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ABSTRACT

Fibred knots of genus 2 have Conway polynomial \+clz
2±z4. We show that the polynomials

l+4ftz2+z4 and l+(4 /c+2)z 2 -z 4 cannot arise for a knot formed by plumbing Hopf bands. Further
properties of the monodromy mod 2 in the case where cx is even shows that none of Burde's genus 2 fibred
knots with c, even are formed by plumbing Hopf bands.

In the study of fibred knots and links the technique of plumbing two embedded
surfaces F^ F2 <= S3 to get another embedded surface F= F1[)F2 plays a significant
role. This follows the result [6] that, if two fibre surfaces F^ and F2 are plumbed, then
the resulting F = Fy U F2 is also a fibre surface, that is, SP — dF is fibred over S1, with
F forming one fibre.

Many examples of fibre surfaces can be built up from simpler ingredients in this
way. Starting, for example, with one of the simplest fibre surfaces, the positive or
negative Hopf band, that is, a closed unknotted ribbon with a single positive or
negative full twist, and successively plumbing on further Hopf bands will generate
quite a number of fibred knots of a given genus.

In this paper we investigate fibred knots of genus 2 which arise by plumbing Hopf
bands, and give necessary, but not sufficient, conditions in terms of its Alexander
polynomial for a fibred knot of genus 2 to arise in this way. These conditions enable
us to provide examples of fibre surfaces which are not the plumbing of Hopf bands
using, for example, Burde's sequence #(cl5 ± 1) of fibred knots (see Figure 1).

The example in Harer's paper [3] attributed to us, of a fibred knot which does not
arise by plumbing Hopf bands, is K{2, 1). In fact this knot is not excluded by our test
on the Alexander polynomial, for it has the same polynomial as the sum of two
trefoils; when Harer's paper was written, our results simply said that certain
Alexander polynomials could not occur. However, if the sign of one of the Hopf
bands is changed, the knot becomes K(2, — 1), which can be excluded by the test.

By a closer look at the Seifert form for a Hopf plumbing of genus 2 we have now
shown the following.

THEOREM 5. None of Burde's knots K{cY, ±\)are Hopf plumbings when cx is even.

Harer's example is then justified, although it was not the knot originally envisaged
by us.

This theorem and our Alexander polynomial condition both stem from an explicit
investigation of the possible Seifert matrices for a knot given by Hopf plumbing. The
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FIG. 1

condition on the Alexander polynomial is most readily stated in terms of Conway's
normalised form [2, 4], of the polynomial VK{z) for a knot K. The polynomial VK(z)
can be recovered from the Alexander polynomial AK(/), by first 'balancing' AKt that
is, multiplying by some power of t to write it in the form ao+?<k-iaic(.tlc + t~k:)>
changing sign if necessary to ensure that A#(l) = + 1, and finally writing it as a
polynomial in z = x—x'1 with x2 = t. It can, however, be calculated directly from a
Seifert matrix A for the knot K by VK(z) = det(xA - x ~ M T ) , putting z = x-x~l. For
a knot K, VK(z) is in fact a polynomial in z2, since z2 = t + t~l — 2. If K is fibred of
genus 2 then VK(z)= l + ^ z H z 4 , realised by K(cv±\) for any ^ e Z . (For a
discussion of Burde's knots in general, see [1, 5].)

THEOREM 3. If a fibred knot K of genus 2 can be constructed by plumbing Hopf
bands, then r{ + C i Z 2 + z 4 for c = 0 m o d 4 ,

# \
{ \+c1z

2-zi for cx = 2 mod4.
Besides these exclusions there are further restrictions on the possible even values

of cls depending on the values taken by certain integer quadratic forms. All odd values
of cx can, however, be realised by plumbing knots.

In the paper quoted, [3], Harer proves that every fibre surface in S3 results from
a disc by a sequence of elementary changes:

(a) plumb on a Hopf band,
(b) de-plumb a Hopf band, that is, the inverse of (a),
(c) perform a Dehn twist about a suitable unknotted curve in the fibre.

He asks whether changes of either type (b) or (c) can be omitted, and any fibre surface
realised using only the remaining two types. We shall conclude by showing how all
the knots K(clf +1), which come from a disc by plumbing and twisting alone, can
equally be generated simply by plumbing and de-plumbing.

2. Hopf plumbing

To plumb a Hopf band H to a fibre surface Flt choose a square i \ c Fx with two
opposite sides in 9 ^ and then glue a similar square P2 cz H to Pl matching the sides
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in Px n dFx with those in P2 which do not lie in dH, so that the whole of H lies on one
side of Fx in some neighbourhood of Px x /.

A more usual equivalent procedure is to arrange Fx so that Px is visible and then
place H so as to overlay Flt with Px and P2 matching as before (see Figure 2). It is,
however, useful not to have to move Fx in trying to visualise the plumbing.

FIG. 2

A picture more like Figure 3 can also be helpful. The choice of Px corresponds
simply to a neighbourhood of some arc ax in Fx whose ends lie in dFx. Near this arc
we add a twisted band to the surface lying close to ax which, together with the
neighbourhood of ax makes up the Hopf band. It does not matter which side of Fx

is used, for the monodromy of Fx gives an isotopy carrying Fx through SP to lie just
to the other side of the band, if we so wish. Indeed, since the fibre of an oriented fibred
link is determined up to isotopy by its boundary, we should not expect any difference
to arise from the choice of side since the boundary of the plumbed surface is the same
in either case.

FIG. 3

A theorem of Stallings [6] shows that if a Hopf band is plumbed on to a fibre
surface Fx then the resulting surface F is also a fibre surface, so that the oriented link
3F is fibred with F as one fibre. Now r(F) = rk(nl F) increases by one for each Hopf
band, that is, r(F) = r(Fx)+1 in the construction described.

DEFINITION. We say that F is a Hopf plumbing if it is constructed from D2 by
successively plumbing r Hopf bands, for some r. Then F is a fibre surface with
r(F) = r. We shall say that the oriented link dF is given by Hopf plumbing.

6 JLM 34
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3. Genus 2 knots given by Hopf plumbing

To study the case where K = dF is a fibred knot and F, of genus 2, is a Hopf
plumbing, we must consider, since r(F) = 4, all possible sequences of surfaces
Fo = D2, Fx, F2, F3, F4 = F, where Fi+1 is given by plumbing a Hopf band on to Ft.

The surface Ft+1 depends on Ft and on the choice of arc ai+1 in F{ to be used in
the plumbing, as well as the sign of the Hopf band used. If ai+l connects two points
in the same component of dFt then Fi+1 will have one more boundary component than
Ft, otherwise it will have one less. Since F4 is to have one boundary component, the
number of boundary components of Fo, ..., F4 will form a sequence, either

(a) 1 ,2 ,1 ,2 ,1 , or
(b) 1 ,2 ,3 ,2 ,1 .

The choice of arc ax is automatic. We shall show that in case (b) there is a very
limited choice for a2 and a3, and that any resulting F3 could also be made by a plumb-
ing of type (a). Bear in mind that ai+l may be varied by isotopy in Ft, with the ends
free to move in dFt, without altering Fi+1. Indeed ai+l can also be replaced by ht(ai+l),
where hl\Fi-> Ft is the monodromy for Ft, since the isotopy of Ft in S3 which realises
ht will carry a band determined by ai+1 to a band determined by ht{ai+i).

We start then with Fl = H±, one of the two Hopf bands. There is just one choice
of a2 joining the two components of dFv This arc (case (a)) gives F2 as the fibre surface
for a left- or right-handed trefoil, or figure-eight knot, according to the signs of the
bands used.

If a2 joins one component of dFx to itself (case (b)) then F2 is the connected sum
of two Hopf bands (Figure 4), and a3, joining two components of 9F2, must be one
of the three arcs a3, a3, a'3 shown. In each case the resulting F3 can be seen to arise
also from one of the surfaces F2 of case (a) by plumbing in a different order.
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We may then concentrate on case (a), and look at the surfaces F3 = T2 — 2 discs
arising from the choices of a3 in F2 = T2 — disc, and finally at the choice of a4 in F3

joining the two boundary components which gives our possible selection of FA.

THEOREM 1. IfK is a fibred knot given by Hopfplumbing then we can find an upper
triangular Seifert matrix for K. If in addition K has Conway polynomial
VK(Z) = l+ctz

2±zA with cx even, then K has a Seifert matrix

A=\

Proof Since K is fibred and VK has degree 4 the fibre must be some F4 of genus
2. A Seifert matrix for F4 can be found using a sequence of embedded curves
xv x2, x3, x4, consisting of the cores of the successive Hopf bands, as a basis for
HX{F^). The curve xt is assumed to extend the arc ai used in plumbing the /-th band
along the core of the band. Let ak have intersection number mik with xt, i < k, in Fk_v

Then xk will have linking number mik with xt when it is pushed off Fin one direction,
and 0 when pushed off in the other direction (/ < k). Its self-linking number will be
+ 1 depending on the sign of the band. The Seifert matrix in this basis will be upper
triangular, with entries ± 1 on the diagonal, mik above.

Having restricted to case (a) we may assume that m12 = 1, choosing the sign of
x2 as required. Since F2 is a torus with a hole, the embedded arc a3 will meet the
generators xlt x2 of H^F^ p and q times respectively, where either p and q are
coprime, or p = q = 0 and a3 lies close to 9F2.

Write

A =

a
0
0
0

1
p
0
0

p
q
y
0

m
n
s
3

for the Seifert matrix of F4. It must satisfy det(y4 — AT) — 1, since A—AT represents
the non-singular intersection form on HX{F).

When (p, q) # (0, 0) then p and q are not both even. We can assume in this case
that p is even and q is odd, by using h2(a3) or h\{a3) if necessary. For the monodromy
h2 is the composite of a twist about xx and about x2, and h2{a3) then meets JC1S x2

respectively/?' and q' times with q' = q±p,p' = p±q'. In this case we can assume that

mod 2,

and det(A-AT) = (m+s)2 mod2, giving (w, s) = (1, 0) or (0, 1) mod2. Calculation
of the Conway polynomial mod 2 gives 1 +z2+z* in either case.

It follows that if cx is even then p = q = 0. In this case det(/4 — AT) = s2 = 1,
so by choice of orientation of x4 we have 5 = 1 . This completes the proof of
Theorem 1.

In this case x3 is parallel to one boundary circle of F3, so the arc a4 joining the
two boundary circles of F3 will clearly meet x3 once. There is no restriction on m and

6-2
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n here; in a torus with two holes an arc joining the boundary components may meet
xx and x2 any number of times, so all matrices

A
A =

will occur for some Hopf plumbing.

THEOREM 2. If K has Seifert matrix

a 1 0 ms

. 0 $ 0 n
A ~' 0 0 y 1

0 0 0 3 !

Proof. This follows by direct calculation from VK(z) = det (xA — x~xA T), putting
z = x — x'1.

Our main condition on the Alexander polynomial of a Hopf plumbing now
follows readily.

THEOREM 3. If a fibred knot K, of genus 2, is given by Hopf plumbing, then

(1 + cx z
2+z4 with cx = 0 mod 4

| l + c 1 z 2 - z 4 with q = 2 mod4.

Proof. For a genus 2 Hopf plumbing K, VK(z) is given by Theorem 2 when cx

is even. In that formula, cx is even if and only if the quadratic expression
<xn2+fim2—mn is even. This in turn requires that m and n are both even, so that

VK(z) = \+(otfi+yS)z2 + txfiySz* mod4.

If afiyS = 1 then atfi+yd = ±2, otherwise ufiyd = — 1 and afi+yS = 0, so the only
possible polynomials with even cx are 1 +2z2+z4 and 1 — z4, modulo 4.

The remark that m and n are both even can be expressed as follows.

THEOREM 4. If K is given by Hopf plumbing and has VK(z) = 1 + cx z
2 ± z4 with cy

even then K has a Seifert matrix A congruent to

1 1 0 0 \
0 1 0 0 1 . .
0 0 1 1 lm o d 2-

\0 0 0 1/

COROLLARY. The monodromy matrix H = A(AT)~1 of such a knot K then satisfies
W + H+I = 0 mod 2; in other words the minimal polynomial^mod2 ofthe monodromy
has lower degree than its characteristic polynomial.
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4. Fibred knots not given by Hopf plumbing

The conditions of Theorem 3 allow us to exhibit many fibred knots which are not
given by Hopf plumbing. It is also possible by further investigating the quadratic form
in Theorem 2 to give more restrictions on the even values of cx which can occur.

The corollary to Theorem 4 suggests that in fact Hopf plumbings with even cx are
quite rare. Indeed we can use it to prove the following.

THEOREM 5. None of Burde's fibred knots K(c1} ± 1) with q even are given by Hopf
plumbing.

Proof Choose a Seifert matrix B for K(cv + 1), using the cores of the bands in
the diagram in Figure 1 as a basis. Then

mod 2

when c1 is even. Hence the monodromy matrix

L = B(BT)-1 = r ; 1 ; i m o d 2 .

If the knot is a Hopf plumbing then L must be conjugate in GL (4, Z) to a matrix
H as in the corollary to Theorem 4, and so L2 + L + I = 0 mod 2. Direct calculation
shows that

mod 2.

REMARK. Similar calculations show that the (2, 1) cables about the trefoil and
figure-eight knots, which are fibred satellite knots with Conway polynomials
1 +4z2 + z4 and 1 — 4z2 — z4 respectively, cannot be Hopf plumbings. The first can be
excluded immediately, by Theorem 3, and the second by its monodromy as in
Theorem 5.

We should also note that all polynomials 1 +(2n+ \)z2±z4 can occur from Hopf
plumbings. Start with the surface F3, with xlf x2, x3 as shown in Figure 5, and find
an arc a4 having intersection numbers 0, n, n +1 respectively with xlt x2, x3.

Plumb on a ± Hopf band along aA to get F4 with Seifert matrix

1
p
b
0

l
I
0
0

1
0

- 1
0

0
n

n+\
+ 1

The resulting knot has V(z) = 1 +(2n+ \)z2
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FIG. 5

5. Stable Hopf plumbing

DEFINITION. TWO fibre surfaces F and F' are Hopf equivalent (F ~ F') if F is
obtained from F' by plumbing and de-plumbing Hopf bands. Observe that if F and
F' are both obtained from some G by plumbing a Hopf band, along arcs a and a'
respectively, then the surfaces given by plumbing a band on F along a' c G c F and
on F' along a will be isotopic; we can choose to place the bands on either side of G
without affecting the resulting surface up to isotopy. It follows that F ~ F' if and only
if there is some surface E given by Hopf plumbing from both F and F'. If F ~ disc,
we say F is a stable Hopf plumbing, and the oriented link dF is given by stable Hopf
plumbing.

THEOREM 6.

plumbing.
All of Burdens genus 2 fibred knots K{G, + 1) are given by stable Hopf

Proof. The fibre of K(clf ± 1) is clearly Hopf equivalent to the surface LCl s MCl

shown in Figure 6. Since Mx is a Hopf plumbing (it is the connected sum of two Hopf
bands) the theorem follows from repeated application of the following lemma, which
shows that Mk ~ Mk_x.

FIG. 6
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LEMMA. If fibre surfaces F and F' are related by changing H to H' (Figure 7),
where F and F' are assumed to meet some ball 2?3 in H and H' respectively and agree
outside B3, then F ~ F'.

FIG. 7

Proof. Plumb on a Hopf band along a in F as shown. With suitable choice of
sign the new part of the ribbon (lying close to one side of F) appears untwisted in
the diagram because of the twist in F along a. Isotop the surface, within B3, until
it appears as H' with a band plumbed along c' (see Figure 8).

H

plumb
along a

plumb
along a

FIG. 8
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A natural question to ask is whether Burde's higher genus knots are all given by
stable Hopf plumbing. One might suspect so, as they come from plumbing a sequence
of surfaces Lk [5] each of which is a stable Hopf plumbing by the lemma. However,
if fibre surfaces Tand T' are obtained by plumbing F and F' respectively to a surface
S, with F ~ F' it is not clear that T ~ T'. One can certainly find U ~ T and U' ~ T
each given by plumbing a surface E to S, but there is no obvious reason why different
ways of plumbing two surfaces, E and S, should result in Hopf equivalent surfaces.
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