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B!owing Up and Down in 4-Manifolds

By

Paul Michael Melvin

Abstract

This paper is concerned with the topo!ogy of 4-dimen-

siona! manifolds.   In particular we are interested in links

of 2-spheres in simply connected 4-manifolds.

Our motivating question is whether or not there exist

inequivalent unit links (all components with self inter-

section +I) which are concordant.  A positive answer would

provide a counterexample to the 5-dimensional h-cobordism

conjecture.

Our principal result states that any two unit links

which can be joined by a concordance with simply connected

levels must be equivalent.

The proof uses the technique of blowing up points and

blowing down spheres in 4-manifolds, together with some

results on extending diffeomorphisms of 3-manifolds.   The

underlying approach is J'constructive" handlebody theory.

As an additional result, unrelated to our main line

of thought, we show that the 3-dimensional oriented bordism

group of diffeomorphisms vanishes

Finally, we apply our results to show that

homotopy 4-spheres arising naturally from knots

in S4 are standard.

certain

of 2-spheres
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I.  Definitions and Outline of Results

The general purpose of this paper is to study simply

connected 4-manifo!ds from the point of view of links of

2-spheres in 4-manifolds.   Our principal tool will be the

technique of blowing up.   This we define below in a purely

topological way, ignoring the complex structure that comes

into play in the usual definitions from algebraic geometry.

Our setting will be the smooth category, unless speci-

fied otherwise.  We write  ÿN  for the boundary of a

(smooth) manifold  M.  If  M  is oriented, then  -M  will

denote the same manifold with the opposite orientation°

For any pair of oriented manifolds  M  and  N, and any or-

ientation reversing diffeomorphism  h:ÿN--->ÿM   , we may

form a closed manifold  MÿN  from the disjoint union of

M  and  N  by identifying points in  BN  with their images

under  h  in  ÿM.  This has a unique smooth structure

compatible with the inclusions  M-->MÿN<--N.

There are two ways of blowing up a point  x  in a

4-manifold  M  (replacing a 4-ball about  x  by a Hopf disc

bundle with one of the two possible orientations).   These

yield the connected sum of  M  near  x  with either  CP2

or  -CP2.  We assume that the connected sum is taken away

from the standard  _+CP1  ( z2 = 0  in homogeneous coordi-



2

hates  [zO, Zl, z2]   in  ÿCP2

image of x.

If S is

point on  S

(±CP2, P), where  P

in one point (e.g.

image of  S.

), which will be called the

M

We may invert this construction.  Let  T  be a link

of 2-spheres in the interior of M all of whose components

have self intersection  ±1.  Such a link will be called

a unit link.  By  M/T  we denote the 4-manifold gotten

from  M  by blow£ng down  L'ÿ (replacing a tubular neighbor-

hood of each 2-sphere  S  in  T  by a 4-ball - the center

of this ball is called the image of  S).  M/T  is well

defined since  r4 = 0   ÿerf].  The reader is cautioned not

to confuse  M/T  with the quotient space of  M  obtained

by identifying  T  to a point.  Here we identify each com-

ponent of  T  to a different point.

Note that  M - T  sits naturally in  M/T  as the

a 2-manifold in  M, then we may blow up a

by taking the connected sum pairwise with

is a projective line cutting  ÿCP1

zI = 0 ).  S # P  is then called the
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complement of a collection of points, the images of the

components of  T.   Blowing up these points in  M/T  appro-

priately yields  M.  In particular

M =NiT # p(CP2) # q(-CPz)

where  p  is the number of components of  T  with self

intersection  +i  and  q  is the number with self inter-

section  -Io

Similarly if we first blow up a collection of points

in  M  and then blow down their images, then we get  N

back again.

We call two links  TO  and  T1  in  N  equivalent if

there is a diffeomorphism of  N  carrying one onto the

other.  It is clear that  M/T0  and  M/T1  are diffeomor-

phic if  TO  and  T1  are equivalent unit links.   Conver-

sely, if  X/T0  and  N/TI  are diffeomorphic, then by

homogeneity there is a diffeomorphism carrying  M - NO

to  M - NI, where  Ni  is an open tubular neighborhood of

Ti, i = 0, I.  Since  P4 = 0, this extends to a diffeomor-

phism of  M  carrying  TO  to  TI.  Thus for unit links,

TO  and  Ti  are equivalent if and only if  M/T0 = N/TI.

Two links  TO  and  T1  in  N  are concordant if

there is a proper embedding  fÿTxl--+Kx!  with  f(Txi)

and  Tixi  equivalent in  ÿxi , i = 0, I.  Here  I  de-

notes the unit interval   [0, i]  and proper means that

f-l(ÿ(Mxl)) = ÿ(Txl).  Note that we are using concordsnce

in a weaker sense than usual as  !  may have diffeomor-
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phisms which are not isotopic to the identity.

For unit links, concordance has the fol!owing inter-

pretation

Theorem 2.1  If  TO  and  T1  are unit links in a

closed, simply connected 4-manifold  M, then  TO  and

are concordant if and only if  M/T0  and  M/TI  are h-

cobordant.

T1

The proof wil! be given in ÿ2.

This link setting applies to any h-cobordant, closed,

simply connected 4-manifo!ds  M0  and  M1.  For it follows

from [Wall] that  M0  and  MI  become diffeomorphic after

blowing up sufficiently many points in each.   Thus there

are unit links  TO  and  T1  in some closed, simply connected

4-manifold  M  such that  Mi = M/Ti, i = 0, !.  Hence

Theorem 2.1 shows that the 5-dimensional h-cobordism con-

jecture is equivalent to

Conjecture i  Concordant unit links in a closed,

simply connected 4-manifold are equivalent.

In searching for counterexamples we need only con-

sider unit links in connected sums of  CP2  and  -Cp2ÿ

for we may insure that the common manifold  M, obtained

as above by blowing up points in two h-cobordant manifolds

M0  and  Nl, is such a manifold.   In effect we first blow
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up two points with opposite orientations, obtaining h-co-

bordant manifolds  Mi # CP2 # -CP2,    = O, i, with iso-

morphic odd, indefinite intersection forms.  By the classi-

fication of integral, unimodular, symmetric bilinear forms,

these forms are isomorphic to some

<!> e     • ÷<i> • <-i)e     .

[Husemoller - Milnor]  and so the  Mi # CP2 # -CP2  are

also h-cobordant to a connected sum of copies of  CP2  and

-CP2  [Wall].  As above, blowing up extra points if necessary,

we obtain  M  and unit links  Ti  with  M/Ti = Mi , i = 0, 1,

where  M  is a connected sum of copies of  CP2  and  -CP2.

At the end of ÿ2, we show that the notions of con-

eordance, homotopy, and homology are all equivalent for

unit links in a closed, simply connected 4-manifold  M.

In particular, if the homology classes represented by the

components of two unit links  TO  and  T1  are the same,

then  M/T0  and  M/T1  are h-cobordant.  Thus, for example,

the existence of two inequivalent but homologous unit knots

in a closed, simply connected 4-manifold would yield a

eounterexample to the 5-dimensional h-cobordism conjecture.

any counterexamp!e which stabilizes after

connected sum with one  ÿCP2  must arise in

Conversely,

forming the

this way.

On the positive side we have Theorem 5.2 below.

First we need a definition. ÿ Note that any concordance

f:Txl--*Mxl  may be adjusted by a small isotopy (relative



6

to the boundary) so that  qf  is a Morse function, where

q:Mxl--ÿl  is projection.  Such a concordance will be

called generic.  Let the genus of  f  be the maximal genus

of the components of the 2-manifo!ds   (qf)-l(t)  , where  t

ranges over all regular values of  qf.  Let  n  be some

non-negative integer.

Definition  Two links in a 4-manifold are n-concordant

if there is a generic concordance of genus n between them.

Note that concordant links in a 4-manifold are n-

concordant for some  n.  Thus the following result may be

viewed as the first step in a proof of the h-cobordism

conjecture.

Theorem 5.2  0-concordant unit links in a 4-manifold

are equivalent.

In §3 we give some preliminary results on extending

diffeomorphisms of closed 3-manifolds to 4-manifolds which

they bound.

We digress in @4 (using the point of view of ÿ3) to

give a proof of the vanishing of the 3-dimensional oriented

bordism group of diffeomorphisms.

In ÿ5 we give the

tools developed in ÿ3.

We now specialize to the case of unit !iÿs in  CP2

proof of Theorem 5.2 using the
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(or equivalently in  -CP2,  as orientation makes no differ-

ence in our considerations) where any unit link has exact-

yields a homotopy 4-sphere ÿ .

[Wall] so Theorem 2.1 shows that

Thus for  CP2  Conjecture 1 reads

is h-cobordant to  S4

S  is concordant to  CPI.

Conjecture 2  Any unit knot in  CP2  is equivalent

to  CP1  (ef. Problem 4.23 in [KirbY2])o

A discussion of some conjectures related to Conjecture

2 will be given in ÿ6.  In particular we will consider the

special case of knots in  CP2  which intersect  CPI  in

exactly one point.  We show that Conjecture 2 in this case

is equivalent to a problem of Herman Gluck about knotted

2-spheres in  S4.

Precisely, let  p(e)  denote the diffeomorphism of

S2  which rotates  S2  about its polar axis through an

angle of  @ ÿ SI.  Thus  fl'SI--* S0(3)  represents the non-

trivial element of  ÿIS0(3) o  Given a 2-sphere  S  in  S4,

choose an embedded  S2xB2  with  S2x0 = S  and define

where the map  ÿ:S2xSI--ÿS2xS1

(p(0)(s),ÿ).  Gluck shows that

homotopy 4-sphere and asks

zS = (S4 - S2xint(B2)) ÿ_J S2xB2
T

is given by  T(s, % ) =

TS  is a well defined

ly one component  S (homologous to the standardly embedded

CpI),  It is easy to see that blowing down  S  in  CP2
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An affirmative answer is known for spun knots

and more generally twist spun knots [Gordon].

We shall prove

[Gluck]

Proposition 6.2  If  S  is a knot in  S4  and  S'

is the unit knot in  CP2  obtained by blowing up a point

on  S  , then  Cp2/s' = ÿS.

Note that any knot in

in one point arises in this way.

As a corollary to the Proposition and to Theorem 5.2

we have  ÿS = S4  for knots  S  in  S4  which are, 0-eoncor-

dant to the unknot.*

In fact the proof of Theorem 5.2 will show more.  We

define two links  ÿT0  and  TI  to be cobordant if there

is a 3-manifo!d  N  properly embedded in  Mxl  with

N z%Yaxi = T.     There is as above the notion of n-cobordanti

links.  The 0-cobordlsm  classes of 2-spheres in  S4  form

a semigroup  C  under connected sum.  Let  H  denote the

semigroup of homotopy 4-spheres ÿ , under connected sum,

CP2  which intersects  CP1

*  A subclass of these knots called ribbon knots has been
in [Yajimÿ and [Yanagawÿ .  These knots can in fact be
spun (in the sense of [G!uck]) and are thus determined by
their complements.

Question  Is  TS = S4?   [Gluck]



for which  ÿ# CP2 = CP2.   Then we have

Theorem 6.3  ÿ defines a semigroup homomorphism

:C-*H .

Corollary 6.4  If  S  is a knot in  S4  which is in-

vertible in  C, then  zS  is homeomorphic to  S4.

In ÿ7 we wil! give an alternate approach to Gluck's

question in terms of handlebody theory.  We show, under

certain severe restrictions on the critical points of an

embedded 2-sphere  S  in  S4, that  TS  can be built

without 3-handles.   This reduces the question of the homeo-

morphism type of  ÿS  to an algebraic problem.
4
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2.  Concordance and h-Cobordism

i

First we generalize the notions of blowing up and

down to concordances of points and links in 5-manifolds.

Let  W  be a 5-manifold with non-empty boundary.

A concordance of a closed k-manifold  CO  in  W  is an

embedding f:C0xl-->W  which is proper  (f-I(Bw) = CoXÿl).

The image of f is a proper (k+l)-submanifold  C  of  W,

also sometimes called the concordance.

We proceed as in ÿI, crossing our constructions with

the unit interval.

If  BC  is a finite collection of points in  ÿW

(k = 0)  we may blow up  C  by replacing a tubular neigh-

borhood of each arc in  C  with  Hxl  attached along

Hxl, where  H  is the Hopf disc bundle with either orien-

tation.  Once we choose orientations, this is well defined

since F4 = 0 [Cerf]  and F5 = 0 [Smal4 .

If  ÿC  is a unit link in  ÿW  (k = 2)  then we may

form a 5-manifold  W/C  by blowing down  C  (replacing a

tubular neiÿborhood of each component of  C  by a 5-ball

B4x!  attached along  S3x!).  W/C  is well defined, as

above, and  ÿ(W/C) = BW/SC.   If we view  W - C  as the

complement in  W/C  of a concordance of points,   C', then

W  is obtained from  W/C  by blowing up  C'   appropriately.
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Theorem 2.1  If  TO  and  T1  are unit links in a

closed, simply connected 4-manifold  M, then  TO  and

are concordant if and only if  M/T0  and  M/T1  are

T1

h-cobordant.

Proof  First suppose that  TO  and  T1  are concor-

danto  Let  U  denote the complement in  MxI   of an open

tubular neighborhood  N  of this concordance  C.  Blowing

down  C  we

boundary  M!Toÿ-M/TI.  Let  C'

concordance of points.   Then  N'

lar neighborhood for  C'   in  Wo

obtain a simply connected 5-manifold  W  with

denote the resulting

= W - U  is an open tubu-

MÿO--ÿ

blow
dowÿ

The relative Nayer Vietoris sequence for   (N, NÿLx0)

and  (U, UÿMxO)  in  N_x!  (of. p.187 in [Spanier])  shows

that  H.(U, U/'ÿFLxO) = 0.   The corresponding sequence in

W  for  (N', N'ÿM/T0)  and  (U, U FÿM/TO)  now gives

H.(W, M/T0) = O.   It follows from theorems of Hurewicz

and Whitehead that  W  is an h-cobordismo

Conversely, suppose  W  is an h-cobordism between

M!T0  and  M/TI.  For  i = O, I, let  Pi  and  qi  denote

the number of components of  T.   with self intersection
1

+i  and  -i, respectivelY.   It is clear from rank ÿld
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the image of  TO  and those in the image of  TI, which

when blown up appropriately yields a 5-manifold  V  with

boundary MÿJ-M  and a concordance in  V  between  TO

and  T1.  As above we see that  V  is an h-cobordism,

It follows from [Barden] that

to

V  must be diffeomorphic

tx!ÿ and so  TO  and  T1  are concordant.

Remark 2.2 If  TO  and  T1  are concordant links,

then they are homotopic, up to equivalence.   In effect,

f:TxI---ÿN_xI  is the concordance and  p:KxI--ÿM  is pro-

jection, then  pf  is a homotopy %etween  T$  and  T{

(where  T' is equivalent to  T. )1                                  1  '

Furthermore it is clear that homotopic links  TO  and

TI  are componentwise homologous, in the sense that the

maps

induced by the inclusions have the same image.

Now the first part of Theorem 2.1 may be proved as

fol!ows, using the a priori weaker hypothesis that  TO

and  T1  are componentwise homologous.ÿ  The intersection

form on  N  splits as the orthogonal direct sum of the

intersection forms on  M - Ni  and  Ni, where  Ni  denotes

signature considerations that  P0 = Pl  and  q0 = ql"

Thus there is a concordance in  W  between the points in

," 0<'  (SJÿ'-ÿ ":N

do<'> ' ,ÿ'-

8Vÿ rÿ) I{',,{ÿ'[Y, O r'l,) O ;/
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an open tubular neighborhood of  Ti  in  M, i = 0, i.

induced by the inclusions must also have the same image,

and so  M - NO  and  M - N1  have isomorphic forms.

Since  M/Ti = (M - Ni)ÿ4-balls,  ÿ/T0  and  M/T1  also

have isomorphic forms.  Therefore they are h-cobordant

[Wal!].

It follows from Theorem 2.1 that the notions of con-

cordanee, homotopy, and componentwise homology are the

up to equivalence, for unit links in closed, simply

connected 4-manifolds.

same,

Thus the maps
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§3.  Extending Diffeomorphisms of 3-Nanifolds

Let  Q  be an oriented 4-manifold with boundary, and

let  h  be an orientation preserving diffeomorphism of

BQ.  We are interested in the fol!owing

Question 3.1  Does  h  extend to an orientation

preserving diffeomorphism of  Q ?

The answer is well known to be "no" in general, even

if  h  induces the identity on homotopy groups.   For ex-

ample the "twist" diffeomorphism  ÿ  of  ÿ(S2xB2) = S2xS1

defined in @i does not extend to  S2xB2.   This may be

seen by observing that the two manifolds

s = <S2x 2> y (S2xB2)

T = (S2xB2) ÿ_2 (S2xB2)
"c

In the next two sections we explore the problem of

extending diffeomorphisms of 3-manifolds to 4-manifolds

which they bound.  We will make use of the methods deve-

loped in this section to prove   (via Lemma 5.1)   the main

results of the paper in 45 and ÿ6.  The following section

(ÿ4)  will not be used in the sequel, but is of indepen-

dent interest.
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are not diffeomorphic.  In fact  S  and  T  are just the

two 2-sphere bundles over  S2, which are not even homo-

topy equivalent.   It follows that  ÿ  does not even ex-

tend to a homotopy equivalence of  S2xB2.

Thus one may attack this problem from a homotopy

theoretic point of view, looking for obstructions to ex-

tending  h  to a homotopy equivalence.  J. Morgan, for

example, has pursued this approach in the case of simply

connected  Q  (unpublished), as have Cappell - Shaneson

and Gordon for certain bundles  Q  over the circle

[Cappe!l-Shaneson] ÿordon].

We take a different tact, as we shall need positive

resul%s for certain explicit examples of 4-manifolds  Q

and diffeomorphisms  h  of  ÿQ.   If, for example, all the

available obstructions to extending a particular  h

vanish   (or we do not know how to calculate them), then

there is some hope that  h  will extend.

We give a constructive method for how to proceed

when  Q  and  h  satisfy the following conditions

(i)
2-handles

(2)

Q  is obtained from the 4-ball by adding

h  is given as the restriction of an explicit

diffeomorphism of a 4-manifold  P  obtained from  Q  by

blowing up points.  By "explicit" we mean given as a

sequence of hÿndle slides   (see Remark 3.3 (5) below for

details).
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i!
:i

i<ii

Let  Q  be an oriented 4-manifold.

By  ÿ(Q)  we denote the set of diffeomorphism classes

of pairs  (M, Q)  with  ÿ - Q = -Q.  Thus  M  is formed

by identifying  Q  with  -Q  by some orientation preser-

ving diffeomorphism of ÿQ.

Next consider triples  (P, TO, T1)  where  TO  and  T1

are unit links in an oriented 4-manifold  P  with  P/T0

and  P/T1  diffeomorphic to  Q°   Two triples   (P, TO, TI)

and  (P', T6, Tÿ)  are equivalent if there is a diffeomor-

phism  f:P---ÿP'  with  f(Ti)   isotopic to  T£, i = O, 1.

Let  A(Q)  denote the set of equivalence classes of such

triples.

There is a (well defined) map

c<
h(Q) ----ÿ r(Q)

given by

other words,  ÿ(P,

P  by b!owing down

the other.

(P, TO, T1) = ((P ÿ'ÿ -P)/(TI'--2-To), P/TI).  !n

TO, TI)   is obtained from the double of

TO  in one copy of  P  and  T1  in

Preliminary Definitions and Discussion
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The relevance of  ÿ  to the question of extending diffeo-

morphisms of  ÿQ  will be explained below.

First consider the group  Diff(ÿQ)   of orientation

preserving diffeomorphisms of  gQ.  Let

denote the restriction homomorphism.   Then we have

Proposition 3°2

of  r  in  Diff(SQ)

with the elements of

The double cosets of the image

are    in    one    to    one    correspondence

r(Q).

Proof  Lel  [hi   denote the double coset represen-

ted by a diffeomorphism  h  of   Q.   Then the map

lh] (Qy-Q  Q)

sets up the desired correspondence.   It is surjective

since every element   (M, Q)   in  ÿ(Q)   is diffeomorphic

to a pair   (Qÿ-Q, Q), for some h.   It is injective

cÿ

Paul  Melvin


should be the boundary of Q

R

i.e. RhR
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F  and  G  of  Q

Q)  are pairwise

are diffeomorphisms

F
>

with g :  (G-IIÿQ)h(FISQ), i.e. [g] : [h].

Thus the elements of  F(Q)  may be thought of as

diffeomorphisms of  ÿQ  up to composition on either side

by diffeomorphisms which extend to  Q.   In particular,

the element  (Q ÿ -Q, Q)  corresponds to the diffeomor-

phisms of  BQ  which extend to  Q.  We denote it by  1.

Now we may interpret ÿ:A(Q)'-*ÿ(Q)  as a restriction

map in the following sense.   For any element   (P, TO, TI)

of  A(Q)   choose a diffeomorphism  h:P--ÿP  for which

h(T1) = TO.   It is straightforward to verify  (a!ong the

lines of 3.2)  that ÿ(P, TO, TI) = [hlBQ]  for any such

h, where  %Q  mud  9P  ( = ÿP/T0 )  are identified using

any diffeomorphism between  Q  and  P/T0,

because  (Qÿ-Q, Q)  and  (Qÿ-Q,

diffeomorphic if and only if there
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Kirby's Calculus

We now restrict our attention to 4-manifolds  Q

obtained by adding 2-handles to the 4-ball.  Such a mani-

fold may be described by a framed link in  S3,  consisting

of the attaching circles of the 2-handles together with

(integer)

obtained

For example, the

framings for their normal bundles.  The 4-manifold

from a given framed link  L  will be denoted by

framed link

defines the disc bundle over  S2  with Euler class  k.

We wil! assume that the reader is somewhat familiar

with this point of view, as developed in [Kirbyÿ .  We

recall the two operations  01  and  02  (the Calculus)

defined there.

by adding an unknotted circle

lies in a 3-bali disjoint from

to blowing up a point.

The inverse operation  011

01  changes a framed link  L

K  with framing  ±1  which

L.  In  ML  it corresponds

of

The first operation

removes a component  K

L  as above and corresponds to b!owing down a 2-sphere

S   in  IVlL.
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In particular,ÿ  S  is just the core of the 2-handle

over  K  together with an unknotted disc in B4  bounded

by  K  (this characterizes  S  up to isotopy).  We say

that  K  represents  S , and denote  S  by  [K].  Analo-

link  [Lo]   of 2-spheres in  ML

of the 2-handles attached to  L0

vious collection of discs in  B4

The second operation  02

together with the ob-

bounded by  L0.

replaces some component

consisting of the cores

J

of  L  by  J', a band connected sum of  J  with the push

off of some other component  K.  The framings change

accordingly  (see [KirbYl]  for details).  We say that the

resulting link  L'  is obtained by sliding  J  over  K

since it corresponds to sliding the associated 2-handles

in ML  over each other.  Note that ML  and ML,  are

diffeomorphic.

The theorem in [KirbYl] states that Bÿ  and ÿL'

are diffeomorphic   (preserving the natural orientations

induced from the orientation on  B4)   if and only if

there is a sequence of operations  0 1  mud  02  carrying

L  to  L'.  We call such a sequence  p  a path in the

Calculus and usually denote  L'  by  p(L).

We will assume that all our paths  p  are ordered,

in the sense that they may be written as a "composition"

of paths  p = pdPsPu  where  Pu  involves only blowing up

(01)'   Ps  involves only sliding  (02), and  Pd  involves

gously, if  L0  is a sublink of  L  whose components are

unknotted and mutually unlinked, then  L0  represents a
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only blowing down  (011).-

down ' )

(Hence  p  is ordered up, slide,

Remarks 3.3

then the double

2-handles to  Q

the 2-handles of

4-handle.

(I)  If  Q = NL  for some framed link  L,

Q ÿ-Q  of  Q  may be gotten by attaching

along the boundaries of the cocores of

Q = ML, and then capping off with a

These new 2-handles will be called the dual

handles to the 2-hand!es in  ML.  It follows easily that,

without the 4-handle, the double of  Q  may be described

by the framed link  L%2L*, where  L*  is a collection of

meridians for the components of  L, each with framing zero.

For example

-2

doÿbÿ

o

In the sequel  L*  will always denote the attaching circles

for the dual 2-handles.

Thus we have

where  ^  denotes capping off.

Now we make some important remarks, all of which will

be referred to in the sequel.
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(2)   If we wish to blow up a point on the 2-sphere

[K]  represented by some (unknotted) component  K  of a

framed link  L, then we add to  L  a meridian of  K  with

framing  el

kÿ           7,

This m&y be thought

01  and  02

of as a composition of operations

The image of  [K]

represented by the

changed by  ÿ1).

under this blowing up is the 2-sphere

"same" circle  K  (whose framing has

(3)  To blow down the 2-sphere  [K]  represented by

an unknotted component  K  of  L  with framing  ÿ1, we

slide over  K  every component of  L  which links  K,

ithereby freeing  K  to be blown down using      .   The

reader may verify that this has the effect of giving all

the components which link  K  a full left or right handed

twist   (changing the framings accordingly)   and then
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removing  K

For example

(cf. Propositions IA and IB in [KirbYl] ).

(4)  Suppose  L  is a framed link.  The previous

remark shows how to blow down the 2-sphere  [K]  represen-

ted by an appropriate component  K  of  L.   Consider the

dual 2-sphers  ÿ]* in tÿe double %ÿ-% of %,

that is the reflected image of  [K]  through  ÿ.

We assert that blowing down  [K]*  in the double

LvL*  of  ÿL  has the effect of removing the dual handle

over  K*.   That is

/%

For example

blÿw
doÿ dÿl

0
0

k
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First observe that we may assume that  K  is free

from the other components of  L, as we may slide any

component of  L  over  K  without touching  [K].   That is

Jÿ

for any path  p  sliding components of  L - K  over  K.

Now for the framed knot  K, we have

A
as  ÿ = cp2,  MKÿK. = CP2 # -CP2, and  IK*] = -CPI.

S°The result follows ea zlyo

(5)  As we remarked above, if  p  is a path in the

Calculus  (starting at  L)  which consists only of handle

slides  (p   ps)  then  ML  and  Mp(L)  are dlffe morphlc

In fact there is a natural diffeomorphism  Cup to isotopy)

hp:ML'-------ÿMp(L)

defined as follows.   For simplicity we assume that  p

consists of a single handle slide of aeomponent  J  of

over some other component  K.  In general  h   will be
P

composition of the diffeomorphisms obtained from these

"elementary" paths.

carrying  J  to  p(J).  Now  h    extends over the 2-handleP

Off of a collar neighborhood  U  of   ÿL - J  in

ML _ j, let  hp  be the _dent!ty.   On  U  define  hp

be an isotopy  (given by the particular handle slide)

to

L

a

(ML, [K]) ÿ iMp(L), [K])
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attached to  J.

We call any such diffeomorphism of

diffeomorphism.

(6)  Suppose  J  and  K  are unknotted and un!inked

components of a framed link  L  and  p  is the elementary

path consisting of a single slide of  J  over  K  along

the trivial band

Y    KYO0
K

Here  ÿ  denotes  k  full twists. For  example,

Consider the 2-sphere

tubing together  [J]

to verify that

S  in NL

and  [K].

obtained by trivially

Then it is not difficult

s = h-lip(J)]
P

We leave this to the reader°

L  an explicit
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Extending Diffeomorphisms

Definition 3.4  By

at  L)  we mean an ordered path  p

p(L) = L  (equality means isotopy) o

setof all such loops.

a loop in the Calculus   (based

in the Calculus with

Let ÿL  denote the

Consider the map

given by

(P) = (Mpu(L),

For example, if

K

o. tÿ10 (=ÿr $.3 ÿzÿ )

[pu(L) - L]  h-1[psPu(L)
'   PS

p  is the path

K         j ÿ

0w

i

- p(L)] )

0

then ÿ(p)= (MjvK, [J], [K]).

Now set  ÿ = ÿ , where  ÿ:AL--ÿCL  is the map defined

earlier in this section.  We obtain a diagram

Henceforth we fix a framed link  L  and set  Q = ML,

Aÿ = A(ÿ)  and rÿ = r(ÿ).



27

AL  ÿ  ÿL
[
i:i

• ii For  p  in ÿ'L' the element  ÿ(p)  may be interpre-

ted  (using the remarks fol!owing Proposition 3.2)

restriction to  Dÿ  of an explicit diffeomorphism

where  P  is obtained by blowing up points in  ÿL'

particular,  P MPu(L)  and  h = h-lq, where  q
Ps-

natural identification of

by a diffe0morphism of  S3

(psPu(L), p(L)),

MPu(L)  with  MpsPu(L)
carrying  (Pu(L), L)

In other words, any loop  p  in the Calculus  (based

at

morphisms of  ÿNL.

morphisms extend to

(p) = i  in ÿL"

Observe that the theorem in [KirbYl] shows that

:ÿ--ÿAL  is surjective.  We will see in the next section

that ÿIAL-ÿL  is also surjeetive.  It follows that

is surjeetive, and so every diffeomorphism of ÿML  arises

as above from a loop in the Calculus.

L)  defines an equivalence class  (ÿ(p))  of diffeo-

The question of whether these diffeo-

is just the question of whether

Thus Question 3.1 for  Q = ÿL  reduces to the problem

of identifying the kernel  ÿ-I(1)   of ÿ.

We give a sufficient condition for a loop to be in

kerÿ  in Proposition 3.7 below.  But first we need a

as the

hIP--ÿP

In

is any

induced

to

Fi
di
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couple of lemmas and a definition.

Lemma 3.5  Suppose that  L0  and  LI  are disjoint

framed links, and  p  is a path in the Calculus starting

at  L0kJLI  and consisting only of handle slides over

components of  L0.   Then there is a pairwise diffeo-

morphism

h   M
(MLoULI' P(Lo LI)' Mp(Lo))

Remark  If we add a collar to the boundary of the

first factor of each pair, then the same result holds

allowing components of  L1  to slide over each other.

Proof of 3.5  We may assume that  p  consists of a

single handle slide of some  J  over  K.  The general

result fellows by induction.

There are two possibilities.  Either  J and  K

are both in  LO, or  J  is in  LI  and  K  is in  L0.

In either case,   p  restricts to an operation on  L0ÿJ J,

and so there is an explicit diffeomorphism  (see Remark

3.3 (5))

h
J --P Mp(Lo  J)

which may be chosen to be the identity on  LI - J.   Thus

hp  extends over the handles attached to  LI - J.   Clearly

hp(MLo _ j) = MP(Lo _ j)  and  hp(ÿoÿj) = MÿOVj, so
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in both cases above we have  hÿo  = Mp().L0

Suppose  L  is a sublink of some framed lirLk  L',

and  p  is in /ÿL'  Let  p(L')  denote any framed link

obtained by "carrying along" the components of  L' - L

while performing the operations of  p.  There is a choice

involved whenever we slide handles, as the bands along

which we slide may !in/ÿ  L' - L  arbitrarily.  Conse-

quently  p(L')  is not uniquely defined.  However  L  is

always a sublink  (p(L))   of  p(L'), and it is not diffi-

is well definedcult to show that the pair  (Mp(L,), ML)
•    T"up to d!f_eomorphlsm,

In fact, each choice for  p(L')

(ordered)  path in the Calculus from

For any such path  p', the previous

diffeomorphism  h = hpÿ

MpsPu( ))
It fol!ows from the proof of the lermna that for any other

diffeomorphism  g = hqj  arising from another such path

q',  we  have

corresponds to an

L'  to  p(L'),

lemma provides a

hg-l(T) = T

where

in  MpsPu(L)  to be blown down.

pairwise diffeomorphism between

(Mq,(L,), ÿL).

T  is the collection of 2-spheres  [psPu(L) - p(L)]

Thus  hg-1  induces a

(Mp,(L,), Ms)  and
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Now specializing to the case  L' = LÿL*, we see that

(Mp(LÿL*)' ML)   is well defined, up to diffeomorphism,

for any  p  in ÿ:ÿL"   Therefore   (Mp(LÿL.), NL)   defines

an element of  rL.  This gives a useful form for the

map ÿ ÿL-ÿ rL'

L

and

Proof  Recall  ÿ = dÿ, and so setting  TO = [Pu(L)-L]

TI = h-lip p (L)-p(Lÿ, we have
Ps  s u

(p) = ((MpU(L)ÿ-j-Mpu(L))/(TIÿ-T0), Mpu(ÿ)/TI)

= (ÿpu(L)Vpu(L)./(TIÿ-To), Mpu(L)/TI)

which by Remark 3.3 (4)

= (Mpu(L)ÿ(pu(L)._L.)/TI, Mpu(L)/TI)

= (ÿpu(LÿL.)/Tÿ, Mpu(L)/TI)

= (MÿpsPu(LÿL.)/hps(Tl), MpsPu(L)/hps(T1))

which by Remark 3.3 (3)

A
-- (Mp(LvL.)o ML).

Combining 3.5 and 3.6, we have
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Example 3.8  let  Q = MK

handed trefo_l with framing 1

£

K

, where  K  is the right

Then  8Q  is the Poincar$ homo!ogy 3-sphere.  We show

that there are diffeomorphisms of  ÿQ  of orders  2, 3,

and 5  which extend to diffeomorphisms of  Q.

The ones of order  2  and  3  are easy to construct

(without using 3.7).  For example, to obtain one of

order  2  we observe that the trefoil has

try of rotation about an unknotted circle

C

K

It follows

lution on

over the

a 2-fold symme-

C  in  S3

W
that there is an orientation preserving invo-

B4  mapping  K  to itself.  This clearly extends

2-handle attached to  K, yielding an involution

Proposition 3.7  If  p  is in alL  and  LÿL*  can

be obtained from  p(LvL*)   by sliding components of

p(LvL*)   over components of  p(L) = L, then ÿ(p) = I.
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on  Q.   The restriction of this involution to  ÿQ  is

the desired diffeomorphism of  ÿQ  of order  2.

A similar argument, exp!oiting the 3-fold symmetry

of the trefoil

c
!iÿ •

provides a diffeomorphism of  DQ  of order  3  which ex-

tends to  Q.

Now consider  ÿQ  as the 5-fold cyclic branched cover

of the trefoil  (see for example [Kirby-Scharlemann] ).

Any covering translation  h  of  ÿQ  provides a diffeo-

morphism of order  5.  We describe one such  h  explicitly

bel ow.

We may view the 5-fold cover of the trefoil as the

boundary of the 4-manifold  P  given by the fol!owing

framed link  L  of five circles
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on ÿ

diffeomor-

(as in the cases

about an unknotted

A generator for the covering translations

may be given as the restriction of the obvious

phism  g  of  ÿL  of order  5  obtained

above)   from the 5-fo!d symmetry of  L

circle  C  in  S3 C

to

Now there is a path  qPu  in the Calculus from  K

L  as follows

0000
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L

I

!

I
I

O0
-1
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If  q'  denotes the "inverse" path to  q  acting on

g(L), then the composed path  Ps = q'q  is an element of

Pu(K).  Observe that the diffeomorphism

h   :M   'K) "--->Ps  Pu[         MPu(K)

is just  hqlghq, and so its restriction  h  to  9ÿu(K)

= ÿQ  is periodic of order  5.

To verify that  h  extends to  Q, it suffices  (by

Proposition 3.7)  to check that the !oop  p = pdPsPuÿK

(where  Pd  is the obvious blowing down)  is in  kerÿ

for  ÿK--ÿCK  as defined above°

We calculate  KÿK*  and  P(KÿK*)   to be

where the dual circles are dotted.  Sliding the dotted

circle in  p(KÿK*)   over the trefoil once we get

----ÿ/1                1

K,., K"                 p (ÿ:,.,Kÿ'ÿ.
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which may be

Thus  P E kerÿ and

isotoped to

h  extends.
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§4.  A Digression

Theorem 4.1  Let  h:N--ÿN  be an orientation pre-

serving diffeomorphism of a c!osed, orientable 3-manifold.

Then for some simply connected 4-manifold  P, there

is an orientation preserving diffeomorphism  H:P--->P  and

a diffeomorphism  iÿN----ÿP  for which

HIÿp = ihi-I

Remark  This extends the work of M. Kreck on oriented

bordism of diffeomorphisms of odd dimensional manifolds.

We recall that two pairs   (Nÿ, hi), where  hi  is a diffeo-

morphism of  Ni, are bordant if there is an (n+l)-manifold

V  and a diffeomorphism  H  of  V  such that  %V = N0ÿ-NI
•and  HINi = hi.  Bordism classes of d!ffeomorph_sms of

n-manifolds form an abelian group /%n  under disjoint

union.   The main result of [Kreck]  is that

='-Q" ÿ+iAn     n

for n odd and / 3.  Here /ÿ.  denotes oriented bordism

of manifolds and ÿ.  denotes the kernel of the signature

In this section we prove the following theorem.
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homomorphism J].-ÿ Z.   Theorem 4.1 shows that A3 = 0,

which removes the restriction  n # 3  above.

Before giving the proof of 4.1 we need a lemma.

Recall the map  A(Q) ÿP(Q)   defined in the last section.

Lemma 4.2  If

4-manifold, then

Q  is a compact,

c4
A(Q) --. ?(Q)

simply connected

is surjective.

Proof  Without loss of generality, we may assume

that the intersection form on  Q  is odd, for it is evi-

dent that the lemma must hold for  Q  if it holds for

Q # or2.

Let   (M, Q)  be an element of  r(Q).   By Novikov

additivity the signature of  M  is zero, and so  M  bounds

a 5-manifold  W [Rohlin].  We may assume  (after surger-

ing  W  if necessary)  that there is a Morse function

f:w i]

satisfying

(1)  f-l(-l, 1)/%BW  is an open tubular neighborhood

Qx(-1, 1)  of  ÿQ = 9QxO  with  f-l(t) = ÿQxt

(2)  Every critical point of  f  is of index 2 or 3,

with values less or greater than zero, respectively



Let  P  denote the 4-manifold  f-l(0)
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G

0

Consider the 5-manifolds  Wt = f-l[-t, t]  for

t ÿ (0, 1].  For  t  small,  Wt = Pxl, and so  ÿWt =

P ÿJ -P.  As  *tid                 crosses a critical value of  I, a

3-handle is added to  Wt  with attaching map in  P  or  -P.

The effect on ÿWt  of adding this 3-handle is to

blow down a pair of unit knots in  P  or  -P.   For, in-

verting the picture, it suffices to show that the effect

on the boundary of a 5-manifold of adding a 2-handie is

to blow up a pair of points, provided the boundary is simply

connected and has an odd intersection form  (the  ÿWt  are

odd since  Q  is).  The first condition shows that adding

a 2-handle results in taking the connected sum on the

boundary with a 2-sphere bundle  T  Over  S2.   The second

condition shows that we may choose  T  to be the non-trivial

bundle.  But then  T = CP2 # -CP2, and so the net effect

is to blow up a pair of points.

Continuing in this way we obtain unit links  TO  and

T1  in  P  for which

(P I'ÿ-P)/(TIÿ--'-TO) = %WI = M



: I

4o

Since  TO  and  TI  lie away from  ÿP, this diffeomor-

phism identifies  P/T!  with  q.

i

Proof of Theorem 4.1  Choose any compact, simply

connected 4-manifold  Q  with  8Q = N.   By Lemma 4.2, if

we blow up sufficiently many points in  Q  we obZain a

(simply connected) 4-manifold  P  with unit links  TO  and

T1  for which  ((P iÿ-ÿ -P)/(TIÿ-To), P/TI)  and  (Qÿ-Q, Q)

are pairwise diffeomorphic.  In particular  P!T0  and  P/T1

are diffeomorphic to  Q, so there is a diffeomorphism  G

of  P  carrying  TI  to  TO.

We now have the following diagram of pairwise

diffeomorphisms

((Pÿ -P)/(Tÿ-To), P/mi) ---9 (Qÿ-Q, Q)

idÿG-I

where  g  denotes the canonica! diffeomorphism of

induced by  GIÿP.

Therefore there are diffeomorphisms

e
Q P/Ti

f

for which gIÿ(P/TI) = (f-lIBQ)h(e-lis(P/Tl)).

that  (efg)lÿ(P/T1) = (eiÿQ)h(e-llÿ(P/Tl)).

Now  ef naturally induces a diffeomorphism

Setting  i = elN  (recall that  N = ÿQ)  and  H

(P/mi)

It follows

F  of  p.

= FG

((PGÿp-P)/(TIÿ-TI), P/T1) ÿ (P/TIÿ-P/TI, P/TI)
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IÿP = ihi-1

41

as desired.
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Let   f : TxI --ÿ NxI

two links  TO  and  T1

(see ÿ1), and let

be a generic concordance between

of 2-spheres in a 4-manifold  M

M

be the projections.   For every regular value  t  of  qf,

set

=

Tt  is an orientable 2-manifold in  M.  We may arrange

that the critica! points of qf have distinct values and

that for any two critical points  x  and  y

index(x) <index(y)   ÿ  qf(x) < qf(y).

Then for any critical value

cal point of index

Ts+ÿ  is obtained

j-handle to  Ts_ÿ

called nice.

s  corresponding to a criti-

j, and for  ÿ > 0  sufficiently small,

(up to isotopy)   by adding an embedded

in  M.  Such a concordance will be

If  f  is a O-concordance, then each  Tt  is a link

[5.  O-Concordance
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of 2-spheres in  M.  The basic idea of the proof of

Theorem 5.2 below is to blow down each regular level of

the concordance and to show that the resulting 4-manifolds

do not change as we cross the critical levels.  The only

difficulty is that  Tt  will generally not be a unit link,

and so we do not know how to blow it down.

We may, however, generalize the notion of blowing

down to arbitrary links  T  as follows.  Roughly speaking,

we blow up as few points as possible on  T  to give each

component self intersection  tl, and then blow down the

resulting  (unit)  link.

Precisely, if  T

with self intersection

pairwise connected sum

consists of only one 2-sphere  S

k, let   (M', S')   denote the

(M', s') = (m S) # r( (cpz, p))

where  r =  [[ki    II,  P  is a projective line cutting

in one point  (see @I), and the sign is chosen to

with the sign of  k.  For

orientation.

If  T  has more than

process above to

We call  T'   the

±Cp1

agree

k = 0  we choose the positive

one component, we iterate the

obtain  (M', T')  with  T'   a unit link.

image of T.  Now define

M/T  = M'/T'

Note that it follows from the proof of Proposition 6.2

that the opposite choice of orientation in defining  (M', S'
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for the case  k = 0  does not change  M/S, essentially

because  ÿTISO(3) = Z/2Z.

Now we come to the chief ingredient in the proofs

of Theorem 5.2 and Theorem 6.3 in the next section.

Lemma 5.1  Let  s  be a critical value of a nice

0-concordance  f:Txl-ÿFLxl°

Then  M/Ts_a  and  !/Ts+ÿ  are diffeomorphic for

sufficiently small ÿ.

Proof  By duality we may assume that the index

of the critical point with value  s  is  0  or  I.

Choose  ÿ  small enough so that  s  is the only

crlt_cal value in the interval  J    [s-ÿ, s+ÿ]   Let

Tj = (pf)(qf)-1(j)

Ne may adjust  f  by a level preserving isotopy so that

Tj = Ts_ ÿH, where  H = BJxB3-j  is an embedded

(j = 0 or 1)  with

Ts_ÿH =ÿBJxB3-J

Ts+£ = (Ts_£ - ÿBJxB3-J)ÿBJxBB3-J

The isotopy class of each  Tt  remains unchanged,

M/Tt  remains unchanged.

j-handle

and so

where  p  and  q  denote the projections  Mÿ-P Mx! q--ÿl.
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The component of any regular neighborhood of  Tj  in

!  which contains the handle  H  is a 4-manifold  P.  It

is evident that the links  Ts±ÿ  coincide outside  P.  We

let  T = Tsÿ£ - P  denote this common link, and set

TO = Ts_ÿ - T  and  T1 = Ts+a - T.

The rough idea now is that  M/Ts+&  is obtained from

M/Ts_E  by removing  P/T0  and replacing it with  P/T1.

We will see that  P/T0  and  P/T1  are diffeomorphie, and

so the problem of shewing that  M/Ts_ÿ  and  M/Ts+ÿ  are

diffeomorphic reduces to showing that a particular diffee-

morphism of  ÿ(P/T0)   extends.

The outline of the rest of the proof is as fol!ows.
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We first blow up appropriate points in  P ¢ÿ  to obtain

P'ÿM'  and unit links  TO'  and  TI'  in  P'  for which

M'  - P'  = IVl - p   and

Ml s_ =

" =

We then show that there is a diffeomorphism  h  of  P'

with h(T$) = Tÿ  and  hlÿP' = identity.

Assuming this, the lemma follows easily.  Extending

h  over  M' - P'  by the identity, we obtain a diffeomor-

phism of M' carrying  T v T$  to  T vT{.  The equations dis-

played above then yield a diffeemorphism between  M/Ts_ÿ

and  M/Ts+&.

So we must construct  T6, T£ C P'  and  h  as above.

We consider the two oases  j = 0 or I.

If  j = 0, then  P  is a 4-ba!l with  TO  empty and

T1  an unknotted 2-sphere  S  inside  P.   Clearly  S  must

have self intersection zero.  Blowing up one point  x  on

S  we obtain  P', a projective plane  CP2  with a 4-ball  B

removed°  Setting  T6 = image of x  and  T{ = image of S,

we easily see that the properties above are satisfied.

Now  T$  and  T{  are simply a pair of projective lines,

and so there is a linear isomorphism of  Cp2  carrying one

to the other.  Adjusting by an isotopy so as to map  B  to

itself by the identity, this restricts to the desired

diffeomorphism  h  of  P'

If  j = I, then  H  joins the two components  SO



P

and  S1  of  TO, one of which   (SO)  must have self inter-

section zero since  f  is a concordance.  If  k  is the

self intersection of the other component  ($1), then  P

is diffeomorphic to the boundary connected sum of  S2xB2

and the disc bundle over  S2  with Euler class  k.   In other

words,   P  may be described by the framed link of two un-

knotted circles  K0ÿ K1

0

with Si = [Ki]  represented by Ki  (see §3).  Now TI

consists of a single 2-sphere  S  (with self intersection

k)   obtained by trivially tubing together  SO  and  S1, and

so  S  is isotopic to  hql[p(K1)]  where  q  is the handle

slide

<><>
0         k

I k

(see ÿ3.3 (6)).

Blowing up r = II l - 11

on  SiÿS  and One point  x  on

below

points    Xl,              ,  xr

SO - S, as indicated

47
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we

L'

obtain  P',  which may be described by the framed link

(depending on k)

I

o
I

Ck>ob

(ÿ<o)

(ÿ:o)

Set  T$ = image of TO  and  Tÿ = image of Tl(=S)k2image

of x.  Then we have  T$  represented by the link  L0  indi-

cated above, and  Tÿ  represented by the link  L1  indi-

cated in the following link description of  P'   (arising

from  M (KoVKI)  instead of  NK0ÿKI)

xr

So                      sÿ
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(k>ol

r

q

I,) -I     (k <o )

(ÿ=0)

It is clear that  T6, TÿCP'  satisfy the desired

properties.  To construct  h:P'-ÿP'  with  h(T6) = Tÿ

and  hlÿP' = identity  it suffices to show that

(P', T6, Ti) ÿ kerCÿ

where ÿ:A(P'/T6)-->ÿ(P'/T6)  is the map constructed in ÿ3.

For cÿ(P'ÿ Tÿ, Tÿ) = i  yields a pairwise diffeomorphism

between  ((P' ÿ-w-P')i(Tÿ-T$)  P'/Tÿ)  and  ((P' ÿ-P')/id                            '                                   id

morphism of pairs

which carries  P'

Since  ÿ4 = O, this induces a diffeo-

to itself.   In other words, there are



diffeomorphisms  f  and  g  of  P'  with  f(Tÿ) = T6,

g(T6) = Tÿ, and  f = g  on  DP'    Then  h = f-lg  is the

desired diffeomorphism of  P'

Ne observed above that P' = NL,, and  T6 = ÿLÿ.

The second link description above for  P'  uses the same

link  L', and is obtained from the first by the following

loop  Ps  in the Calculus  (based at L').  Ne illustrate

the case k>O.  The other two cases are completely ana-

logous.

Clearly

Let

L0 .  Set

= hlIE  , for  as above.
PS

Pd  be the path in the Calculus which blows down

L = Pd(Lo), so that  ML = P'/T6.  If  Pu  denotes

0
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the "inverse" path from  L  to  L',   then we obtain a loop

p = pdPsPu  in the Calculus based at  L, i.e. p eÿ.

',T1Since  Pu(L) - L = LO, it is evident that     p) = (p',T0   '),

where ÿ:%ÿ->AL is the map defined in ÿ3.

We now apply Proposition 3.7 to show

where T = ÿ,  This gives  (P', T6, Ti) ÿ kerÿ, and the

lemma follows.

Explicitly, we start with  L  (once again we only

carry out the case  k > O; the others are analogous)

0

Now  LÿL*  is given by

"

where the dual circles are dotted.

Next we construct  P(LÿL*)   as the final picture in

the following sequence

p ÿ kerÿ
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i

I

-Z

Now  LÿL*  is obtained from  p(LÿL*)   as specified

in 3.7 by sliding all the circles with framing  -2  (in-

cluding the dual circle)  Over the (undotted) circle with

framing zero
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Thus  p ÿ kerÿ, as desired.

Inductive application of this lemma to a O-concordance

of unit links yields

Theorem 5.2  O-concordant unit links in a 4-manifold

are equivalent.
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6.  Embedding CP1 in CP2 and Gluck's Construction

In this section we discuss the following conjecture

(which was the starting point of our investigations),

Conjecture 6.1  Let

embedding.   Then there is

with   hf = ÿ<ÿ ÿ

f:Cp1--@CP2  be a degree one

a diffeomorphism  h:Cp2---ÿCp2

This is merely a restatement of Conjecture 2 in 31,

that every unit knot in  CP2  is equivalent to  Cp1.

We may reformulate this conjecture in terms of equi-

variant knot theory of 3-spheres in  S5.  Recall that  S5,

viewed as the unit sphere in  C3, has a natural  S1  action

induced by unit complex multiplication.  Cp2  may be de-

fined as the quotient of  S5  by this action.   In fact  S5

is a principal  S0(2)  bundle over  CP2, with the orbits

of the action as fibers.  The pull back of this bundle

under any embedding  f:Cp1--ÿCp2  has Euler number equal

to the degree of the embedding.*  Thus degree one embeddings

*  The only degrees  d  realized by embeddings are [dIÿ 2
[Tristram]
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pull back the Hopf bundle, inducing amequlvarmamt"          " embed-

ding of the 3-sphere in S5

f*(SS) = s5

CpIÿcp2
f

Now any diffeomorphism of  Cp2  lifts to an equivariant

diffeomorphism of  S5, and conversely amy equivariant

diffeomorphism of  S5  projects to a diffeomorphism of  Cp2.

Therefore Conjecture 6.1 is equivalent to the assertion

that there is  (up to equivariant diffeomorphism of S5)

only one eÿivariant embedding of  S3  in  S5.

Unfortunately, the conjecture is probably less tract-

able in this form, as most equivariant problems are studied

by factoring out by the group action, which brings us back

to where we started.

cP2 # Z = cP2

In particular, ÿ  is obtained by blowing down  f(CP1) in

CP2.   Thus 6.1 would follow from the irreducibility of  CP2.

More generally, the equality  Cp2 # ÿ = CP2  would

give  CP2 # kÿ= CP2  for any  k ÿ 0.  Thus 6.1 would fol-

low merely from the existence of a bound on the number of

factors possible in a connected sum decomposition of  Cp2.

(Every compact 3-manifold has such a bound [Kneser] ).

We observe that if 6.1 fails, then there is a homo-

topy 4-sphere  ÿ  ( # S4 )   for which
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We may study the homotopy 4-sphere  ÿ- = Cp2/f(Cp1)

from a somewhat different point of view, under the addi-

tional assumption that  f(CP1)   and  CP1  meet in exactly

one point.  We do not know if this can always be arranged.

To conform with the notation of ÿ1 we set  S' = f(Cpl).

Then the image of  S'  when blowing down  CP1  in  CP2

is a 2-sphere  S  in  S4.   (In other words  S'  is gotten

by blowing up a point of S.)  Recalling from §1H. Gluck's

construction of a homotopy 4-sphere TS  from a 2-sphere

S  in  S4, we have

Proposition 6.2  Cp2/s' = TS

Remark  In the notation of 15 this says  $4/S = ZS

Proof of 6.2  View  S4  as a handlebody  H  built on

a tubular neighborhood  S2xB2  of  S = S2x0.  Recal! from

3 that  S2xB2  may be gotten by attaching a 2-handle to

the 4-ball along an unknotted circle K with framing zero.

We may obtain ÿS  by giving all the attaching maps of

H  a full twist  (right__°r left handed as  ÿIS0(3) = Z/2Z)

as they pass through a spanning disc for  K  in  S3.  But

by Remarks 3.3 (2) and (3), this is also the handlebody

structure for  Cp2!s'  as indicated below
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Fv. (eÿ%

S", S = [K] C.?ÿ, S' -" CK']              'cS

The reader may verify that the framings on the

2-handles agree, and so  Cp2/s' =TS.

homotopy spheres

(become standard)

As an immediate consequence, we observe that the

obtained by Gluck's construction "stab_llzeÿ  "   "

after blowing up one point.   That is

s # cP2 = ÿ # Cp2

Recall that every homotopy 4-sphere stabilizes if we blow

up sufficiently many points.

We now invoke Theorem 5.2 together with the previous

proposition to deduce that 0-concordant 2-spheres  SO  and

S1  in  S4  yield diffeomorphic homotopy spheres ÿSO  and

S1.   In particular

(so # sI) = ÿs0 # ÿsi

and so  ÿ  defines a homomorphism from the semigroup of

0-concordance classes of knots in  S4   (under pairwise

connected sum)   to the semigroup  H  of homotopy 4-spheres

which stabilize after blowing up one point.
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Alternatively, this may be deduced directly from

Lemma 5.1.   In fact we may conclude more.   Observe that

the only place in the proof of 5.1 where it is essential

that we are dealing with a concordance (rather than an

arbitrary cobordism) is where we need a particular com-

ponent of a regular cross section to have self intersec-

tion zero.  But the regular cross sections of any O-co-

bordism between links with zero self intersection auto-

matically have self intersection zero.   Thus Lemma 5.11
fholds for such cobordisms, and letting  C  denote the #!

0-cobordism classes of knots in  S$  we have

IOÿLÿ !ÿ!Iÿ ÿxki ÿ<ÿ

Theorem 6.3   ÿ defines a semigroup homomorphism

We do not know very much about the semigroup  C.

If it were trivial, then ÿS = S4  for every knot  S  in

S4, which would answer a question of H. Gluck (seeÿl).

question topologically.   This fol!ows from the following

corollary to 6.3.

If it were a group, then we would atleast answer Gluck's

Corollary 6.4  If  S  is a knot in  S4  which is in-

vertible in C, then Z S  is homeomorphic to  S4.

Proof  Let  S'  be an inverse for  S  in  C, that is

S # S'   and the unknot  SO  are O-cobordÿnt.   Then



9

s4 = ,C(So)

= ¢(s # s')

='ÿ'S  # "ÿ'S '

The topo!ogical Shonflies theorem in  S4  now gives

the result.
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@7.  Handlebody Structure for TS

In this section we continue investigating the homotopy

4-sphere  ZS  which arises from Gluck's construction on an

embedded 2-sphere  S  in  S4.

View  S4  as the unit sphere in  R5.  Let  Rÿ  denote

the hyÿerspaee ÿ4xt ÿ ÿ Set Sÿ $4ÿ and ÿ

S4ÿ(ÿ+Rÿ)   for  0<t<l.  The points  (0 0,0,0,I)  and
S=b         ÿ

(0,0,0,0,-i)  will be called the north and south poles

of  S4, respectively°

We may adjust  S  by an isotopy so that

(1)   The poles of  S4  do not lie on  S

(2)   qlS:S--ÿR  is a Morse function, where  q:S4ÿ--ÿR

is the restriction of the projection  RS-ÿR  onto the

last factor.

Such an embedding will be called generic.
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It is convenient to introduce a more restrictive

class of embeddings.  Consider the projection  (for any

O<t ÿi)

s4 poles

along trajectories of grad(q),  We say that a generic

SCS4  is a critical level embedding if

"(i)  plS  is a transverse immersion

(2)  There is a handlebody structure  H  for  S

(induced by qlS)  such that  p  embeds any union of handles

of equal index in  H.

In particular, it follows that the projection  (under

p)   of the 1 and 2-hand!es of  H  is a ribbon surface of

genus zero in  Sÿ  whose boundary is the unlink.

As in ÿ5, we say that  S  is nice if the critical

values of  qlS  are distinct and increase with the index

of their corresponding critical points.

It is well known that any generic embedding  S ÿS4

may be moved by an isotopy to a nice critical level embed-

ding.   In fact this can be done without changing the number

or indices of the critical points of  qlS.

Example 7.1  Consider the knotted 2-sphere shown

in crossection below
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.2 <2

Sÿ          Sÿ             S3            Sÿ

This is Example 12 in [Fox].   It may be isotoped to

the nice critica! level embedding shown be!ow

0
The reader may verify that the two circles in  $3/3

bound disjoint discs.

Proposition 7.2  If  S  has a generic embedding in  S4

with fewer than three local minima, then ÿS  can be built

without 3-handles.

Remark  The proposition applies to the knot in
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Example 7.1, which has two critical points

zero.  We will carry it a!ong to elucidate

of index

the proof.

Proof (Sketch)

assume that the inclusion of  S

leve! embedding.

By the remarks above 7.1, we may

in  S4  is a nice critical

Fix a handlebody structure for  S  (as in the def-

inition above)  so that  D = Bÿ  S  is a 0-handTe, for

some t.  Setting  B = Bÿ, it follows that  (B, D)  is an

unknotted ball pair.

Now we may construct in a natural way a handlebody

presentation for  S4  with one less 1-handle than the

number of O-handles in S.

The construction proceeds roughly as follows.  We

start with  B  as our 0-handle.

We then add a "distinguished" 2-handle consisting of

the part of an appropriate tubular neighborhood of  S

which lies outside of  B.  This 2-handle is attached to

an umÿknotted circle  K  in  DB.

0

Clearly  K  represents  S  (in the sense of §3).

Next we add i-handles "linking" each O-handle

other than D).

in  S



!

64

The core of a typica! such 1-handle is shown in

tion below  (the thin line)

crossec-

•  ¢

For convenience we denote the attaching map in  ÿB  by

an unknotted circle with a dot on it.

0

;           This circle is just a meridian for an arc joining the two

points in the attaching sphere   (SO)   of the l-hÿndle.

It is understood that any attaching maps which link this

circle are actually passing over the !-handle,

In a similar way we add 2-handles "linking" each

!-handle in  S
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0

0
'l ÿ 2-'hÿr,,hÿ foe ÿ4

and 3-handles linking each 2-handie  (the picture is

harder to draw).

This leaves a 4-ball, which caps off the picture.

The proof of Proposition 6.2 applied to this handle-

body presenta%ion of  S4  shows that ÿS  is formed with

the same number of handles as  S4, the only difference

being the attaching maps near K.
-I
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We now note that any 1-hamdle in  S4  is geometri-

cally cancelled by one of the 2-handles after an appro-

priate isotopy, as indicated below.

0

This relies on the fact that the attaching maps of the

2-handles are in the form of ribbons.

Observe that the same thing occurs in ÿS  if we

first slide the corresponding 2-handle in ÿS   over  K,

as shown be!ow

K'J              i
____>
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Thus we may cancel one of the 1-hand!es in  ÿS  with

a 2-handle, and so  ÿs  can be built with two less 1-handles

than the number of O-handles in  S.   Consequently, if  S

has fewer than three critical points of index 0, then

TS  can be built without 1-handles.

Inverting  ÿS, we see that it can be built without

3-handles.

Remark  Using the methods of ÿ3, it is possible to

give an explicit handlebody presentation for  TS  with no

3-handles  (for  S  as in 7.2).  The I and 2-handles then

give a presentation for the trivial group  ÿITS.

If this presentation reduces to the trivial presen-

tation by a sequence of extended Nie!son transformations,

then  (TS)xl = B5   [Andrews-Curtis]  and so the argument

in Corollary 6.4 shows that  WE  is homeomorphic to

If this reduction can be realized geometrically

handle slides in  TS)  then  TS  and  S4  are diffeo-

morphic.   In particular, one may show this for the knot

in Example 7.1.

S4.

(by
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