, and €0 ®S can be built with two legss 1-handles
than the number of O-handles in S. Consequently, if S
has fewer'than three critical points of index 0, then
TS can be built without i-handles,

Inverting TS, we see that it can be bullt without

3~handles., -

Remark Using the methods of §3, it is possible to
give an explicit handlebody presentation for S with no
3-handles (for S as in 7.2). The 1 and 2-handles then
give a presentation for the trivial group 'Hits.

If this presentation reduces to the trivial presen-
tation by a sequence of extended Nielson transformations,
then (¢S)xI = B° [Andrews-Curtis] and so the argument
in Corollary 6.4 shows that S is homeomorphic to 84.

If this feduction can be realized geometrically (by
handle slides in %S) then TS and s*  are diffeo~

morphic. In particular, one may show this for the knot

in Example 7.1.
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