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In 1988 Witten [W] defined new invariants of oriented 3-manifolds using the
Chem-Simons action and path integrals. Shortly thereafter, Reshetikhin and Tu-
raev [RTl] [RT2] defined closely related invariants using representations of certain
Hopf algebras A associated to the Lie algebra sl{2, C) and an r*'* root of unity,
<2 ^ ê '̂ '"*/'". We briefiy describe here a variant r̂  of the Reshetikhin-Turaev ver-
sion for q - e '̂̂ '/'-, giving a cabling formula, a symmetry principle, and evaluations
at r = 3, 4 and 6; details will appear elsewhere.

Fix an integer r > 1. The 3-manifold invariant r̂  assigns a complex number
rr{M) to each oriented, closed, connected 3-manifold M and satisfies:

(1) (multiplicativity) rr{Mjj^N) = Tr(M) • r̂ {7V)
(2) (orientation) Tr(-M) ~ T.r{M)
(3) (normalization) Tr(S^) === 1
rr{M) is defined as a weighted average of colored, framed link invariants J^^i^

(defined in [RTl]) of a framed link L for M, where a coloring of X is an assignment
of integers k,, 0 < fcj < r, to the components Li of L. The ki denote representations
of A of dimension h, and Ji,k is a generalization of the Jones polynomial of L at
9-

We adopt the notation e(a) = e '̂̂ '"
and

DEFINITION: Let

s = e(^) , t = e(^) , (so that q =^ s'^ i%

Tr{M) = aL J][k]JL,k(4)

where ai is a constant that depends only on r, the number n of components of X,
and the signature a of the linking matrix of L, namely

-3 ( r~2)
(5) a I = h^c" =

8r
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and

(6) [k] = llih
)=1

The sum is over all colorings k of L.
Remark: The invariant in [RT2] also contains the multiplicative factor c" where

u is the rank of iJi(M; Z) (eqnivalently, the nullity of the linking matrix). If this
factor is included, then (2) above does not hold, so for this reason and simplicity
we prefer the definition in (4).

Recall that every closed, oriented, connected 3-manifold M, can be described by
surgery on a framed link L in 5^, denoted by ML [LI] [Wa]. Adding 2~handles to
the 4-ball along L produces an oriented 4-manifold Wi for which dWi, = Mi, and
the intersection form (denoted by x • y) on H2(Wi,;Z) is the same as the linking
matrix for L so that a is the index of Wi. Also recall that if Mi — Mi', then one
can pass from L to L' hy a sequence of iS'-moves [Kl] [F-R] of the form

V*i ® v*i* ® v* '̂ ® v*=

V*i ® V^a' ® V* '̂ ® V*'"® V*2 ® V*a

(

±1 full twists

—~- „— ——^—

±1

K

Figure 2

Removing the maxima and minima, assign a vector space V^' to each downward
oriented arc of Li, and its dual V"*̂^ to each upward oriented arc as in Figure 2.

Each horizontal line A which misses crossings and extrema hits L in a collection of
points labeled by the V^' and their duals, so we associate to A the tensor products
of the vector spaces in order. To each extreme point and to each crossing, we assign
an operator from the vector space just below to the vector space just above. The
composition is a (scalar) operator from C to C, and the scalar is J .̂k- The vector
spaces and operators are provided by representations of A.

To motivate A, recall that the universal enveloping algebra U of 5/(2, C) is a 3-
dimensional complex vector space with preferred basis X, Y, H and a multiplication
with relations HX - XH = 2X, HY ~YH = -2Y and XY - YX = H. To
quantize, U, consider the algebra Uk of formal power series in a variable h with
coefficients in U, with the same relations as above except that XY—YX

— ^h

L\U
Figure 1

where L\ • L\ = Li • Li + {L[ • K)f K • K.
The constants ai and [k] in (4) are chosen so that Tr{M) does not depend on the

choice of Z-, i.e. r^(Af) does not change under /C-moves. In fact, one defines Ĵ î̂
(below), postulates an invariant of the form of (4), and then uses the /<'-move for
one strand only to solve uniquely for ai and [k]. It is then a theorem [RT2] that
rr(M) is invariant under many stranded K-IXIOVQS.

To describe J£,,3<, begin by orienting L and projecting L onto the plane so that
for each component i j , the sum of the self-crossings is equal to the framing Li • Li.

siiih "I
H + —'̂ j—• h^ + .. . . Setting q = e^, and then by analogy with the above notation,
s = e''̂ ,̂ t = e''̂ *, s - e~^/^, and [H] = \Zl > the relations can be written
HX = X{H + 2), HY = Y{H ~ 2), XY ~ YX - [H]. It is convenient to introduce
the element K = t^^ = e^ and K = i^. Note that K ^ K~\ KX = sXK,
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K^KY = sYKs^AXY -YX
We want to specialize t/fe at ft — • ^ (so g — ê '̂ '̂ '") and look for complex rep-

resentations, but there are difficulties with divergent power series. It seems easiest
to truncate, and define A to be the finite dimensional algebra over C generated by
X, Y, K, K with the above relations

KK^1== KK
KX = sXK
KY = sYK

3 dimensional representations are

t 0
0 iY ~ and K =X =

/O [2] 0
X^\Q 0 [1]

\ 0 0 0

/ 0 0 0
y = [1] 0 0

V 0 [21 0
and K —

respectively.
It is useful to represent V'' by a graph in the plane with one vertex at height j for

each basis vector e ,̂ and with oriented edges from Sj to e -̂ti labeled by [m^j + 1]
if [m±j-\-l] ^ [r] = 0, indicating the actions of X and K on V*. Figure 3 ̂ ves
some examples, using the identities \j] = [r — j] = —[r -j-j].

(7)

as well as

v v V V r wi
A. J ~ I A. — |xi j — 5 — 5

— I — U

K'^'' = 1.

A IS a. complex Hopf algebra with comultiplication A, antipode S and counit e
given by

AX=X®K+K®X
AY=-Y^K-\-K®Y
AK = K® K (AH = H®l-\-l®H)
oA. — —SA

*-* J -~- •"—OS

SK = K (SH = ~H)
siX) .= e(r) = 0
eiiq =: 1.

There are representations V'^ of A in each dimension k > 0 given by

[1]

[1]

[2]

[2]

El]

a

•

lira
«fitu
I•

[2m]||[2]

i:2m~l]tjri]

[2]|i[l]

[i]tJl2]

(8)
I = [l]y2m3

Vir = 5)

Figure 3

The Hopf algebra structure on A allows one to define ^-module structures on the
duals V* — Homc(V, C) and tensor products V 0W — V ®c ^ of ̂ -modules V
and W. In particular, (Af)(v) = f{S(A)v) and A{v®w) = AA-{v®w) for A e A,
fEV*yV£V,weW. Thus the vector spaces in Figure 2 will be ^-modules and
the operators will be ^-linear.

Xej = [m+j-\- l]ej+i
Ycj = [m — j + l|ej_i
Kej = s-'ej

(9)

where V'' has basis e^, ejn_i,..., e_^ ior m k~-i . The relations in A are easily
verified using the identity {a][b] — [a -j-1][6 ™ 1] = [a — 6 + 1]. For example, the 2 and
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where k = 2m-j-l, k' = 2m' + 1, and jgi = [p][p - 1].. . [n + 1].

EXAMPLES: In V^ <S) V'^, the ij-matrix is
The structure of ^modules iov k < r and their tensor products V ® V^ for

i^j-l<ris parallel to the classical case and is well known:
(10) THEOREM [RT2]. Ifk<r, then the representations V'' are irreducible and
self dual. Ifi+j -I <r, then V' ®V^ = 0 V" where k ranges by twos over

k
l i + j - l , i + j ~ 3 , i + i - " 5 , . . . , | i - i i + l}.
(11) COROLLARY. Ifk<r, then

1-j

i t{s - $)
0 t(t)e e(f)

with respect to the basis ei/2 ® &ii2^ ^iji ® e_i/2, ^-iji ® ei/2, and e^ift ® e_i/2j
and

y'̂  = ^(-l)>r^~^ ^^ivy -l-2j

R^Pn^it)e{l ,-t/L,j)®W-(15)

0 1

where the sum is over aii 0 < j < 2 -
Here we have written U = V - W to mean U @W = V, jV == V ®-;-B V Biid

j times

y®J =V ® •'•"̂ ® V. This corollary is the key to our later reduction from arbitrary
colorings to 2-dimerisional ones.

The Hopf algebra A has the additional structure of a quasi-triangular Hopf alge-
bra [D], that is, there exists an invertible element R'mA®A satisfying

'0 0 q
0 1 1-g
q (5-g)(H-g) {q-m~^)

0 1
1 q~q ®{q)-R = iq)® 1 5 - 5

It is now possible to assign operators to the following elementary colored tangles
[RTl]:

i?A(A)iJ^^ ^ A(A) for all AinA
{A®id){R) = RnR2S
{id0A){R) = RisRi2

~> i d(12)

->R = PR
where A(A) = P(A(A)) and P{A ® B) ^ B ® A, Rn = R® ly ^23 ^ 'i- ® R and
Hi3 = (P®id){R23)- R is called a universal R-matrix. Historically, iJ-matrices
have been found for Uk, A &nd other Hopf algebras by Drinfeld [D], Jimbo [J],
Reshetikhin and Turaev [RT2] and others. We look for an i? of the form R =
Y^'^nab^^'K'^ (g) VKK and recursively derive the constants c^ab from the defining
relation RA{A)R-^ ^ A(A). This approach was suggested to us by A. Wasserman
who had carried out a similar calculation.

(13) THEOREM . A universal R-matrix for A is given by

^fl~' = fl-'P

-i E where E(f® x) = fix), fe V^,xeV

-> E^ where Ej^ix ®f)=f(K^x)

-^ A' where A^(l) = Xj ej ® e'
\n\\n,a,b

where the sum is over all Q < n< r and 0 < a, b < 4:r and {n\\ = [n]{n - 1 ] . . . [2][1].

(14) C O R O L L A R Y . R acts in the module V^ ® V''' by

-* N^ where K^d) = Î  e' ® ̂ e .

{S - 3)" [m + i -h n]\ [m' - j + n\\ ^4ij-.2n{i--j)~n(n+l)
fnl! ' im + iV. fm'-7i!E ei+n ® ej-nRe, ®ej Figure 4[n]\



Kirby and Melvin: Evaluations of the 3-manifold invariants Kirby and Melvin: Evaluations of the 3~manifold invariants108 109

FVom these elementary tangle operators, define [RTl] ^-linear operators JT,k for
arbitrary oriented, colored, framed tangles T, k. If T is a link L, then we obtain the
scalar JL,k- The invaxiance of J£,_k under Reidemeister moves on L is well known;
the Yang-Baxter equation (id ®^) (^ ® id)(id (giH) = {R<S) id)(id ®R){R ® id) is the
key ingredient, and it follows easily from the defining properties (12) for R. Note
that Ji^ic is independent of choice of orientation of L.
EXAMPLES: The following examples are easily derived from the jR-matrix and the
irreducibility of V*:

Remark: the relation between JL^2 and VL is important because the values of Vi
at certain roots of unity have a topological description, as they do for the usual
Jones polynomial VL [LMl], [Lip], [Mur]. In particular, the values at g = e( l / r ) ,
for r = 1, 2, 3, 4 and 6, are as follows:

r
1
2
3
4
6

VL

detL
1

ay/2

VL

detL
(_l)-i

a(-V^)"-^
(—v3) (—t)

(18)

O •^ m
where n is the number of components of L, detL is the value at —1 of the (normal-
ized) Alexander polynomial of L, a is (-^l)-^^^^) when I- is proper (so the Arf invari-
ant is defined) and 0 otherwise, d is the nullity of Q(mod 3) where Q is the quadratic
form of L (represented by 5 + 5 ' for any Seifert matrix 5 of L), and OJ is the Witt
class of Q(mod3) in W(Z/BZ) = Z/4Z. It is well known that |detX| = \IIiiM)\,
where M is the 2-fold branched cover of 5^ along L, and d = d imFi(M;Z/3Z)
(since any matrix representing Q is a presentation matrix for Hi{M)).

PROPOSITION. If S is a sublink of L obtained by removing some 1-colored compo-
nents, then

.(A^-i) -> r<* ' -"-^ t'

c
k

: )
m
m

(scalar) operatorstangles

Figure 5
With this definition of Ji,ki we have completed the definition of rr{ML)- The

examples in Figure 5 can be used to check the one-strand iiT-move, or conversely,
they may be used to solve for the coefficients of JL,U in the definition of Tr{ML).

When all components of L axe colored by the 2-dim,ensional representation, then
JL,2 = JL is just a variant of the Jones polynomial. First note that from (15) R
on V^ ® V^ satisfies the characteristic polynomial

tR - iR-^ =(s- s)I.

Then, adjusting for framings, JL satisfies the skein relation

(19) JLM = JsMls-

Using (11) and (17) we obtain a formula for the general colored framed link
invariant JL^U in terms of / or V" for certain cables of L. In particular, a cabling c
of a framed link L is the assignment of non-negative integers c,- to the Li, and the
associated cable of L, denoted L'^, is obtained by replacing each Li with Cj parallel
pushoffs (using the framing).

(20) THEOREM. Using multi-index noiation,

3 V J /

for any orientation on L^-i-^J^ where the sum is over all 0 < j < ^-

(16) qj L. — <IJL- — \S — &)Ji,a

(see [L2] for background on skein theory), if VL = V'(Q) is the version of the Jones
polynomial (for oriented links) satisfying this skein relation and Knknot = !> then
it follows that

(17) 3L=^H,I=^W- VL-
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EXAMPLES; If X = iC — framed knot, then

h<,^ = ho - 1
(21) JKA^JK^-'^^K

(22) THEOREM. Tr{Mi) = aLX)c(^)*^ '̂' ^here the sum is over all cables c =

{a,. ..,c^),0 < Ci <r ~2, aL is as in (6), and (c) = '£.[c + 23 + l]{~iy r'^^j

where the sum is over aii j > 0 with c + 2j + 1 < r.

Remark: a formula like this motivated Lickorish [L3] to give an elementary and
purely combinatorial derivation of essentially the same 3-manifold invariant as r^.
The proof reduced to a combinatorial conjecture whose proof has been claimed
by Koh and Smolinsky [KS]. This elegant approach is much shorter and simpler.
However it may be less useful because the above algebra involving A organizes a
great deal of combinatorial information.

For example, using (20) one can give a recursive formula for JH^,2 = Jlin foi" the
unoriented, n~component, 1-framed, right-handed Hopf link Hn-

Use of the Symmetry Principle enables one to cut the number of terms in rr{ML)
from the order of (r - 1)" to (-)". It also has interesting topological implications.

EXAMPLE: Ear r - 5 and L-K with framing a > 0, then

r,{MK) - / f sin|e (^-^) jy\JK,
5a/ i\2a T I --Sa/

= axil + i" + ([2] + [Z]i'')JK) for a even
= a;c(l + ̂ "")(1 + [2ft^''VK) since [3] - [2]
~ 0 for a = 2 mod 4.

For a ~^2 mod 4, this shows that % is an invariant of MK-

(26)

3, 4 and 6. Note thatNext

For r

(27)

we discuss
^ 1.

o,

the evaluations

MM)

of Tr{M) when

S<L

r

s

where M — Mi, c = e {—^) — ̂  and < denotes sublink and we sum over all
sublinks including the empty link {^ • 4> = 0). It is not hard to see how the formula
follows from (4) since components with color 1 are dropped (19); it also follows from
the cabBng formula (22).

Evidently, Formula 27 depends only on the linking matrix A of L. It is not hard to
give an independent proof of the well definedness of (27) by checking its invariance
under blow ups and handle slides as in the calculus of framed links [Kl]. This means
that T^{M) is an invariant of the stable equivalence class of A (where stabilization
means A ® (±1)). It follows that TZ{M) is a homotopy invariant determined by
rank Hi{M]Z) and the linking pairing on TorHi(M;Z), for these determine the
stable equivalence class of A.

The cumbersome sum in (27) can be eliminated by using Brown's Z/^Z invariant
^ associated with A. View A as giving a Z/42-valued quadratic form on a ZjlZ-
vector space by reducing mod 4 along the diagonal (to get the form) and reducing
mod 2 (to get the inner product on the vector space). A is stably equivalent to a
diagonal matrix and then 0 ~ rii - n^ mod 8 where rii is the number of diagonal
entries congruent to i (mod4). Observe that

(28) ^(M) = t r - ^ ( m o d 8 )

is an invariant of M = Mi.

(23) n/2
\^—^, t_i /n-fc-1

k JHn-.2k-
k=l

Using deeper properties of A [RT2], one obtains a closed formula:

n - l

k=o ̂
(n-2kyJH.=i''y'A '\r |[2(n--2fc)]i(24)

It is not clear how to derive such formulae in a combinatorial way from skein theory.

(25) SYMMETRY PRINCIPLE: Suppose we are given a framed link of n -f 1 compo-
nents, LuK, L — Li\J---U Ln, with colors 1 — /i U • • • U /,i on L and k on K. If
we switch the color fc to r — fc, then

JLuK,lur-k ~ 7JLui<,luk

where 7 ^ r " ( - l ) ^ + ' ' \ a is the framing on K and A = Eleven /, •̂ '̂' ̂ i = ^ A' • (1 +
l)i.

mod 2
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(29) THEOREM. If all fi-invariants of spin structures on M are congruent (mod 4),
then

r3(M) = V2''^''^c^W

where fei(M) ~ ranklfi(M; ZjiZ), c — e (—|) and p{M) is as above. Otherwise,
T^{M) - 0.

(30) COROLLARY. IfM is a Z/2Z~homology sphere, then

where c = e (—-I); M(J^) = fi-invaxiant of M and the ± sign is chosen according to
whether \HiiM;Z)\ = ±1 or ±3 (modS).

(31) REMARK: T3(M) is not always determined by Hi{M; Z) and the //-invariants
of M (although r^ is, see below). For example, if M ~ L(4,l) # L(8,l), then
p{±M) = ±2 so rs{±M) — ±2i, yet M and —M have the same homology and
/i-in variants.

(32) THEOREM. U{M^) = X^e '̂* '̂"'®^ ^^ere c ==^ e ( - ^ ) , /i(M,0) is the ft-
invariant of the spin structure Q on M and the sum is over all spin structures
on M.

The keys to the proof are these: use the cabling formula (20) to drop 1-colored
components, keep 2-colored components and double 3-coIored components; the un-
doubled components turn out to be a characteristic sublink and hence to correspond
to a spin structure; at r — 4, the Arf invariant (18) comes into play; finally,

In particular if M is obtained by surgery on a knot K with framing a, then it
can be shown that

r5(M) = L | l ( l + 2*̂ + ̂ {'^ + i-ir)t"'VK)

where cr is 0 if a = 0, 1 if a > 0 and - 1 if a < 0. It follows that re{M) is
determined by a and the Witt class of the quadratic form Q of K. Thus, for odd a,
or a = 0, re(M) is deterniined by Hi(M; Z) (with its torsion linking form, needed
to determine the sign of a when a is divisible by 3). For even a, one also needs to
know Hi{M\Z) with its torsion linking form (which determines the Witt class of
Q) where M is the canonical 2-foid cover of M.

We are especially grateful to N. Yu. Reshetikhin for his lectures and conversa-
tions on [RXl] and [RT2], and to Vaughn Jones, Greg Kuperberg and Antony
Wasserman for valuable insights into quantum groups.
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