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Tori in the diffeomorphism groups of L
simply-connected 4-‘manifolds-- o

By PAUL MELVIN _
Unaversity of Ualzforma Santa Bwrbam

(Received 11 March 1981) A o

Let M be a closed simply-connected 4-manifold. All manifolds will be assufhed'- B
smooth and oriented. The purpose of this paper is to classify up to conjugacy the .. -
topological subgroups of Diff (M) isomorphic to the 2-dimensional torus T (Theorem S

1), and to give an explicit formula for the number of such conjugacy classes (Theorem = = -

2). Such a conjugacy class corrasponds uniquely to a weak equivalence class of effective . =~
T2 actions on M. Thus the classification problem is trivial unless M supportsan: . . =
effective T2-action. Orlik and Raymond showed that this happens if and only if Misa = .
connected sum of copies of + CP%and 8% x 8% (2), a,nd 80 thls paper is really a study of Bt
the different T'2-actions on these manifolds. '

. 1, Statement of results i ] :
An unoriented k-cyele {e, ... e,) is the equivalence elass of an element (el, ek) in'_-"3.";. i
7* under the equivalence relation genemted by cycl;c permutamons and the rela,tlon St
(€1, s @) ~ (Egs +v0r €1). o : i SR
From any unoriented ¢yele (el ek) one may eonstruct an onented 4- m&mfold P by'.‘_' S
plumbing B2-bundles over 8% according to the weighted ¢ircle shown in Fig: 1. Sucha =
4-manifold will be called a circular plumbing. The core of the plumbing is the union - o
of the zero-sections of the constituent bundles. The diffeomorphism type of the pair. . = = -
(P, 8) determines (e, ...e,), and s0 there is a one-to-one correspondence between
circular plumbings with speclﬁecl cores and unomented eycles Set SRS TR

<e1 )

Now let M be a closed mmply—connec’sed 4- mamfold a,nd T be a topologmal sub-:-'___ RS
group of Diff (M) isomorphic to T'2. (The existence of such a subgroup implies that M. o =0
is the connected sum of copies of +CP? and §%x §%) We will 'assOciate With T an:' SRR ER
unoriented eycle e(7") as follows. FR e R

Let 8(T) be the set of all points 2 in M for which there isa dlﬁeomerphlsm t # 1in Sl
T with tz = . Denote a regular neighbourhood of §(1') by P(T'). An educated glance a,t_- L '
the orbit space of any T"%-action associated to T establishes the folIowmg result (see § 3)

Prorosimion. P(T) is a circular plumbmg with core 8 (T )

Now set
e(T) = e(P( S(T))

A formula for e(T'} will be given in §3. - |




Definition. A red‘umble cycle igan unorlented cycle that‘. can, be reduced to (0 0) usmg:_

'.themoves .
- Bg"( cOd'-)'—>( c+d }

Bm<-._"c“+1 d. >+< c+1 d+1 >'

Remarla Usmg the point of view of §2 it can be shown that an. unonented cyele is:
reducible if and only if its assoczated ezrcular plumbmg has boundary T3 ik

TuroreM 1. Let M be o connected sui of copzes of + lCP2 omcl Ssz2 Then th
assignment T — (T} sets up a one- -f0-0me oowespondence between conjugacy classes of '
topological subgroups of D1ﬂ-‘(M ) @somorphw to T ’ cmd reduo@ble cycles (el ek) satzsfymg_

(1) &= x(3), :

(2) el+ +ek 30'(M) . __ : : . AR =

(8) ey, ..., epareall cven zf wnd only if M 48 a.s'_pm mamfold (@ £ has no + CP” factors _

Here x(M ) denotes the Euler cha,ractenstm of M, and oMy the sxgnature of M.

. Trrorem 2. The number of conyugacy classes of topologwal subgroups of Dﬂf (M )fi
isomorphic to T% (for M as in Theorem 1) zs ﬁmte zf amd only @f M ——-+( 4{= CPZ) fow-
some k = 2. In this case this number 18" ' SO S

ool ol

where c{n) is defined recwswely for natuml numbers n by

(1) ___1_
cln) = ”i"c(é)c(n'—i): |
= | _
and o I o(x) o otherwzse

The first few values of t{k) are as follows: t(l’c = 1 for k < 6 t( )=3,t(7)=
#(8) = 12, £(9) = 27, £(10) = 82, #{11) = 228, #(12) = 733. - :
Remark. 1t was brought to my a’otentmn by Cralg Sqmer tha,t; the numbers c(n) are

the Catalan numbers L R e
: ot 2n 1
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. Fig. 2. Diagrem of PSL@,Z).

This formula is obtained from the recursive déﬁl_iiﬁbﬁ in The_qi*em’ 2 _as___f_"dl_i_gﬁw's_._. The o
generating funetion R T T e

e = Zema
for ofn) eViaen‘tlyS@tiSﬁeS'f.é = f-, aﬁd'sﬁ)"_ :. I
h 'f(x_)-m.“__'\_/'('z-_j—) 3 i

by the quadratic formula (with the minus sign chosen to satisfy ¢(1) = 1). The Taglor =
series for this function yields the formula. - c I e T e

_ 9. The diagram bf.PSL(Q','IZ).E_ IS e

The well known diagram in Fig. 2 will be useful as a book-keeping device. It is -
obtained as follows. I e e s

First define a 1-complex K. The vertices of K are the points of QP = QU {1/0}.
Two vertices (p, q) and (p’, ¢') are joined by an edge if and only ;f s i

Thus the oriented edges of X can be identiﬁed with the é_lémeﬁt.s of PSL(2 ; Z)j‘ L




308 - PAUL MELVIN DRI

Now embed K in the Pomca,re disc D 'as the 1-skeleton of a tessela‘mon by ldeal."i_ e
triangles, obtained by successive ‘reflections in the sides of one such trmngle The =
labelling of vertices is unigue once it is given on one trxa,ngle Thls Ia,belled subcomplex“ S
K < Dis called the Diagram of PSL(2,7) (see Fig. 2). - e

Observe that the set QPY; viewed as lines in R? through 0 of rafuonal slope zs;' S
invariant under the action of GL(2,Z) on R2 This gives an action of GL(2 7) on'the S '
vertices of K, which readily extends to an action on D by hyperbohc isometries leawng' i
K invariant. The subgroup SL(2, Z) acts by orientation preservmg 1sometr1es :

Definition. A loop in K is a closed, oriented edge path inkK c D, and w111 be 1<Slentuﬁec’lE
by its (oriented) eycle (p,/q, .. pk/qk of Vertmes If p, /4 * pj /qJ for 7, + g, then f;he.-:f
loop is simple. .

Two loops in K are conjugate if they he in the same orbﬂ: of the actwn of GL(2 Z)._{
on the seb of loops given by S R

(A /ey Ap q) deﬁfiml
A(P1/€l1~-pfc/9’:c) = { 4 yE ) k/ *
?Jc/‘l.rc ?1/9’1) detA “"_"“'1

In order to sﬁudy the con;ug&ey ciass of a loop 7= (1191 /gf1 pk/g;s in K assoclate-..lﬂ-'f'
with » an unoriented cycle SN

o) <e1 ek>,

where : _ SRR SRR e
(*) e, = det ((pz"*l p@) ( e P’b-}-l) (p?'_l pz»{-]_)) (?’ _ 1 : k) e LR
. v g1 4 QE g’ui-l g?.-—l Tii1 R

with indices taken mod k. In geometnc terms the Ioop turns ACTOSS ei tmangles a,t the_ L
vertex p,;/q;, with e; < 0 if and only if the turn i 15 clocszse D

Lemma. (1) Two loops in K are conjugate ?»f and only af the@r assocmted unomented':" e
cycles are equal. ' '
(2) An unoriented cycle is assocmﬁed’ with @ loop in K if and only af @t 8 reduczble

Proof. (1) The direct implication is geometrically evxdent as GL(2 Z) acts on (D K ) :
by isometries. Alternatwely, it can be verified from (¥).: RN
The converse follows from the trans1t1v1ty of the aehon of ;S’L(2 Z) on onented_ PR
edgesin K. L : -
(2} Any loop 7 in K can be collapsed to a vertex usmg elementary collapses C‘ and s
G’m defined in Fig. 8. For r always contains a simple subloop 7' (possibly = r). If g
just a retraced edge, then C, can be applied. Otherwise # encloses a tnangulated- R
polygon P in D. Viewing P as a regular Euclidean polygon, the shortest 1nten0r edge SR
in P cuts off a triangle to which Cy; can be applied. _ S
Now elementary collapses C, and Ciy on 7 correspond to moves B a,nd Bd;x on e(:r): S
(see § 1), Thus e(r) is reducible. _ = . '
Conversely if e is a reducible cyecle then the sequenee of reducmg operatlons correw'- R
sponds to a sequence of elementary collapses, which in reverse gwes 1nstructzons for B
bulidmgup&.iooprmwathe('r)—e l T TR TNE AR TS SN N
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pla plf —— pla

(z+pMyg+q"

I\

Fig. 3. (A) C,: Elementary coila.pse ofa retraeed edge p/g p'[q p/q ).';( p /g
(B) ¢.,: Elementary collapse across a friangle ( p/g (fp-{-_p']/(g»{-q’) » /g
(..p/q¢ /7 ...} {Ciq shown). _ o _ _

3. Proofs

Let Mbea connected sum of coples of + CP? and 52 x 6’2 a,ndoc T“’ e lef (M ) ?oe an-'j gt
offective T2-action on M. Following Orlik and Raymond (2), the weighted orbit'space .
of & is an oriented 2-dise with boundary consisting of smgular orbits and interior.
consisting of principal orbits (Fig. 4). The % distinguished points on the boundary'_-'
are fixed points, and the arcs joining them correspond to 2:spheres in M. (The. . -

Proposition in §1 follows readily.) The weights in Q u {1 Y} speczfy the lsotropy sub= -

groups of these 2-spheres. In particular p/q specifies the cn’eie in T2 = R2 /22 Whlch is

covered by the line in R? through 0 of slope p /q
Ag the weights satisfy

oy pm)“"“ (ﬁmi e
& G T P O

{see p. 534 in (2)), with subscripts taken ‘mod %, the cycle

@1/ .- Pk/ Q'zc

represents aloop in K (see §2).In faet the equwa,m&nt clasmﬁcatlon theorem of Orhk. .3._: » :__5

and Raymond (2) shows that the asmgnment

o - r{a}..

sets up a one-to-one correspondence between equlvalenee classes of eifeemve T 2~a‘ct10ns‘f T
on closed simply-connected 4-manifolds and loops in K. (Recall that two actmns'__ :_:;_ e
a,: T% — Diff (M) (1 = 0,1) are equivalent if there iv a dlifeomorphmm h M - M w1th. RN

hetylg) = o {g) b for all g in T2.)

Remarks. (1) Let 8; be the 2- sphere in M W;th Wezght pi/gz, and E be its norma,l'.-_"i_




palas R

ity

“olge:

bundle in M. The T*-action on 9B; identifies 7, as the lens space L{e;; 1) where ¢, is
given by the formula (*)in § 2. (See p 550 in (2). ) Thus E; has Euler ela,ss e;. Settmg-}"-

(T(a)) = e(r(a)) B

{2 ) Recall that two actmns o T > lef (M) (@ = 0 1) are w@akly equwalent 1f
oy and ey 4 are equlvalent for some automorphlsm A'of T Since Aut %= GL(2, Z),'_ _
it is straightforward to show that o, and cxl are Weakly equwa;lent 1f and onIy 1f e1ther.
of the following conditions is satisfied: L : AT Ca

(@) T(o,) and T{a,) ate eon}uga,te in lef (M )

() r{cty) and r{x;) are con;;uga,te loops i 111 K.

we have

.Proof of Theorem 1. By the Remarks above and the Lemma i § 2 the asszgnmenb
T — ¢(T) sets up a one-to-one’ correspondenee between con]uga,cy classes of toral
subgroups of the diffeomorphism groups of closed szmply connected: 4~ma,n1folds and-
reducible cycles. Since connected sums of o coples of +CP? and 8% 8% are cIassu'ied byi
their Euler characteristics and the mgnatures and pantws of thelr 1ntersect10n forms,'
1hremamstoshow _ ST o RO : : i

(1) (M) = RIRETRE

(2} (M) = (el—;- +e,c /3 and _

(8) M is spin if and only if e}, ..., ¢, are all even Rt : L
for any effective T2-action & on M with associated reduced cycle e(a) (el ek) :

A well known theorem of P. Conner sta,tes tha,t. x(M ) is equal to the number of
fixed points of ¢, giving (1). - : : s

To prove (2), observe that the moves Bo and Bi1 reducmg e(cx) (see § 1) have the
following effect on the underlying manifold: - : S S

B, surger a 2-spherei m M,
By, blow down a 2-sphere in M of self mterseetxon + 1 i
Thus B, does not affect the signatare of the underlymg manifold, and Bm alters it by_ﬁ_ S
F 1. An inductive argument, starting WIt.h o(84) = 0 (correspondmg to the reduced-._*_- e
cycle <0 0)), establishes (2). P T e R T T
(8) follows from Theorem 6-3in (1). | oo ‘ R
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Fig. 5 s

Proof of Theorem 2. I‘1rst observe tha,t 83 x 82 and 5'2 8 = CDP2 4 — CP2 each ha,s an R
- infinite number of conjugacy classes of toral subgroups i in its’ diffeomorplusm group,'_'.': o
corresponding to the reducible cycles {n 0~ 0) with » even and odd, Tespectively. .
It follows that if M has a connected sum factor dzﬂ‘eomorphac to 8’2 X 82 or §2% 82
then Diff (M) has infinitely many inconjugate toral subgroups. . - o i
Now assume that M hasno 82 x §% or 8% X §* factors. Then M or — M isa connected: S
sum of copies of CP?. Without loss of genera_,hty we assunie he,nceforth ths_u_; : s

for some £ = 2. Then for any toral subgroup T of D]ff (M Yie (T) is reduclble to (0 0)
_ using only moves B,. For, as observed in the proof of Theorem 1, move B, sphts off L
a 82 x 82 or §2 % 82 factor from M, and By, splits off a' + CP2 factor.. . i
Tt follows from the definition of move B, that Diff (3) has only & fimte number t(k) ik
of conjugacy classes of toral subgroups. These correspond exactly to acmons assocxa’sed S
with simple loops in K of length &. Any such loop r encloses an oriented; triangulated -
k-gon in D, whose regular Euclidean model we denote by. P(r). Evidently the con-
jugacy class of r in K (or equivalently of the assoc:atecl torus in Diff (M) is umquely;_ -
determined by P{r) up to rigid E Duchdean mo’mons (moludlng or1entaﬁ1on reversmg-:f:
motions). In partxcula,r : : R

#{k) = the number of ’smangulatmns of the k gon (Wlth 1o added
vertices) up to rotatlons and reﬂectmns TR R

For example, the 6-gon has three tmangulatmns (Fag 5) and 80 lef (#—CPZ) has. _'
three conjugacy classes of toral subgroups. - R
To compute £{k), we first ignore reflectional symmetry and compute the number s(k} O S
of triangulations of the k-gon up to rotations. S : L :
. Observe that every tma,ngulation ofa regula,r polygon P as above has at most 3-fold. B
rotational symmetry. (This was pointed out to me by Benjamin Halpern.) For;, the S
“centre of P lies either on an edge or inside a triangle. There can be at best 2- fold .-
rotational symmetry in the former case, and 3 fold m the la,tter See Fxg 6 {the clrcle i
represents P). - B R
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Let ,(k) denote the number of tnangulatlons of the k—gon (up to rotamons) whmh S

have ¢-fold rotational symmetry (for i=1, 2 or 3) Noﬁe tha,t

s(k) 2 82(70)

Let C{n) denote the set of all snnple edge pa,ths in K of length n Jommg 1 /() to 0[ 1':':' o :
and lying in the upper half of the Pomcare disec D (1 e. Wlth second vertex p / 1 for some _}j S

¢ > 0). Set
c(n) = ca,rd C(n)

Forn > 1, every pathin O(n) must pass through 1/ 1 and 80

- c(n) 'S, cijeln _me)

in agreement with the definition in the statement of the theorem."

For any loop # in K of length &, let S(r) be the set of all edge paths in O(k 1) with S
vertices 7, = 1/0,7,, ...,7;, = 0/1 such that r and (r; ... ;) lie in the same orbit'of the -~
action of SI{2,Z) on K. vadently the sets S{r) partition O(k— 1) into disjoint subsets. = .
Observe that if P(r) has i-fold symmetry (e, =1,2,0r 3), then S(r) conta,ms i’:;/@ pa,ths : i

Thus
e(k—1} = ksy(k )+~§k32( )+ ksa(k)

The triangulations with 2- and 3-fold rotatmnal symmetry are ev1dent1y of the form S
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Fig 9

_indicated in Fig. 7. One easﬂy de&uees that s, (ic) = c(k/@ for §= 2 and 3 Slnce" )

8(k) = (k) — s,(k) — 54(k), the equation dlsplayed above ylelds
s(k) = -—c(k 1)+ 1o (k) 30 (’“) o

Now we wish to compute #{k). The computatmn of s{k) 1gnored reflectional sym-:'j_} S
metry, and so we effectively counted triangulations without reflectional symmetry. .
twice. Thus, setting »(k) equal to the number of tr;angulatlons w1th reﬁee‘emna,l'?._ R

symmetry, we have

k) = sk )+?’(75))

But 7(k) is easy to compute by hand:. For the trlangulations with reﬂeetlona,l--'_ L
symmetry are of one of the three forms indicated in Fig. 8 (the dotted line is the line- FRE
of reflection; Z represents the reflection of the edge path « through the edge joining
1/0 and 0/1). The number of triangulations (up to rotatlons and reﬂecmons) in each B

of the first two cases is

-

@6

11 o oo TR L8> AT S Ral it
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These two cases overlap in tmangula,tlons of the form shown in F1g 9 There are c k/4)

such triangulations and so there are a total of c(k/2) tuangulatlons in the ;ﬁrsi} two
cases of Fig. 8. Tn the third case there are c((k—1)/2) i;rlangula.tzons Thus i

fr(k) uc(];)..%c(kzi),_

Combining thls with the formula for s(k) above, we obtam the desweti formula for;'::
t{ky. 1 : : i S -
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