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0 Introduction

In the fall of 1988, Witten [W] gave the first intnsically 3-dimensional interpre-
1ation of the Jones polynomial [11, J2] of a link in the 3-sphere, using a quantum
field theory with Chern-Simons action. In the process, he uncovered a family
of new invariants for arbitrary closed framed 3-manifolds and for links in 3-
martfolds.

Shortly afterwards, Reshetikhin and Turacy defined closely related invariants
using the theory of quantum groups. In particular, starting with a simple Lie
algebra q, they defined invartants for a framed link L in the 3-sphere using
representations of associaled quantum groups (which are Hopf algebra deforma-
tions of the universal enveloping algebra of g) [RTI]. For q=sl(2, C), these
invariants J; , {which depend on a coloring k of L by representations) generatize
the Jones poiynomial. Their values al a fixed #7 root of unity ¢=e*™"" can
be combined to produce & complex valued invariant of the oriented 3-manifold
obtained by surgery on L [RT2], shown independent of L using [K11. (Every
3-manifold can be obtained in this way [L1, Wa]) Presumably these 3-manifold
invariants can be defined for any simple Lie algebra. What s needed is that
the associaled quantum groups have the structure of a modiudur Hopf zlgebra
[RT2].

This paper gives a scll-contained proof of the existence of the 3-manifold
invariants for g=sl(2, C) and g=¢>""" {§81 5} It is similar in spirit to [RT2].
but relies more on the elementary represeniation theory of Lhe relevant Hopf
algebra o and the topology of framed links. and less on the abstract theory
of modular Hopf algebras.

There arc several new features in the present treatment (described below).
These yicld manageable formulas for the 3-manifold invariants which can he
inierpreted in terms of familiar topological invariants for some small values
of r (856 7). Perhaps mere importantly. they lead to u family of new invariants
underlying those of Witten and Reshetikhin-Turacv. These new invariants and
some applications arc discussed in the last section of the paper.

First, the 3-mantfold invariants of Reshetikhin and Turaev are modified
by splitting off a term involving the first Betti number. The resulting invarianis
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1,{M) conjugate under otientation reversal {that is 1,{ — M}=T, (M} and arc
thus vseful in answering questions of amphicheirality. They aiso appear to be
exactly the same as Witten's invariants of M with the canonical 2-framing of
Atiyah [A] {normalized at 1 for the 3-sphere). This has been experimentally
verified in many cases by Freed and Gompf (FG), and can in fact be proved
for plumbed 3-manifoids using the formulas for Witlen's invariants in [FG3
together with the formulas for t,{M) in this paper {sce Remark 1.9}.

Second, 4 cabling formula (4.15) which reduces the generalized Jones polyno-
mials J; , to the classical Jones polynomial for cables of L is derived. (Similar
formulas have been obtained independently by Morton and Strickland [MS].)
From this one obtains a formula for ¢ {M} in terms of classical Jones pelynomials
{417} (first announced in [KM1]) with & proof sketched in [KM2]). Recently,
Lickorish [L3, L4, L5] bas found an elegant new proof of the invariance of
such a formula, using the Temperiey-Lich algebra and lincar skein theory and
thereby avolding the explicit use of quantum groups. It is clear howcever that
the algebra .« should not be deemphasized, for it encodes deep combinatorial
properties of the Jones polynomial and appears to make calculations morc
accessible.

Using this formula, t {M) is expressed in terms of famihiar topological invar-
ants for r=3 and 4, as the Jones polynomial has topological meaning at the
corresponding roots of unity. (Note that t,{M}=1 for all M. The Jones polyno-
mial is also understood at the sixth root of unity (Appendix B), and so0 onc
would expect a similar formula for t,(M); see [KM2] for partial resulis)} For
example,

ra(M)zexp(_2?:{:,'8}#(.11‘“-””.34!2--J'i,"Z

if M is a Z/2Z-homology sphere with g-invariant p(M}(6.5), and
T, (MI=Y exp{—6ni/16)*Me
L]

for general M, where p(Mg) 15 the p-invariant of M with spin structure @,
and the sum is over all spin structures (7.1 The general formula (6.3) for 7,(M)
dcpends on the {mod 2} first betti number and the Brown invariant [Br] of
M, and is therefore a homotopy invariant, whercas 1,{M) can distinguish homo-
topy equivalent manifolds. (The derivation of the formula for t,(M) suggested
a new, elementary combinatorial proof of Rehlin's theorem, which appears in
Appendix C.)

Finally, a Symmetry Principle (4.20} is proved which reduces greatly the
pumber of steps required in calenlating 1,{M)}, and {coupled with the cabling
formula) feads to an elementary proof of its invariance (see §3). In particular,
this proof avoids the difficult analysis of the structure of tensor products of
irrreducible representations of ., which is central to the treatment of ([RT2]
Note also the appiication to Jones polynomizals of cables of a framed link at
a root of unity {4.25).

The Symmetry Principle has many other interesting consequences. Some
of these are discussed in §8:

{1) Forr odd,
(M) M) if r=3(mod 4)
T (MYTIMY  if r=1{mod4)

r,(M>={
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where 1,{M) is an invariant of M (sec 8.10). In particular, 13(M}=0 implies
that t,(M)=0 for all odd r. Note: it is shown n {6.3) that t3(M}=0 1if and
only if there exists o in H'{M; Z/27/) with a—o—a+0.

t23 For r divisible by 4,

t{M)=Y 1,{M. 6)
L

where 7,(M, @} is an invariant of the manifold M with spin structure @, and
the sum is over all spin structures on M (sce 8.27). A similar statement holds
for r=2{mod 4), with the spin structure replaced by an element of H'(M; 2/2Z)
(8.32}. This result has been observed independently by Turacy [T33, also using
the Symmetry Principle.

{33 The Casson invariant of & homology sphere M obtained by Dehn surgery
on a knot is determined {mod 5) by 1,(M}{8.20).

(4) The Jones polynomial of a knot K at the {ifth root of unily is an mvariant
for integral surgery on K (8.14).

{5) Il K,., denotes the homology sphere obtained by 1/n surgery on the knot
K, then 1 {K ) is periodic in » with period r for odd » (8.13) and period r/2
for even r (8.26).

The paper is organized as follows: In §1 there is a general discussion of
framed links. the K-move and 3-manifolds, the colored framed link mvariants
Jy ., and the definition of ¢, {M). The algebra .« {2.7} is described in §2, zlong
with its finite dimensional representations F* (2.8) and W {2.16). Explicit fermu-
las for the R-matrix {2.18 and 2.32} are derived. In §3, the «/-linear tangic
operators Fp are defined {3.6), which specialize to Jp 3 {3.25). Their behavior
under dircet sums, cxtlensions and tensor products of colors (3.10) and under
changes in orientation (3.18} is explored. The cabling formuls {4.15) and symme-
try principle (4.20) for J, , are established in §4, and §5 contains the proof
ol the mvariance of 1, under K-moves, and of its behavior under connecied
sums and orientation reversal. The evaluations of 1,{M) for r=3 and 4 arc
found in §6 and §7. In §8, applications of the Symmetry Principle to the study
of 1, for odd r (8.7 21) and even r (8.23-33) are given, and the new invarianis
mentioned above are defined. Appendix A conlains a combinatorial prool of
the deepest identity in the algebra needed to define 1,. Appendix B has a treat-
ment of the Jones polynomial at g =27, and Appendix C deals with p-invar-
iants.

In a future paper [KM4] we will calculate 7,(M} for lens spaces and Seifert
fibered 3-manifolds, and give a Dehn surgery formula. The calculation of t,{M)
for lens spaces led 1o 4 new definition of the Dedekind sum in terms of signatures,
and new formulae for signature defects and the signature cocycle defining a
central extension of SL(2, Z) by Z [KM3].
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1 The invariants of Reshetikhin and Turaey

Fix an integer 3> 1. In this section we describe in general terms the 3-manifold
invariant 1, of Reshetikhin and Teraev [RT2], which assigns a complex number
1,(M) to cach oriented, closed connected 3-manifold M. It satisfies the following
properiies {sec {5.9)):

(1) (multiplicativity) 7,(M # N}=1,(M) 7, (N)

(2) (orientation) 1,{ — M)=1, (M)

(3) {normalization) 7,($3)= 1.

In fact, 7, is a shight modification of the invariant that appears in [RT2, §3.3.2],
which does not satisfy (2} {see (1.4) below).

t,{M) is defined as o linear combination of certain colorcd framed link invar-
fams Jy ; (defined in [RT1, §5]) of a framed link I. associated with M. The
Jiw are generalizations of the Jones polynomial of L, and are described in
more detail below and in §3.

First we fix some notation to be used throughout the paper. Writing ¢(a)

for exp(2nia), set
= l = .] = I
g=& v §=¢ 2]_ [ 4}_

. . . . m
50 g=§=1t* (Resheukhm and Turaev consider other roots of unily e(T),

but we restrict to m=1 for simpiicily.) For any integer &, define

(1.1) (k3=

cn|mx-
-lﬂi-lg_

{cf. [k], in {2.28) bclow). Observe that [k] depends on » and has symmetrics
[k =[r—k]= —[k+r] Finally, set

2 x
{(1.2) b=1/—:-_— sin -

Framed links and 3-manifolds

Let L be a frumed link in §3. Recall that L determines a smooth oriented
4-manifold W, obtained by adding 2-handles to the 4-ball B oriented as the
unit ball in C?, along the components L, of L in $?=aB* {K2]. If L is oriented
then each L; is identified with an element of i =H,{W;: Z}, also called L,,
formed from an oriented Seifert surface for L, in S? and the core of the associated
2-handle. The L, form a basis for H, and with respect to this basis the intersection
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form on H, denoted by -, coincides with the linking matrix of L. That i, I;- L;
={k{L;-L) for i+ and L,-L; is the framing on L;. We write o, (or o) for
the signature of the linking matrix of L, or equivalently the index of W,

The 3-manifold M, =8W,, oriented using the “outward first™ convention
for boundaries, is the result of surgery on L in $% Any oriented 3-manifold
M may be obtained in this way [L1, Wal. and i M=M, =M, then one
can pass from L to {! by isotopy in §% and a combination of the following
two moves {K13:

Move 1 (blow up). Add (or delete) a disjoint unknotted component with framing
+ L

Move 2 (handle slide). For some %}, replace I with L= L& L;. a band connected
sum of Ly with a push off of L; (along the first vector in the framing ), with
framing L Lio=(Li+ Ly{L; L)

In Mowve 1, disjoint means separated by a 2-sphere from the rest of the
hink. Move 2 corresponds to sliding the 2-handle for L; over the 2-handle for
L;. These two moves can be combined into one [FR] which is more convenient
for the work of Reshetikhin and Turacy [RT2]:

m-strand K-move {of type &=+ 1} Locally, the following are interchangeable
i strands

Fig. 1.3

where the framings on corresponding components J and I' of L and I” are related
by F-J =J-J+e(K-J)2

The colored framed link invariants

At the heart of the 3-manifoid invanant 1,(M) are the colored framed link
invariants J; . Herc L is a framed link in §* with M =3, and k is a coloring
of L, ic. the assignment of an of-module (or color) to cach component of L,
where o is a certain Hopf algebra over C {that depends on the fixed integer
r} arising in the theory of guantum groups.

The atgebra o/ will be described in detail in §2. The reason for using a
Hopf algebra is that the set of representations (e, o/-modules) is closed under
taking tensor products and duals over the ground field C. This is important
for the construction of J; |, given in § 3.

Here we will give a heuristic description of J,_, in the language of topological
quantum field theory (sce c.g. fAHLS]). Orient L and represent it by a planar
diagram D. Afler removing the extreme points {maxima and minima) of D,
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/\

¢ U\) |

Fig. 1.4

A

assign the module ¥, or its dual ¥*, to cach Fceolored strand of L (according
to whether the strand is oriented down or up, see Fig. 1.4},

Any horizontal line 2 which avoids crossings and cxtreme points hits D
in a collection of points labeled by the colors and their dvals. Associate to
this line 4 the module V, which is the tensor product of the labels in order.
In Fig.14, ¥, =C=V,, and V¥, =W*@ Q@ WRW*Q WV To cach
extreme point and each crossing, assign an +/-lnear operator from the module
just below 10 the one just above. The composition of these operators maps
C to C. Hence it is multiplication by & scalar which (after adjusting for lramings}
is defined to be J; ;.

This construction should be independent of the orientation on L and the
chosen diagram D, so as to give an invariant of {unoriented} colored framed
links. Suitable operators are provided in [RT!] using addifional structure that
exists on the algebra of

The 3-manifold invariant

Recall that ris a fixed integer > 1. To define the 3-manifold invariant in terms
of colored framed link invariants J; ., it is nccessary o restrict the colorings
k to lie in a distinguished family .# of ./-moduics, consisting of one irreducible
module V* in each dimension Q<k<r {sec §2). We call these .4 -colorings or
write k<.#, and denote the dimension of the color assigned to the component
L, of L by k,, also called the color of L;.

Now consider the following lnear combination of colored framed link invar-
iants.
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(1.5} Definition. For any framed link L, define
w=ay 3, (KlJ
ke #

where x, =b"¢® and [k])=J][k]) (Recall (1.2} that b:l/;%sin:. ¢

3r—2 . "~ . . _
= (-— {; }): n=n, is the number of components in L and o, is the signature
r
of the linking matrix of 1.) Note that since . #={V! . F '} the sum ¥

may be writlen In multi-index notation as Z {scc §4). ke

D=k=r
(1.6} Theorem [RT2] 1, is invariant under K-moves on L,

Thearcra 1.6 can be proved for {0 or I-strand K-moves using three local
propectics of J; ;. and a standard Gauss sum (see 3.27, 5.1 and 5.4). Then the
proof for m-strand K-moves is an easy inductive argument vsing lhe Symmetry
Principle 4.20 {sce (5.6))

It foliows from Theorem 1.6 and [K [, FR] that there is a well defined tnvar-
iant for closed, oriented 3-manifolds:

{1.7Y Definition, 7, (M)=1,, where L is any {ramed link with M =M.

{1.8) Remarks. (1) The invariant that actually appears in [RT2] differs from
1,{M) by a [actor of ¢*, where v is the nuility of the linking matrix of I, {=lrst
Betti number of M) The advantage of 7,{M) is that 1t behaves nicely under
orientation reversal,

As a convenicnce to the reader, here is a dictionary reluting the notation
of [RT2] with the notation in this paper: The algebra U of [RT2, §8] {where
r=e(lfdr)=cxp{2mi/dr) as above) 1s our .«f =.&,, and the U-module ¥ is our
Vit (Note that in U, the clement wp ' is just K? and dim ¥,=(i4 17} The
hink invariant F(I'(L. w, A) of [RT2, §33 {(where o is the orentation on L and
4 15 the coloring) corresponds o our J; ;. The constant € defined in [RT2,
§32 and 8.3.8] 15 our ¢ the coefficient 4, is cqual to our bc[i+1], and so
the mvariant {LY={pc)" 3 [k]J. .. Thus the 3-manifold invariant defined in
[RT2,§332)is Kol

FiM, Ly=be" ¥ [kl w=c "1 M),

k. .#

{2y It 15 often useful for culculations to write 7,{M) (where M =M ) in other
ways. For example, lef a;=L; L, be the framing on L, and write Ly for the
link L with all framings changed (0 7era. It is shown in Lemma 3.27b below
that J, , changes by =% ! jf the framing of I, is changed by + (. Thus J,
=Paki- g, o Now, since ¢ =t e{~ §), (1.5} becomes

(19) (M=l 375 ¥ (K] EH L

k-

The term @{L}=30-) a, has been identificd in [FG] as the difference between
the 2-framing on M dctermined naturally by L and the canonical 2-framing
on M [Al
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ar -
Furthermore, the Gauss sum G= ¥, ¥ {sec [La] and (5.1} equals [/8 re(d),
k=1
and so b= fr {s—5re(—-Fsince s—5=2i sin(r). Formula {1.9) becomes

(1.10) r,(M}=(G (ifij)"e(—é)"*“r-‘" e T K],

4}' Ry Af

1t foilows that ¢, {M)} belongs to the ring Z[r* . r~ '] since the 41" disappears

using results from §8. [t is necessary to use + %} rather than ¢, since for example
i .

(see {5.11) and {6.3)) 75(S" x 32)=-b =[/2=r"2—_’-‘2. {(Integer powers of r suffice

if the nullity is put back inte <, see {L.8)). Question: is 1A} always an clement
of Z[¢*%]?

2 The quasitriangular Hopf algebra =/

In this section we shall define the Hopf algebra & and produce an R-matrix
R in o/ ® ./ waking o a guasitriangular Hopl algebra. We also show that
the associated operators R in representations of +f satisfy the Yang-Baxier
equation.

Throughout this section, r will be a fixed inleger greater than 1.

The algebra

As motivation, we first recall the definition of the Lic algebra si(2, €) and its
representations: si(2, € is a 3-dimensional complex vector space with preferred
basis X, Y, H and Li¢ bracket given by [H, X]=2X, [H, ¥Y]I=-2Y and
[X, ¥]=H. It has a uniyue (up to isomorphism} k-dimensional irreducible repre-
sentation F* for each positive integer k. Explicitly, sl{2, €) acts on ¥* {with
preferred ordered basis ¢, €, 4y <00 € ., where k=2m+ 1} by
20 Xe;j=(m+j+1)e;,

Ye,=(m—j+1}e;_,

He;=2je,;
Note that the sabscripts arc integers if & is odd and half integers il & is even.

For example, the 1, 2 and 3-dimensional representations of sl(2, C) are

(22) M X=Y=H=)

¢ 1 0 0 i 0O
(2JX=(0 0), Yz(l 0) and H=(O —I)

0 20 0 0 0C 20 9
{3 X=(0 Y l), Y=(I 0 0) and H=(0 ¢ 0
¢ 00 0 20 0 ¢ -2

respectively.
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We extend this discussion to the universal enveloping algebra U= U (sl{2, C}},
which is just the assoctative algebra over € with the same generators and rela-
tions as s1(2, ). {The brackel is interpreted as for matrices. Thus HX —XH=2X,
or cquivalently HX = X {# +2) Similarly HY = Y(H —2jand X Y-- YX =- H.) The
representations above cvidently extend to algebra representations of U and so
there are unigue irreducible U-modules V¥ in each dimension.

Note that U has a Hopf aigebra structure (with comaltiplication
4:U-U®Y, antipede S U--U and count U —-C given by
)= @1+1® 4z, §{x)= —x and e{z)=0 for all & m si(2, C)). This allows one
to define U-module structures on the duals ¥* =Hom (¥, C} and tensor prod-
ucts V@ W=V W of U-modules IV and W [n particular, {(xf}{z)= f(S{z)v)
and 2{r @ wl=Aa (v ®w} (where U® L acts diagonally on V@ W), for zel,
feV* veVand we W (This is the reason for using Hopf algebras in the construe-
tion of the colored framed bink invariants.)

Next we consider the quantized universal enveloping algebra U, = U, (s1{2, C)).
found by Kulish and Reshetikhin [KuR]. [t can be defined as the algebra UTA]]
of formal power series in h {=Planck’s constant for the physicists) with coeffi-
cients in U, with the same relations as in U except that [X, ¥1=H is replaced
with

sinh {h#1/2) H*-H
= . i = m— e R

.1 sinh (h/2) + 24

Setting g =¢" and (in analogy with the usual notation) =2, t=¢"%, F=5""!
=¢ "2 and

SH _“.;H
[H]="—%
these relations may be written
(2.3} HX=X{H+2)
HY=Y{H=-2}

[X, YI=[H].
If we introduce the element

L3 H H?

N S w ELEIN % S
K=t"=e 1+4h+2!42h+

{which will play an important role int the sequel}, then we obtain the associated
relations

(2.4) KX =sXK
KY=35YK

1 =2

Ki_
[X, ¥)=(H]= —EK—

where K=K " '=1"
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There is a Hopf algebra structure on U, as a module over the ring C[[#]]
of format power series, discovered by Sklyanin [8k], with comultiplication A,
antipode S and counit ¢ given by
(2.5 MX)=XPK+KRX
MY)=YRK+K®Y
4H)=H&1+1&@H

S(X)=—sX
S(Y)= —5¥
Sty=-—-H

£(X)=¢(Y)=¢(H)=0.
One may readily compute

(2.6) MK)=K®K
S{K)=K
e(Kj=1.

We would like to specialize U, at particular values of h, namely h:z—:}-‘

i . .
(so q=e"=e(r)), and then look for complex represeatations. This cannot be

done using the full algebra U,, becausc of the presence of divergent series,
and so we first restrict to the subalgebra, over the ring of contergent power
series in k {i.e. entire functions), generated by X, ¥, K and K. Now, following
Reshetikhin and Turacv, we define

o =,

{denoted U, in {RT2]) to be the quotient of this subalgebra obtained by setting

h:-z-ff-, X"=0, Y'=0and K* =1. (Omitting the last three relations yields the

infinite dimensional algebra U, of {Ji, RT1] known as the g-unalogue of U}

Thus . is a finite dimeasional algebra over € with gencrators X, ¥, K, K
and relations

(2.7 R=K"!
KX=s5XK
KY=5YK
K?_Rg?
[X, Y]= e
X'=y =0
K¥=1

even though H is no longer in our algebra.} .o acquires a complex Hopf algebra
structure from Uy, and so tensor products and duals (over C) of o/-modules
are still .&/-modules.
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-
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[u]lu«---n 1
. .
s V3ir=-5) V7 {r=5) V=9 w;e
{a) (b {c) {dj {c}
Fig. 2.11

Representations of <

As with U, there are s/-modules F* in each dimension k>0. In particular,
s acts on V¥ {with basise_, ....e_,.fork=2m+1) by

(2.8) Xej=(m+j+1]e,
Ye;=[m—j+1]e;.,
Ke,;

!
{cf. {2.1), but note the brackets). The relation [X, Y]==[H] follows from the
identity [e][(P]—[a+1][6-1]=(a—b+1]

For example, the 1, 2 and 3 dimensional representations of o are

(29} (1) X=0.Y=0 and K=1

G 1 LY t U
[2}X=:(0 0), Y=(I 0) and K=(0 r_)

0 23 o 0 0 0 s 00
(3}X=(0 0 [1]), Y=([1] 0 0) and K=(0 1 )
0 0 ¢ 0 [2]1 © 00

respectively.

{210) Remark 1t is useful to represent V* by a graph in the plane with onc
vertex at height j for cach basis vector ¢; and with oricnted edges from e;
10 ey, labeled by [mLj+1] i [m=j+ 1])0 ({recall k=2m+ 1), indicating the
actions of X and Y. This graph, with the top vertex labeled by its weight (1e.
eigenvalue for K) s, is called the diagram of V* with respect o e, ..., €.
{See Fig. 2.11a, with the special cuses k=3 and 7 for r=5 shown in 2.1ib

=i =y p
=sle; =17

o

L]
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and ¢, using the identities | j]=[r-j]= —[r +/].) Similar diagrams can be used
to describe other finite dimensional «/-modules with respect to bases of weight
vectors (i.e. eigenvectors for K.

The diagram of a module is often simplified by rescaling the basis (i.e. chang-
ing the lengths of the basis vectors). In particular, if v is changed to av, then
the label on each edge which starts {or ends) at the corresponding vertex is
multiplied (or divided) by a.

For example for k<r, the basis e,,....e_, for ¥* can be rescaled to a
unique basts b, ..., b__ {up to u multipie), called a balanced basis, with

Xb=([m+j+1][m =ik,
ij={fm—j+ 1] [m +j]}”2 b

12 1
(Indced e,-=[,:—:] b;, where [:J= [ﬁ]'_[[r:‘i]:@ is the quantized binomial coef-

ficient, cf. (2,29).) (bserve that in the corresponding diagram, any two oppositely

oriented edges with the same end points have equal labels of the form ({i][k
—1i])%2, and so can be combined into one doubly criented edge. The case r=3,
k=4 is shown in Fig. 2.11d.

It turns out that the representations ¥* arc irreducible if and only if k¢
(see below), and so it is natural to define the distinguished family

(2.12) A=EV v

of .«/-modules to be used in constructing the 3-manifold invariant 7, (V" is
excluded for technical reasons; see Lemnma 3.29 below.)

The structure of the o/-modules V* for kgr, and their tensor products
VE@ FY for k+k £r+1, is parallel to the classical case, and is summarized
in the following well known result {see e.g. {Ji, Lu, RT21}.

(2.13} Theorem If k<r, then the modules V* are irreducible and self dual. In
particular, the map D: (V*Y* = V* given by Dibly={ — sy b_,, where b, is a balanced

basis with dual basis b, is an &/-linear isomorphism. (F,quivalendy, Dieh)

o -ve)

Furthermore, if k+ k' sr+1, then

Vi@ V<= @ Ve

PER@R’
where k@k'={k+k — 1, k+k =3, ., |k=kK|+1].

Proof. It is evident from its diagram that for k £ r, ¥* contains no proper submod-
ules gencrated by weight vectors e;. But for k<2r, every submoduie of Vs
generated by weight vectors, since the weights of the e; arc distinct. Indeed,
for any nonzero vector v-—-Za; e;, each ¢, is a multiple of v by a suitable polyno-
mial in K, and so the submodules generated by v and by the ¢; with a;+0
coincide. It follows that V* is irreducible for ksr.
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N \ e @ e,

AN

N1 L € 1@ Z,
Fig. 2.14

For the second statement, note that & C-linear isomorphism D is o -lincar
provided D{ab)=aD(b} for =K, X and Y. For D of the form D(b}=c,b_,,
this imposes no restriction on the ¢; for =K, and the sole restriction ¢;=
(-::S) ¢;-y for a=X or ¥ To see this, onec may compute the action of & on
VE

Xei= —s(m+j]e™!
Yei= —§[m—j)e*!
Kel=§e,
or in the balanced basis,

Xbim —s({m—j+ (3 [m+j)' 26
Ybi= —§([m+j+ 1) [m—j) 2"
Kb =5/bl

2m

142
(Notc that bf=[ } e’.) The self duality resuit follows.

Finally, to verify the decomposition of ¥*& V* observe that there are weight
vectors o, in V*@ V¥ of weight ¢#7' with Xv,=0 for each p in k@K', since
the dimensions of the corresponding weight spaces decrease as p increases. (To
see this it is useful to use the disgram for V*® ¥* with respect to the weight
basis ¢, ® ¢; with vertices at (i, /), see Fig. 2.14 for the case Vi@ Vi) It follows
that the submodule generated by », is isomorphic to V*. These subspaces are
independent since any collection of equal weight vectors lying in distinct ¥*
are annihilated by distinct powers of X. A dimension count completes the argu-
ment. [

As a consequence of Theorem 213, each of the irreducible modules V* can
be expressed as a linear combination of powers of ¥2 in the representation
ring of o (where for example 2V + UW means V® VG {U @ W), (¥ means
V@ Vinot ¥,and U=V - Wmeans UG W=V):
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(2.13) Corollary For 0Sn<vr, the equality

prtl= "Z‘ {_ }}J(ﬂ;‘_j) (VZ}n 2F

=0
holds in the representation ring, where the sum is gver all integers fwith 0 £2jZn.

Proof. Theorem 2.13 implies that "t = 2 ¥*— "~ Thus by induction {which
starts trivially at n=0),

V"+ 1= V2 Z(_ IV (ﬂ—: _})(Vz)n— 1 -2;'_2(_ I}J(ﬂ ""jz"'j){VZ)n—Z—- 2
¥ ; i

— n—1 Zyn n—2 2yt n—3 Iwn—4
—( o )(V}—( 1 )(V] 2+( 2 ){V} +...

n—2 e n—3 -
—( 0 ){VZ) 2+( { )(VZ}" R

=(g){vz}" —(”;1)(V2;"'2+(”;2)(V2}”"‘ -t
ifft—1 Tyn—2j
=5i—1 v I,
24 /(e o

It is amusing to rote that the same identity holds with the bracket [n]
replacing V". The same proof works.
For small values of s, we have

Vi=pigpi-v!
Vo= Vi Vi V2 2p?
ViVl Vi vi-3vie Vit

Remark. The structuzre of the tensor product V*@ V¥ for k+ &' >r+1 is more
complicated. This has been analyzed by Reshetikhin and Turaev [RT2] (and
independently by A. Wasserman and J. Frolich-G. Kelier) and is central to
their proof of the invariance of the 3-manifold invariant. We will give a differem
proof of the invariance in §5 which depends on the Symmetry Principle 4.20.
This in tura is based on the structure of certain r-dimensional .«-modules Wy
discussed below (which arise as well in the general discussion of tensor products).

In contrast with the case of U, the &/-modules V* are reducible for k>r.
In particular, the subspace V; generated by ¢, for j>m—r is an r-dimensional
submodule, since Ye,,_,,, ={r] ¢,_,=0. These modules are called Yerme mod-
iles.

Observe that V=17, and (as is easily seen using Remark 2.10) ¥ and V,iar
are isomorphic. If r £k < 2r, then ¥ contains V7, where p=2r—Fk, as its unigue
proper submodule, which motivates the notation adopted in [RT2]

r . 1T
Wr=V,-,
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for 0<p<r {Sce Fig. 2.11e for the diagram of W?= V3 ) Indeed, it is clear
from the diagram of W that V7 is the only submodule generated by weight
vectors, but cvery submodule is of this form by the argument in the proofl
of Theorem 2.13,

In fact, the Verma modules W] may be described as extensions of F? by
a twisted version ¥77P() of V72 In particular, observe that there are ¢xactly
four i-dimensional .«/-modules V' {x), where 2* = [, given by K=xand X = ¥ =0

K%-

(The value of K follows from the relation [ X, ¥] == . which gives K*=1

since [ X, ¥]=01in C, and the values of X and Y are immediate from the relations
KX =sXK and KY=5YK} For any .«/-moduic ¥, put

Vigy= V@ V).

(A diagram for V() is obrained from one for ¥ by multiplying the vertex weights
by x} It 15 now easy, using Remark 2.10, to establish the following result,

{2.16) Lemma [RT2, §84] There is a short exact sequence
= ¥Vr— W; =R

Jfor 0<p<r, where VP is the unigue proper submodule of W,

Similar considerations apply to the general Verma modules V), since ¥, .
is isomorphic fo K.

The R-matrix

The algebra 7 has the additional structure of a quasi-triangular Hopf algebra
{sce Drinfeld [D23). That is, there exists an tnvertible element R in & ®.
satisfying the following properties:

Q217) (2) RA@WR 1 =A(x) for all x in &

(b) (A@1d}{R}=R,; R;,
(id@ ARy=R,3 R,

where A(e)=P(d{a}}, P is the permutation endomorphism of & given by P
Pa@M=8e R ,=R®I1, R;;=1®R and R, ={P®id}{R,;). (Explicitly,
f R=Yu«®@f., then R,=) a®F®|, R;u=) 1®@u®p, and Ry,
=Zcz‘-® 1@ B;) Such an element R is called a wniversal R-matrix for ¢, and
is the centrai ingredient in the definition of the colored framed link Invariants.
Historically, an R-matrix was first discovered in the algebra U, by Drinfeld
(I31] and independently by Jimbo [J] in the algebra U, R-matrices in o
have been written down by several authors, including Reshetikhin and Turaev
{RT2] and A Wasserman. We give a formula for R of the form R
=% ¢,., X" K*® Y" K?, which is derived by recursively solving for the constants
C,0p USINE the defining relation {2.17 ). {This approach to finding R was suggested
to us by A. Wasserman, who has previously carried out a similar calculation.}
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{2.18) Theorem The elernent

( ab h—ala+n ya a L)
R T

where the sum is over alf 0€n<r and O Za, b<dr, is a universal R-matrix for
Ea

Proof. As mentioned above, we assume that there exists an R-matrix of the
form

£2.1% R= }_: Can XK@ Y'K®  Usn<r, 0Za b<dr,

n, e b

and then find ¢,,, by solving RA(X}=A{X}R and RA(Y}=A(Y}R.
First note the following commutation relations in & (see 273

(2.200 KX=sXK and {HjX=X[H+12]
KY=35YK and [HlY=Y[If-2]
YX=XY—-[H]
Han_ oHen L] 2_-n“2
where [H+n]=i-- . -‘;-——=£-§?_; K . By induction, using the identity

[a][H+c+b]+[F][H+c—a]={a+b][H+ ],
we can generalize the last relation in (2,20} to

Y X=XY"—(n][H+n-1] ¥
YX*= X" Y—[n][H—n+1] X" 0

Now we have (recalling from (2.5) that J(X)=X @K+K® X)

O=RA{X)}—AX)R
= Z Cﬂnb(XnKaX® YﬂKb+1+XnKa-1®YnKbX
L
—KX"K@XY' K -X"" K" Q@ KY"K?
_ Z (.m‘b(saxrri-l Ka® YnKb+l+sbana-1C>oxynKb
n.a b

Sb[ﬂ]{_ﬂ IXJ!KU 1®Yn .IKb-FZ .u—lann-l®Yn-le—2)

_quNKai-l@X};nKb_snxnd-lKn@ YnKb ]J-

Thus the coefficient of X"K°@ XY "K? is —5"¢, o ;3 +5° Cpaw1.p=0 which
implies that

—_ —
(221} Cn,a+ 2.!:‘_5’| cnab =¥ chnb'
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Also, the coclicient of X" K°®@ Y"" " K? is

#77 4n) £4mt ]
(223)  S"Cearapr— = Crgs i he 2 T Cas a2
\—S 5—3
LR |

Ttk ("n—!,ﬂ.b-\'-'lze‘
Similarly, using RA(Y)—A{YIR =0, we get

0= % @ X" YK@Y'KP '+ P XK@Y Kb

noak

_S"X“Kn+l® Yn+l Kb_San YK“@ YnKb—l
§[ﬁ](n Ixn 1K.1I2®YﬂKb L_ -lxn IKn-2®YnKtI"I],
5—5

and so the coefficient of X" YKY@ Y"K® is & ¢, an-1—5 Cnapsy=0 which
1mpiies

(223) Coabt+2>= il n("n.r.r.b'
Also, the coefficient of X" ' K*@ Y" K% is

{2.24}
-1, Dl] n-1 [n]

. A . —
S lpupaver sy ¢n—1_:;v-|_b+";‘l‘s:5 Cu.a—z.z.i1*':'_53‘-n.¢+3.h+1—0-

Using (2.22) and {2.23) we obtain

§—3
(2235} f'n.a_b='l'-_'n]_53 Ca—ta-1.b1
which can also be obtained from (2.21} and (2.24).
If we choose ¢g o= 1, then from (2.21) and (2.23) ¢g, 24 25 = 5P = **". Thus
it is a natural choice to let ¢y, =" {which is comistcnt with {2.21) and (2.23)).
s']
[ T _
R of (2.19) satisfies the first defining relation (2.17a) of the R-matrix. In fact,
in order 1o sutisfy the second delining relation as well, it is necessary to normalize

It follows from {2.25) that for the values ¢,,, = [Pt the ciement

. 1
by multiplying by e Thus, we put

. ! {"_5) pEbtih ayntn
(2.26) = d7 g

which gives the desired

BR= I Z (5 ;) £0b+(b ajn *nXRKa® YuKb

4r o [n]‘
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satisfying (2.17a), and it remains to verify that R is invertible and satisfies (2.17b).
We will check the axiom

(2.27) (A®Id}R=R; Ry

and leave the rest as an exercisc.
We need a quantized version of the binomial coefficicnts {this goes back

to Gauss). If BA=AB, then (4 +B)"=>:(E) A% B" * defines the binomial coelli-
A

cient (z) Simnilarly, if BA =g AB (g arbitrary), then

(A+B)"=ElzLAk Bk

3

::L It can be verified by induction that

[ L [r],!
(A1 Tn—k,}

q —1
g-1"

defines the binomial q-coefﬁcicnl[

where
{2.28} fn),=

This is just an unbalanced version of the [7] used in this paper, ie. [#],=5" [n].
It follows that

2.29) [’;L=Sm—n{:J where [kJ i [[*:3' Kt

Returning to the axiom {2.27), the lefl hand side (1 ®id} R is

{2.30) 413' Zb([”]? petioaniniy K+ K@XV(K@KI@ YK

Z Coab Z |: ‘ka Kk"""“@s“{”'“x""* Kk-a® ¥ Kb,

nnb

since (K ® X)(X ® K}=§(X ® K}{K ® X), and the right hand side R, ; R, is
(231 T Crat Coape XU K@ XK @y T K

b
e b

1
@n?

We need to show egual the coefficients of

Xk Kn'®Xn—k Ku" Yrer
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where ¢’ =k-n+a and a"=k+a in {2.30) and k=n', n"=n—k and b=b"+b"
in {2.31). Furthermore, note that « =a” ~#n in (2.30), but there arc terms in
(2.31} for which & #a" — r 50 these terms must be shown zero.

Using {2.29) and (2.26), we compute this coclficient in (2.30} 1o be

! n
shin= k) kir k)
=L 3 5
4!' Hoa b ,!\

1 (-5 = \l Bhefh abuin LHJ ! -
4?‘ [n]' [(K]![n &1
1 (S -5 @hth-anta

T [k]T[rr A

Since b" and b can vary as long as # + & =himod 4+}, the corresponding cocfli-
cicnt in {2.31) equals

i dr )

o lm =&Y
'16,.'2- Z Chare Cn—poar b=p ¥
Bt

f ‘“Z-l (5_5;}" b -t - aik kX
16r? Py 3L

Is— 35" {'a b=b)Hb-b a N kimac k 2N k)

[n- k7T

I 4’21 {5_5}” ?I'Iu' rut At ghva"hihacobk aTataeking
[(EHEETAL

1 (S—E}n Towkea B bhn=bk=a"nia kin}4rZ_I!Th'{a'--n”rnj

16 [EiiDn- &7 R :

When o —a” +r+0, the sum on the right 15 7zero, as it should be for there
s no corresponding term in (2.30). If @' —a” +n=10, thcn the sum cquals 4r,
and substituting @' =k —n + g and &” =k + a, we obtain

1 (s“-g} :rh-r{b win

4r (k)1 [n—k)!
as the common value of this coefficient in {230} and (231} (]

(232 Corollary {a} R acts on the madule V¥@® V* by

) ___5]_[??1-!—!-{-?1] [m__j+n} dij -2l fi=nia i),
Re@e)=2 oy “Twrnt iy L e

where k=2m+1, k'=2m +1. (]! =(r] (n=1]...[1] (=1 Jor n=0), and Ep%:

=[p)p—11...[n+1). The sum is over all nZ20 with i+nsm and j—nz —m’.
In particular, if i=mor j— —nt', then Rle,®c;i=g" ¢, De;.
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(b) }f Vis an of-moedule and v is a vector in V of weight t* {ie. Kv=17¢),
ther R maps ¢t ®@e in V@& Vi(x) to 2" v@e, and e@v in VH{)® V 1o e @ v
{ For the definition of ¥V '{), look above Lemma 2.16)

Proof. For the k-dimensional representation VX with basis €, €, (s .0n € m.
recall that Ke,=5'¢;, Xe,=[m+i+1]e;,, and Ye,=[m—i+1]e,_,. It follows
from the theorem that R acis on VA®@ V5 by

{s—3) [m+i+n)! [m'—j+n]!
233 Rte:-@eﬂ——n@o ll (m+dlt [ ]!

bl In=Zai-2hf
Z‘ ra Wh-alaln ai ’€f+,,®ej...,,.
b

Observe that the exponent of 7 can be written as (a+n—2/)(b—n—2i}+
(n—2j¥n+2)+n Tt is an elementary fact that

4."= Z FJb= Z E{a'i-’i"zj.'l{?'"ﬂ"?.i'j

OCe b dr OZahs4gr

50 1t follows that

Z !_ah+{h—aja|-ln-2ai—2bj=4r_r_n{nl i) diji 2atie b

Oabedr

and substitution in (2.33} gives

- 3" [.r?‘I+I-|-!’1_:|_f [m ~j+n]l e v Eati= i =dif
R(e @e) Z [?’l [m+I]T [m _JP_IT ! [ ®"—,J m

which proves (ak
For {b), note that ¢ i an element of the (twisted} 1-dimensional module
F'ia) with x="=¢"" for some m (so Ke=2xe=1""¢), and so we have

1 -
R(t;@e):“_;ztab-ar—hrmt}@e
a. b
1
=pmef T, Fa=rmhbe phy o 3
t (4’_; )b@(

Thus R{v® e)=2"¢ @ ¢, since the sum equals 4r as above. The other case follows
in the same way. [

(2.34) Remark The action of the R-matrix in the modules V*® ¥* given in
the previous corollary can also be derived using Drinfeld's R-matrix in U, [D2,
p- 816],

i (h H@Hd-nﬂi’@l-l@ﬂ'}(x ) (X-—)a.
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Here X * and H are generators for U, with relations {12, p. 8073
(H X"]=+2X*

X", X )= smh(hH)

2
s 8
~2 2 (H),
g1 d 5§~
nh =;" =
Q { } }J} qk I kl;ll K -k}s
S | 1

I 3
The generators X and ¥ correspond to ( tg) and (———) Y7 {giving the
5—1

relation [ X, Y] =[#]), and substituting these in Drinfeld’s R-matrix gives

e
R S] IH@H—H{H‘S{)I-]@)H\ LIL R 1)Xn® Y"

nﬁ[]l

(Since {s— & (- Y it follows that there is a missing 77" in
the formula for the R-matrix in [RT1, §74], and a missing """ 1 in [KiR,
§1.71)

Te compute the action of R on ¢;®e; in V*Q V¥, observe that (¥&7
h AT | o -
=I®i+4 H®H+(:¢l—) FH2H2+.., and PHEEIIOM_(Krey 1T R K™
=K"® K", which gives

HEHp @e=1%¢,@e¢;
PHSI- 1O, @ =2 iy e,
Thus

Rie;@e) Z []f pAE b a4 2atti R (= mp mnta+ 1)

Lmtitn]t Doy ]! :
Tria it [ @l

which readily vields the formula given in Corollary 2.32.

(2.35) Definition The R-matrix, viewed as an operator on V@ W for .«/-mod-
ules ¥ and W, can be composed with the permutation operator P to give an
operator

R=P<R: VRW-WE®V

which we call the R-matrix (read “R flip matrix”) on V@ W.
These are the operators associated with crossings in the definition of the
colored framed link invariants.
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(2.36) Lemma. The R-matrices are o/ -linear and satisfy the Yang-Buxter equation
Rz,\ Rugzs:ﬁ\zgzagu
{us operators UR VAW - WR VAU for sf-modules U, V and W), where R,

=R@id and B, =id@ R
Proof. The first statement follows readily from the first defining property (2.172)
of R. Indecd, for X in V® W, we have
Ri{aXi=P{RAa- X} { =diagonal action)

=P(P{Ax}R-X) (by(2.17a)

=Jd2P{R-X)

=xR{X).
The second also follows from the defining propettics of R. First we derive the
Yang-Baxter equation for the R-mazrix, namely

RyyRia Ry =Ry R Ry,

as follows:
R;R 3Ry =R; {4®id)(R}y  (by {2.17h))

=(A®idR)-R,, {by (2.17ap
=(P®id}{R,; Ry} Ryy (by (217B))
:"R23 RiaRy;.

Now view this as an equation of operators U@ V@ W— U ® V@ W and multi-
ply on the left by the operator By B By=F, P B, where B, =P @id and
A,=id @ P. OQbserving that B; R, =R, B; for f+k, we obtain the Yang-Baxter
equation for K. [J

{237) Examples If the preferred weight basis e;@¢; for F*@ V¥ is put in
decreasing lexicographic order with respect to {i+/, £, j), then the R-matrices
given in Theorem 2.18 decompose into block sums, with constant i+ in each
block. For example, the Rematriz in V3@ V7 15 given by

Hs—~S$)

.
(r)@(o - )@m

{with respect 10 the basis e,.;®@e,3, €,,®€_ 3, €2y, @¢,5, ¢ 1, R€. 2k
and the corresponding R-matrix is

0 T
0ofF ol oJow.
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Similarly the B-matrix in V3@ ¥V is
0 G g
¢] 1 1] | )
wol] q)ca(o ! 1-g )@(, e
g lg-—-gii+g lg—grl -4}
and the B-matrix in V2@ Vg

(1] 5 Q [
(S)ED(I tgq -QJ)® (b g - s SJ@“‘)-

3 Tangle operators and link invariants

The link invariants J, , (sce Defimtion 3.25) are special cases of the more gencral
tangle operators which we define first {in Theorem 3.6}

Tangles

Recall that & rangle T 1s a4 l-manifold properly embedded (up to isolopy} in
the unit cube 7* in R*=$*— x with ATclxix&l Define &. T=Tn(i*x0)
and &, T=Tr(IP x ). and call T an {m, n)-tangle f m=16_7T| and n=|2, Tl
Thus a link is a (0, O)-tangle, and a general tangle consists of a link together
with a collection of proper arcs. All tangles will be assumed oriented and perpen-
dicular to 12 x &1,

A framed tangle is a tangle T cquipped with a framing of its normal bundle
(up 1o jsotopy rel £ T) which is standard (i, +j) on ¢ 7T {where the sign is chosen
so that the frame [ollowed by the oriented tangent to 7 is the standard frame
on R7). Since we are working in 37, there is a natural O-framing on each compo-
nent of 7, and so the framings may be specified by integers in the usual way.
Alterpatively, they may be specified by thickening the embeddings to ribbons
in the direction of the second vector of the framing, as in the homogeneous
ribbon tangles of [RT1).

As for links, one often studies tangles by their diagrams D in the square
I? {obtained by regular projection onto Ox [2) with &0 < [ x 21, Note that the
O-framing of a tangle Tis in general different from the blackboard framing coming
from a diggram D of T, in which the second vector 1s always parallel ta 0x [?
{(see Fig. 3.1).

integer uptation ribbon nocatisn

Lo o
blackboard (€ Pt
framing ~— s
&
) )

O-framing L’é o -
of 1/\

Fig. 3.1

5
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x X T -/
! R L 0 u
Fig. 3.2

Fig. 33

If the framing on T and the blackboard framing coincide, we call D a good
diagram of T Any diagram of 7 may be made into a good diagram by adding
kinks. It is well known that every tangle diagram can be factored into the
elementary diagrams I, R, L, ~ and v shown in Fig. 3.2 (with all possible orienta-
tions) using the composition = (when defined} and the tensor product & of dia-
grams {sce Fig. 3.3} Of course, distinct facrored diagrams may represent the
same tangle. For example L: R=[® /[ {with appropriate orientations), which
may also be written as ¥=j. In fact, the following result follows casily from
the work of Reidemeister [R].

(3.4) Theorem {[Ye, FY, T2, RTI]). Any two facrored good diagrams of a given
Jramed tangle are related by a sequence of the following moves { with afl possible
orientations )

-~

(a)

e

-8
{b)ﬁ)=%
G
L A
(e)\/J=C/\

Fig. 3.4

-

—_—

-

together with the implicit associativity and identity relations and (5:T)®
($-TN={SR T} {T® T} {ie. tangles are morphisms of a strict monvidal category,
seeeg. [FY]).

Remark. Moves (a} {d) generate regular isotopy of tangle diagrams {Kf, Tr].
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Colored framed tangle aperators F,

Now fix a quasitriangular Hopf algebra (4, R) and define a coloring of a tangle
T{or one of its dizgrams) 1o be an assignment of an A-module to each component
of T This induces a coloring of 8T as {ollows: if S is an arc of color V¥, then
assign V to each endpoint of § where S is oricnied down, and the dual module
V* 10 cach cndpoint where § is oriented up (sce Fig. 3.5). Tensoring from left
to right, this gives boundary A-modules T, assigned 10 €, T (T, =V and T
=V®W*® W in Fig. 3.5). By convention, the empty tensor product is C, and
so T, =Cif Tis a link.

In the next result we show how 10 obtamn tangle operators T_ — T, for
colored framed tangles T which behave well with respect to compositions and
tensor products. This construction depends on some additional structure on
the quasitriangular Hopf algebra {4, R} (with even more structure one obtains
the ribbon Hopf algebras of Reshetikhin-Turacy, cf. Theorem 5.1 in [RT1] and
Remark 3,16 below),

(3.6} Theorem Let p be an invertible element of a quasitriangular Hopfl algebra

{A, R=Y x,® f) satisfying

{a) pafi=3$%x) forallxin A

(b) z“i;‘ﬁi=2ﬁi#“i

where [i denotes the inverse of p. Then there exist unique A-linear operators
Fr=FAR® T T,

assigned to each coloved framed tangle T which satisfy Frr=FoFp, Frgr
= Fr @& Fp., and for the tangles given by the elementary diagroms (of Fig. 3.2}
with the blackboard framing,

F=id
B=K and F =R
FE . =E and F.=E,
Fo=N and F_=N,;
where E(f@x)=f(x), E,(x® )= f(ux), N{1}=3 &, @ ¢ and Ni{1)=} &' ®lae)

{for any basis e). Note that for a link L {ie (0,0)tangle}, F: C—C is just
a scalar.

Proof. First assign operators Fp: D_ — D, to each elementary diagram D, as
in the theorem. {Observe that orienfations are implicit in the definitions of the

\ . .
first three operators. For exampie A and % are assigned K-matrices on
u v U v
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(a) b} 3]

U@V and U*@ ¥, respectively.} A-linearity lollows from Lemma 2.36 {lor the
crossings), and from the Hopf algebra axioms and property (3.6a) of y tior
the extrema). Indeed, for £ V* @ V- € we have, for all o in 4
E{e{f @ x}=fim{S®id} A«) x)  where m is muitiplication
= f{e{x)x} by the antipode axiom
==&{o) fix)
=xb(f @ x}.

Similarly N: C - V& V* is A-tinear. For E,: V& I'* - C wc have

Efa(x@fN=E (dx{x B f)}
=E,5{a;x)®ib f)  where da=3 a,®b,

=f (3 Stbpa;x)

= (T Sth)SHa) ux) by (3.6a)

= (SIm(S ®id) 42) px)

=f{5{e{e) 1} ux} by the antipode axiom
= fle(a) px)

=2E (x@f}.

A similar argument shows that N, is A-lincar. Note that the role of y (in the
operators for the backward extrema) is essential, since the maps x® fi— f(x}
and 1— Y ¢'®@ e, are not in general A-linear, duc to the fact that the permutation
map P is not in general A-linear.

Now extend the definition of F, to arbitrary factored good diagrams D
of colored framed tangles T by the rules Fp o =FpeFy and Fpg p=Fy® Fp.
To show that these induce well defined operators Fr on tangles, it remains
to show that Fy is invariant under the moves (3.4a—e}.

Move (3.4a} follows from KK '=i=K 'R, and ¢3.4b) follows from the
Yang-Baxter equation of Lemma 2.36 {which holds, by the same proof, in any
quasitriangular Hopf algebra). For moves (3.4¢—¢), we establish the cases shown
in Fig. 3.7 and leave the rest as exercises,
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For move (3.7a), which says (E, ®idHid @ N,)=id, we have

{E,®id){id@ N) () =(E, ®id)(}, x @ &' ® fie)
=Y e{uxipe,
=iy e{nx)e
=fpux
=X.
For move (3.7b), which says (d ® E K ® idy=(E, @1d)(1d & R '}, first note

that the inverse of the R-matrix R=Za;®ﬁ; can be computed casily uvsing
the antipode axiom as

{3.8) R =(S@}R) =), S(x)® B,
(seceg [RT1,§3.1.6]), and so

(dQEHR®IGx@y@N=(d®ENL Sy @ux®f)
=3 B vflue;x)
=Y B yf1SHa) ux}  by{(3.6a)
={E, ®id}Y x® S(2) f® B ¥}
={E,®idid® B H{x@y® ).

Finaily. move {3.7¢} says
(E@id)(d & RN, @ id)=(id ® ENR @ id)(id @ N).

The value of the left and right hand sides on an element x are readily computed
as {3 o i) x and (3 B, pax) x. respectively, and these arc equal by (3.60). O

Properties of tangle operators

Now we establish various properties of tangle operators. We shall always assume
lhat we are in the setting of Theorem 3.6, so

‘F!"= F}.:(.R.u

for some fixed quasitriangular Hopf algebra {4, R} and unit ¢ in 4 satisfying
{3.6ab).
We begin with an ¢lementary but useful fact about operators of (1, 1)-tangles.

{39) lemma Let T be a colored framed (1, 1)-tangle and V be the color of
its { unique} arc component.

{a} If V is irveducible, then Fy is a scalur operator (1e. a multipte of the identity }.
(b) If V is reducible with a unique pruper submodule, then Fr is the sum of a
scalar operator and a nilpotent operator.

Proof. Observe that any eigenspace for the operator Fy is a submodule of ¥
{or ¥* depending upon the orientation of the arc of T}, since £y is A-linear.
The Lemma follows immediately by considering the Jordan caneonical form of
7 0
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da, b, ¢ de B, e B
ap=a@&b, o _Ipi=c@®d
folgi=) o dgi=b®e

F.=0.0_ =

Fig. 3.12

Next we consider how tangle operators behave under direct sums, extensions
and tensor products of colors. Parts of this result were stated previously in
§6.4 of [RTI].

(3.10} Lemma Let T be a colored framed tangle and K be @ component of
color V. Write TX for the tangle obtained by changing the color on K to X.

@ If V=X®Y, or more generally V is an extension of Y by X (ie. there is
a short exact sequence 0= X = V=Y -0 of A-modules), and K is closed, then

Fr=Fry+Fpy.

{see [RTI, §6.4.1] for the case V=X @ Y).
by If Y=X®Y and K is un arc between the bottom and top of the tangle,
then

F=F @ Fry

where the modules Ty are naturally identified with TX . @ TY. .
() If V=X®Y, then

Fr=Fiyy

where TXY Is the tangle obtained by replacing K by two paratlel pushoffs of
itself (using the framing j colored X and Y, respectively. {See [RTI, §6.4.21)

{3.113 Remarks. (1) Stalements similar to (a} and (b} hold for arcs K joining
the bottom or top of the tangic to itself.

(2) We will prove (a) using the following states model for Fr. Fix a factored
good diagram D for T and preferred bases By for each color V. Let P be the
set of critical points (i.c. extrema 2nd double points} of D, and denote the elemen-
tary factor of I corresponding to a peint p in P by Dp (ie. Dp is the diagram
in a small box about p).

A stare ¢ of D is the assignment of a label o{8)} to each component § of
D— P as follows: If S is V-colored, then o(8) 15 an element of B, or B} (the
dual basis) according to whether § is oriented downward or upward. By taking
tensor products, a state yields elements o, (E) in the modules E, for any factor
E of D. In particular, set 5, (p)=0, (Dp) and 6, =06 . (I)). (See Fig. 3.12).
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A
Xavy zZ XY Z

(a) (b}
Fig. 3.14

Define the weighe of a state o to be the product

wio)= ][ wylo)

pef

where w, (g} is defined as the cocfficient of ¢ , (p} In F,; {o . (plh

Now consider basic elements of T, . ic. tensor products of preferred basis
clements. The operator Fy is defermined by the coefficients {Fr}}* of x, in
Fr{x_), for all basic x, in T,, and these evidently have the following states
SJormula

(3.13) {(Frli: =2 wia)

where the sum is over all states ¢ with ¢, =x, .

Proaf of 3.18) For {a} we adopt the notation of the previous remark, choosing
preferred bases By, By and By so that By < B, (viewing X as a subspace of
¥} and By is the projection of By =B, —B,. All state labels from By or B}
will be called X -labels, and those from B, or B} will be called Y-labels.

Qbserve that if ¢ is a state of D with non-zero weight, then the corresponding
labels on the arcs of K must be cither all X-labels (written oK <X} or all
Y-iabels (written ¢| K< Y). This follows from the A-invanance of X<V (and
dually of ¥*< V%), which shows that one cannol move from an X-label to
a Y-label while traversing K in the direction opposite to its orientation.

Now for basic x, in T, the states formula {3.13} gives

(Fr)io =3 wlo}
= Z wim)+ Z w{e}

a|Kez X g|lKka ¥

={(Fre)z. +{Frei:
and 50 Fp=Fpy + 15y,

The proof of {b) is similar but easier, and is left to the reader.

Finally, {c) follows from definitions, including the second defining property
{2.17b) of the R-matrix. In particular, the two operators corresponding to a
crossing involving K in a diagram B for T. and the corresponding crossings
m the associated diagram of TXY, are equal. We illustrate this with the right
crossing shown in Fig 3.14a, where both operators map X@Y®Z to
LRXRY
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Indeed, with the obvious notation

R,\'@r.z= &.g;r.z“ R,t@r,z
= H‘wr.z A4® id}{R](,\'cg-h@z
= Hr@r.z”{Rl 3 st)n;ar@z

=Zﬁfﬁj®9€i®9€j

= (Rx.z @idy}-lidy & 'Qr, z)

where R =Zo:,- & f;. An easier argument shows that the operators corresponding
to an extreme point of D, lor example £y and Ey: (id® E;®1d) for the
case shown in Fig. 3.14b, are equal. The result follows by the definition of
tangle operators. [

Drientations

Finally we consider orientation guestions for the tangle operators Fp= Ff-®:2,
It turns out that te get a rcasonable theory, one must assume that the clement
o and its antipode S{u} are inverses. Such an element g, i.c. 2 unif in A sausfying

(3.15) {a) pxji=5%x} forallain 4
(b Ziif‘ﬁi=zmﬁ?: where R=Z°f;®}3;
(c} Slpi=f,

is said to be charmed.

{3.16) Remark If {4, R, v) is a ribbon Hopf algebru in the sense of [RTI1], then
u=uf is charmed, where u=3 S($,)%. We do not know if a charmed element
4 in an arbitrary quasitniangular Hopf algebra (4, R) gives rise 10 a ribbon
structure (with e=ug).

Observe that any g satisfying {3.152a} induces an A-lincar isomorphism
{317} E, Voy#

for any 4-module ¥, given by E, (x)=(px)** {=evaluation on px), ie. E{x}(f)
=f{px}. [ndeed E{ax)=(pxx)** =(S*{o) px)** =af{pxy*=uE, (x). (Since this
map is canonically identified with the map E: V® V*—=C in (3.6), we usc the
same notation.}

(3.18) Lemma Let T be a colored framed tengle with a preferred component
K of color ¥, and u be charmed.
{a) If T* is obtained from T hy replacing K by — K (opposite orientation ) with
color V* (the dual module ), then

Fr=Fy.

where (if K is not closed) T. and T¥ are identified by the isomorphism E,
of (3.17) between the V-colored endpaints of K and the V**-colored endpoints
of —K.
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I TA A

T r T T
(a) (B} {¢)
Fig. 3.19

(bY £f T is obtained from T by replacing K by K withowt changing the color,
and if V is self dual by an isomorphism I3 V¥V for which E,=20D*D 1,
ie.

TN rxs
x

"/
D \\p { D*

commutes up to sign. then
Fp=ghy_

where (if K is not closed } T. and TL are identified by D between corresponding
endpoints of K, and the sign t=1+1 is —1 if and only if E,=--D*D"! and
K is an arc joiring one end of the tangle to itself. In particwlar 6= +1 if T
is a tink (ie. {0, O)tangle ).

Prouf. Tt suffices to prove the kemma for elementary tangles, and for these it
is straightfoward from definitions.

We Hustrate the prool of (a) for the two thardest) cases shown in
Fig. 3.19ab. For (319%a), we have Fr{x®31)=} B r@xx and F.(x®}y)
=Y By @E; YoluxP*). But these are cqual by (3.15a). since E {2, x)
=(pa, xP*={S (x pxy*=n,(ux)**. For {3.19b). we have F-r[l}=>:e,-®e‘
=Y s e,®@jic (note that s(zje, and Fe' arc dual bases) and Fou{l)
=3 E;'({e"")® e’ These arc equal, since s(p) e;=fe; and E, (ie)=ef* =(c'}*.

Neote (b) follows from fa) by a diagram chase. For example, for the case
shown in {3.19¢) we must show E=¢E (D@D '}, where £,=eD*D ™ g=+1.
Consider the diagram

ver:

D9 D
Veg Ve
I =)
83~y
veav } ¢
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Xa ¥
(1 lﬁ':p F:VOW-X*"@X®Y
i

v W

{a} coupon {b} colored coupon

Fig. 3.21

The small triangle A1 t-commutes by hypothesis, A2 commutes by the 4-lincarity
of D71, and A3 commutes since S(ut=j. Thus the outer triangle g-commutes,
as desired. The remaining cases are left to the reader. [

{3.20) Remark 1t is convenient to rephrase the previous lemma using framed
{ot ribhon) graphs, mtroduced in [RTI1], which are formed from compeositions
and tensor products of framed tangles and coupons. A coupon can be thought
of as an empty tangle {with diagram [} which is permitted (o compose with
arbitrary tangles, as shown in Fig. 3.27a. The coupons are thought of as the
vertices of the framed graph. Coloring the framed graph then consists of coloring
the edges (and loops} of the graph by A-modules and the vertices (i.e. coupons}
by appropriale A-lnear operators, as indicated in Fig. 3.21b. As with colored
framed tangles, there 1s an operator F; associated with any colored framed
graph G

Now in Lemma 3.18, the identification of 7, with T} in (3} and TC in
{(b) can be accomplished by inserting coupons colored with E, and D {(and thcir
inverses). For example, the tangle operator equalitics {after suitable identifica-
tions), illustrated in Fig. 3.19 become exact graph operator equalities, as shown
in Fig. 3.22.

Note that the operator eguality of Fig 3.22¢ shows that pushing a
P *lcolored coupon over a maximum changes the associated operator by a
factor of &, and the same remark holds for minima. As a consequence we have
the following corollary of Lemma 3.18.

{3.23) Corollary Let K ke a closed Vicolored component of a colored framed
tangle T, and assume that y is charmed that there is an isomorphism D: V- |
of A-modules with E,={(—1)"D* D ! for some integer m. If G is a colored framed
graph formed by introducing two D*'-colored coupons on K (changing orienta-
tions appropriately ) at points separated by p extreme points of K (in some good
diagram of T ), then Fo={—1y"? F.

i)
‘:JQQ
5 <
-
-

\
YA\

(v} (<)
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Tungle operaiors for o/

We now specialize 10 Lhe quasitriangolar Hopf algebras .o/ =, (quantized
st{2, C) discussed in §2, with R given i {2.18).
(3.24) Theorem The element p=K? in of is charmed, ie. satisfies {3.15a-c}.

The proof will be given below. The associated tangle operators Fr will be
denoted by J,., in honor of V.F.R. Jones {sce §4):
{3.25} Definition For any integer r > | and colored framed tangle 7, with color-
ing k, define

J‘J':J?‘.k:Ff?"R'Ki-

Note that the mteger », and sometimes the coloring k. will be suppressed in
this notation. If Tis a link L, then J, , is a scalar which will be called the
cotored framed tink invariant of {1, k).

(3.26) Remark The 1angle operators Jy, are independent of the orientation
on any closed component K of T whose color is one of the irreducible modules
V4 (1 £k <1} Indeed, the isomorphism D: (F¥)* o V¥ given in Theorem 2.13 sat-
isfles

D*D™' ={— 1y ' E,,

{since DD Up)=( -—x}“b}*=f- S qur'=(_ LF~YEg: (b)), and so the
remark foilows from Lemma 3.18b since K has an even number of extreme
points. [n fact, from Corollary 3.23, we obtain the more refined result that

FG-=(—1)“‘_’“’F';-

if G is the colored framed graph obtained by introducing two D '-colored
coupons on K separated by p extreme points.

Proof of 3.24 Properties {3.154) and (¢) are rmmediate from the definition of
. In particular KX =sXK, KY=5YK, S(K)=K, §{X}= —s5X and §(Y}= —5Y
imply KFXK?=gqX =8%X}, K*YK*=4Y=5%(¥} and S{K*)=RK2 Proper-
ty {3.15b} is deeper, and is proved in Appendix A.

We conclude this section with some computations of specific tangle operators
associated with the algebra «of =, using as colors the irreducible modules
V* (often identified by their dimensions &k v} and the associated Verma modules
WY {for 8<k < r), defined in §2.

We begin with a basic result about local modifications of tangies.

{3.27) lemma Fix a colored framed tangle T and a preferred component J of
color j (i.e. V¥ withj<r). Let T, be T with a disjoint k-colored unknot adjoined,
et T, be T with the framing on J increased by 1, and let T, be T with a k-colored
unrknotted meridian (o J adjoined. Then
JT[ =iy JT
STk, ¢mtP ot and e 9D 4 - -
where cy=[k], ¢, =t and ¢y=—== {imerpreted as (— I}~ 'k when j=r}.
In pictures: i
jk
a} So, ~ k14, (<) J, _Li#) g,

>0
(b} J‘m:fﬁ -l"',\;
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e e, Tyl
2,1
‘ \ k
Ol Q0
j
) ! ‘
o e=
(2) (b) (e}
Fig. 3.28

Progf. It follows from Lemmas 3.9a and 3.18b that Jy, = ¢, Jy for scalars ¢; which
arc independent of orientations. Thus we may find the ¢; by compuling the
values of the opcrators on 1 {for i=0 and e, {for i=1.2}, where m="1_2~l_.
as indicated in Fig. 3.28.

For {a), I— ) e®ersy ol(KPe)=3 q'=[k] (whcrc n:k-;l-), and so
co=[k]. C

For (b}, ¢,— ) e, ®e®d—Y ¢"e,®e,®¢ (by Corollary 232

=Y gmeiKze,)e=¢"" Ve, =17 "¢, and so ¢, =171,

For (c}, en— 2 ¢, @e,®@e'—3 ¢"'e@e, Q'Y 4" e, @e;®e (plus

= =n

terms which will vanish at the next steph—Y > é(K?e)e.=2 ¢°" e,
PN ITh , ( k- 1) Ukl .
= e = =g for j<r{where n=-—~—1, and s0 ¢, == for j<r For
.-_-l.,,q 71 d o2 T
j=r,wehaveg/'=(—1¥ " andsoc;= Y (-1 '=(-D"'k O

We conclude with a giobal result about links. Recall from Lemma 2.15 that
WY contains V* as a unique proper submodule. In particular, vsing the standard

. . . . _ k-1
basis €,. -y, s €.p COMing from the inclusion Wy = ¥2r* (whcrc m=—-),

V* is spanned by €, ..., €.
(3.29) Y.emma [f a colored framed link (L, k) has a component of color V7 or
W/, then J,  =0Q

Progf. Write 1. as the closure of a (I, 1)-tangle T as shown in Fig 3.30 with
V=V or W.

If V=¥ then by Lemma 39a, J; is a scalar operator and so J; , 8 2
scalar multiple of the invariant J-, of the r-colored unknot. But this is just
[r1=0, by {3.272a).

If V - W/, then Jr is still a scalar operator (¢f. Lemma 3.9b). For, if A 1s
an cigenvalue for J;, with eigenspace U, then U is a submodule and so U> |48
ie. Jp{ed=he, for i<m. Thus we must show U=V ie Jrie)=2xe, for some
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T

Fig. 3.30

i>m, for then U/ =W, and J, s multiplication by 4 To sce Jofen,y )=Aenq s
for example, linearity Jp{oe, , J=ar(e,. } with x=Y shows that Jole,. )
=20, +ve_, for some v, But then linearity with x= K, together with the
fact that e, ; and e_, have distinct eigenvalues for K, shows v=0,

The proof is completed as in the case V= F" with the observation thal

Femo ]
L P
Jowi= ¥ 4
i=—m

4 Skein theory, cabling and the symmetry principle

The computation of the . #-colored framed link invariant J; | {see § 1 and (2.12))
directly [rom the R-matrices defined in §2 becomes impractical as the crossing

number of L and the colors &, increase. I all &k, =2, however, then J, , (as
4 function of q=e(i)) is just a variant of the Jones polynomial of L (Corol-

lary 4.11) or the Kauffiman bracket polynomial {Corollary 4.13} and can therefore
be compuied by the Conway skein calculus or {for r=3, 4 or 6} by topological
means. Using this fact, we will give an expression for J,_, as a linear combination
of Jones polynomials of certain cables of L {Theorem 4.13). This will yicld an
alternative form for the 3-manifold invariant (M} (Theorem 4.17} which ¢an
be exploited for calculations.

Al the end of this section we prove a svmmetry principle {420} which
describes the change in J, , when a color k 1s changed to r-- & This also leads
to simpilifications in the computation of t,{M), and appears to bave interesting
applications as well (including a simplified proof of the exisicnce of t,{M); sce
§5 below),

Skein theory, the Jones polynomial and the Kauffiman bracket

{4.1) Definition Let L be a framed (unoriented) link. Define

Jo=J12
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where 2 denotes the constant 2-coloring (i.e. each component of L is colored
with the untwisted 2-dimensional irreducible & -module V2),

The purpose of this subsection is to prove that J, is equal to the value
of the Jones pelynomial at g, suitably normalized {0 account for the framing
{Coroliary 4.11}, or equivalently the Kauffman bracket for a good diagram of
L {Coroliary 4.13).

Observe that for the zero framed m-compoenent unlink O™, we have

42) Jom=[21"=(s+35"

by m applications of Lemma 3.27a.
Furthermore, J, satisfies the following skein relations.

{4.3} Theorem (1} (oriented skein refations) Let L, , L. and L, be oriented
Jramed links with good diagrams (ie. the framings are the bluckboard framings)
which are identical except in a disc where they are as shown in Fig. 4.4z Then

{a) fJI,+_‘_JL_=($—§)J;.u'

If the framings are adjusted so that L, L, =L.-L_=Ly Ly, then (a} becomes

() @i, =l =ts=9) .,

(2} (unorienred skein relations) Let R, V and H denote unoriented framed links
with identical good diagrams except as shown in Fig. 4.4b. Then

{a) Ja=tdy + 1y
if the two strands in the crossing come from different components of R, and
(b) Je =ity —y)

if the two strands come from the sume component of R, producing a crossing
of sign e= +1 {ie. appearing as in L, of Fig. 44a if R is oriented ).
Proaf. Recall from Exampie 2.37 that action of R on V2® V2 is given {in the
preferred basis) by

r

R=(® (g t_(s_ﬂ) S
We find (e.g. by computing the characteristic polynomiat of R) that
(4.5) tR—TR"'=(s—5},
and {ia) follows. To adjust the framings to become egual! we may add a left
kink to L, and a right kink to L_ {see eg. Fig 3.28b), which changes J,

by 1¥2 by Lemma 3.27b, and so the coefficients of J, , become ' *?=¢g*".
This gives {1b).
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L0 Xy 53
{a} {b)

Fig 44

o g
A X A
g g

(s) (%) {c}

Fip. 4.8

For (2a), orient R so that the crossing looks like I, , and then (ia} yields
{4.6) gt ={s—)Jy

where L is as shown in Fig. 44b. Now r¢verse the orientation on ope strand
so that the same crossing looks like L. when rotated by 90°, and so

by {1a) again. Multiplying {4.6} by r and {4.7) by { and adding gives {2a).

For (2b}, first suppose =1, so (4.6) follows as above by orienting R. Now
we may locally reorient onc strand by introducing two coupons on R, giving
the framed graph (see Remark 3.20) R’ shown in Fig 4.3a, and similarly con-
struct L and H' (Figs. 48bc) As in {4.7) above, we get —1Jp +td, ={s—8J,.
But by Remark 3.26 we have Jp..=J, and J,.=J, (since our color 2 is odd
and there are no exireme points in Figs. 48ab} and J,. = -— J;; (since there are
an odd number of extreme points between the coupons in Fig. 438¢), and so
{4.7) is replaced by

49) ~ gt tl = — (5= 5y

Multiplying {4.6) by t and (4.9) by [ and adding now gives {2b) for¢=1.
If e= —1, then the same argument establishes {4.7) and a revised {4.€), with
the right hand side negated. This gives (Z2b} for e = — 1, as above. [

Remark. Theorem 4.3{2) can zlso be proved directly by computing the appro-
priate local tangle operators as in cur proof of (1)

The skein relations in Theorem 4.3(Ib) lead to a variant ¥, of the origina)
lones polynomial ¥, of an oriented link L {in the variable g), characterized
by

(N Vo=1
(2} ¥, —qV, _=is-a ¥,
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where (O denotes the unknot and L,, L_ and L, are as in Fig. 4.2, (Notc
that for V, one swaps ¢ and § on the left side of (2).} In fact

(4.10} =V (g}

where §''% must be chosen to be —§ on the right (i.e, recalling that V, {g}
is a polynomial in ¢* "2, we substitute g for ¢, —3 for ¢*? and —s for ¢ '3,
Equivalently ¥, may be deﬁned as the specialization of the Homily polynomial
at (ig, i(§—s)) {see e.g. [L2])

{4.11} Corollary If L is a framed link, then
JI,=[2} faLl!' r’}'
Jor any orientation on L.

Proof. The right hand side is characterized by the same skein relations, (4.2}
and (4.3(1aY), as J,. (O

(4.12) Remarks (1) The values of ¥, at certain roots of unity have topological
significance, as they do for V, [LMI{, Lp, Mul. In particular, the valucs at

q=e(%), forr=1,2, 3,4 and 6, are as [ollows:

r 7, YL

1 Zn—! (_Z)n-'l
2 detl det L

3 i (—1ir !
4 aI/’Eﬁ"I a(__VIZ]ﬁ—l

6 V3=i° (I

where n is the number of components of L, det L is the value at ~1 of the
(normalized) Alexander polynomial of L, a is {— 1" when L is proper (so
the Arf invariant is defined} and O otherwise, d is the nullity of @({mod 3} where
@ is the guadratic forin of L (represented by S+5° for any Seifert matrix S
of L}, and w is the Witt class of Q{mod 3) in W(Z/3Z)=Z/4Z) (sce Appendix
B It is well known that [det L] =|H,{M)), wherc M is the 2-fold branched
cover of $* along L, and d=dim H,(M; Z/3Z) (since any matrix rcpresenting
Q is & presentation matrix for H,(M)). Our expression for the value of V), at
e(§) may appear unfamiliar, zithongh it can be shown to be equivalent 1o Lip-
s0n’s,

(2) It is often simpler 1o use J, as the basic ingredient rather than . For
example, Jy=1 is a betler normalization than V= Vo=1 since formulas are
simpler {e.g. [2] disappears). Of course J; does require a framing on L, but
if one chooses a framing for which L- L=0, then J, =[2] ¥, {cf. 4.3{Ib}.

The skein relations in Theorem 4.3{2} remind one of Kauffman’s bracket
polynomial [Kf) {alsc see [L27} in the variable ¢ defined for a link diagram
D Our version Bplr}is normalized differently and is characterized by

{1) Bom={=12I"={—s5—5" (s=17)
(2) BR=fBV+f_BH
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where O™ is the standard diagram of the unlink of m components, and R,
Vand H are diagrams which are identical except as shown in Fig. 4.4b.

(4.13} Corollary If L is a framed link. then

Jr=(=0"" Bylin)
Jor any good diagram D of L.

Proof. First note that 1.- L is only defined for oriented links, but L-L{mod 4)
is independent of the choice of orientation {ic. (4 +B) A+ Bi=(4d -B}{4A-B)
{mod 4}

We prove the corollary by showing that the right side satisfies the same
characterizing skein relations as Jy, namely {4.2) (obviously) and (4.3(2)). Observe
that R-R=V.V+1=H-H—1(mod 4) il the {wo sttands in the crossing belong
to different components of R, whereas R-R=V-V+s=H-H +z if they belong
to the same componcat. In the former cage we compute

(=D R B (i=(— ¥V Hin By i+ {(— D" ¥ Y —if B,lit)
=t =07V By i+ (-7 ¥ By (iey
and the latter case
(=i EFBliy= (=" (0 By i+ (= D" ¥ (~ i} By lin)
=e{t{—A"V B (i)— (=¥ Bulity. O

Remark. Alternatively, (4.13} can be proved directly from (4.10) and Corol-
lary 4.11 by using the well known relation between the Jones polynomial and
the bracket

[2) V@ =(—{i) 38 E Bplisy

{see e.g. [L2], and note that the [2] 15 there because of our normalization
of the bracket, and the s are there because of the choice of ¢*/? in (4.10))

Cabling

The next result gives a formula for the general .#-colored frumed link invariant

i ,
J;, « it terms of Jones polynomials (al q=e(;—)) of certain cables of L. {Recall
that #={V! ., V"7 '})
We will need the following lemma (which wili correspond {o zero cabling).

{4.14) Lemma Let (1, k) be a colored, framed link. If S is a sublink of L obtained
by removing some 1-colored components, then

JL.I( ‘—'Js.kls-

Proof. 1t was observed in {29} that K? acts by the identity on V', as does
K on V'@V* and V*® V. Thus we may ignore 1-colored components of
L when computing J; . O
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Now define a cabling ¢ of a framed link Lto be an assignment of nonnegative
integers ¢; to the components L, of L. The associated cable of L, denoted IF,
is obtained by replacing each L, with ¢, parallel pushoffs (using the framing).
If ¢;=0, simply delete L;.

If Lis oniented, then there is a natural choice of orientation on L for
each component L; of L, orient the pushoffs so that their sum s homologous
in a tubular neighborbood of L; to L; or to 0 {depending upon whether ¢,
is odd or even}. With this choice we say Land 7 are compatibly oriented.

We will use the multi-index notatien f(kj=T[]f{k), k<n if k,<n, for all
i, etc. For example, {— D% =[J(— 1) =(— IF*, (:)=H (:) and ¥ is the sum
over all k with 1 &, = #, ‘ K=t
{4.15) Theorem Let L be a framed link and k be an .#-coloring of L. Then
setting n=k -1,

22 n—i
Ju= Z(" l}j( . j) Jro-s
i=o )

nid

=213 (1) (n._j)ﬁ:,n-n.;‘. -~
s i

Jor any orientation on I} [n particular, if L and IM *} are compatibly oriented
Jor ail §, then

ﬁnf2 I‘l-—j .

J,_b,‘=[2]r3s'°Z{—I}‘( . )If},. u

10 )

where § s the even colored sublink of L, comsisting of aft L; with k; even. ( By
- 1

convention Jo 5 =1, Vo= i and [°-1°=0.)
Proof. The first equality is an immediate consequence of Corollary 2.15 and

Lemmas 3.10 and 4.14. The sccond equality uses Coreilary 4.11 and the last
equality follows from the definition of compatibly oriented.

Remark. There is an analogous statement il k is only an .#-coloring on a sublink
SofL,
ni2 I’l—j
=2, (=1} ( i ) Jon- 204t 5.2 oxltn - 9

=0
where a=k|{S—1.
(4.16} Examples 1f K is a framed knot, then

= S 1Y ("} e

i=0
where n=k— 1. In particular
Jxa=d—1
Jia=ds—2J¢
Je s=Jpa—3Ja+ L.
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As a consegquence of Theorem 4.15, we obtain a formula for ,(M,) in terms

of Tones polynomials (at Gg=¢ (é}) of cables of L. Recall from §1 that

M )=q, Z (k] .

k=1

where a,_:(’[/f sin -?:)"L (e’( —_3;::— ?;E))%_

{4.17y Cabling Theorem For any framed link L,
-7
T {M)=u; Z e Jee
e=0
(ie sumover all cables c={¢|, ..., ¢, )withOS ¢, Sr -7}, where
te=v 12 . . C+'
@="% -vies2i+0 (7
j=o !
(ie stom gver af f20 withe+2j41<r ).

_ The formula 417 can be rewritten in terms of the Jones polynomial variant
I by using the third equation in Theorem 4.15 and oricnting cables compatibly:

(4.18) L(M)=2[20 P (o) b

where L, is the sublink of f. consisting of components L, with ¢; odd, (thus
pemdp Haprpr=Lo Lo

{4.19) Remark It is often easier to caleulaie with cables by first changing all
framings of L to zcro (and adjusting by the appropriate power of ¢] and then
taking cables using the O-framing.

Symmetry Principle .

Finally we state the Symmetry Principle, which allows us to switch a coler
k to r—k. This cuts the number of terms 1n (M) from the order of {(r— 1}

{ Pyt .
D k;) . and makes possible an elementary proof of the invariance of t under

the m-strand k-move for m>1 (see § 5).

I1 is convenient to adopt the notation Lu K for a framed link with a distin-
guished component K. Colorings of Lo K will be written Luk, where | is a
coloring of Land k is the coler of K. If the colors are selected from the modules
Vo123 defined in {2.%), then as above we identify these modules by their
dimensions {also called colors) and so 1 is just a list of positive intcgers {ie.
I, or V', is the color of the component L))

{(4.20) Symmetry Principle Let LUK be a framed link where K has framing
a, and 1=(I,, ..., 1) he a coloring of L=L,w ... L, by the modules defined in
(2.8). If O <k <r then

_ dr—Zkwat 1.
Jokter-np=i Jrukauk
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where A= Z K- L. (Note that the exponent of I can also be written as
evenl,

(r—2)K-K+2K-E where E is the even coloved sublink of LO K for the coloring

Iok)

Before proving the Symmetry Principle, we illustrate its use in the context
of 3-manifolds given by surgery on a knot. A more systematic study of is
applications appears in §8, including a form of the Symmetry Principle for
7, (Theorem 8.5). Also see the end of this scction Jor an application Lo Joncs
polynomials of cables.

(4.21y Example Forr=35and K a knot with [raming a, we have

3
(M y=ay Z [K] Ji
k— 1
= {[ 13+ (2T K+ [3] # S+ [4] 29
=21+ L2001 + ) Jeh

Thus if a=2({mod 4), then 75(MJ=90. If a#2imod 4), then his shows that Jy
{and so also thc Jones polynomial of K at the fifth root of vnity) is determined
by t5{M ), and thus is an invariant of M (cf. Theorem 8.22)

The proof of the Symmetry Principle needs
{422y Lemma Let LUK be a framed link, where K has framing zero, with
colorings 1 on L and V(i) on K { see abore Lemma 2.16 ). Then

ek ={— ! Tt
where A= Z K-L.
evend,
Proof. Orient Ly X and draw it as a counterclock wise braid with the blackboard
framing. We need 1o inspect three kinds of crossings as in Fig 4.23.

In the first two cases, according o Corolldry 2.32b. R{e @ e]—i”‘ ¢®e; and
Rie®e =it e, @e since ¢; has weight 2/ and 2=1. Slm]larly in the thlrd case
E{e@e]—z e®e since ¢ has weight i=¢". On negative crossings we gel the
mverses R Me®ep=i"Ye,®@e, R Yo,®e)=i"Ye®e; and R ' '(e®0)
= "e@e rcspectively.

Since K is O-framed, K has an equal number of positive and ncgative ¢ross-
ings in the braid diagram and an odd number of maxima. Thus the sclf crossings
of K together contribute nothing 10 J; .1,y and (since K*= —1 for V'{iy
the maxima together contribute — 1. That is, K contributes - 1 {whether knotted
or not). Hence we may change the self crossings of K so that K is unknotted,
and then Lo K can be drawn as in Fig. 4.24. The crossings of K with L; oceur

\ \/ \
K X
v Vi vigy v vigy v

Fig. 4.23
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LT "‘Q/k J

%3

|

Vig. 4.24

in right or left handed pairs which algebraically sum to K- L;. So the contribution

of pairs of crossings between K and L; is {— 1)**'% When [ is 0dd, then j

is an integer so (—1)3 =1 and there is no contribution. When 7, is even, then

J s a hail integer and (—1)"/=--1, s0 we get a multiplicative contribution

ol {- ¥+ (1

Proof of the Symmetry Principle. Since we have Lhe short exact sequence (2.16)
O K= Wy = V5@ 1 (=0

and since Jp ; 15 additive under exfensions (3.10a) and J;_y, =0(3.29), it follows
that

O=J Lktows =Jok ik ke v -

If the framing on K is zero, then replacing K with color V' * @ V(i) by
the 2-cable {using framing zero) of K with colors V7% and V'(i}, it follows
by Lemma 4.22 that we can eliminate the copy of K with color V' {i) by multiply-
ing by (~ 1 " = —i**where 2= 3 KL, and the result follows.

evend,

Finally, if the framing on K is g rather than zero, then we can change
to framing zero by muitiplving by % =" Now apply the just proved zcro
framed case to switch the color on K from k to r-- 4, and then shift the framing
back to a by multiplying by (4% 711 Sg the net change pives

_palir =k} Ay 24 etk
Ioxaoer-a="" A Bk ok

_ r=2khik 22

= Jxrow- O

We conclude this section with an application of the Symmetry Principle
to the study of the valucs Ji. of Jones polynomials for cables IF of a framed

link L at a fixed root of unity g=e¢ (:)
A cabling m of L will be called minimal if m__*f;;——l (i,e. each componeni
of L is replaced by at most ; -1 parallet COpics). Now an casy inductive argu-

ment using the Symmetry Principle and the cabling formula (Theorem 4.15 and
following remark) shows that for any cabling ¢, Ji- 1s an intcger incar combina-
tion of the values J;.. for minimal cablings m where the cocfficients of the Jincar
combination depend only on the linking matrix of L {and of course on ¢ and
). That is, writing J(L} for Ji.:
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(4.25) Corollary For each framed link L and cablings ¢ and m with m minimal,
there exist integers a,{L) such that

JLy= )3 ag, (L) J™L),
minimaicablingsm
and such that af (Ly=aC{LYif L and L have the same linking form.
In practice, the integers af (L) can be computed easily.
{426} Example Let r=35. Consider O-framed knots K and let +° denote the
value Ji. of the Jones polynemial of the ¢-cable of K at e{}). By the Symmetry

Principle J; ; = Ji 3. 2nd so by (4.16). ¢! =¢* — 1. Induction shows that v“=f, ¢!
+f.— ., where f is the ¢*" term in the Fibonacct sequence 1, 1,2.3, 5, ..

8 The 3-manifold invariant z, (M)
Praof that 1, is a 3-manifold invariant

If M is described by surgery on a [ramed link L, therr we have defined (1.5
and 1.7}

r
L(M)=1,=2%, Z [k} .k

k

2 —r—
where g =b" ¢°F, h=]/:!-_ sin ?: c=e (—-- 3;:_ 2)) n, is the pumber of compo-

nents of L and o, is the signature of its linking matrix. For 7, {M) to be well
defined we must finally prove Theorem 1.6, that 1, is Invariant under K-moves
on L, and hence r{M) is independent of the choice of framed link used to
describe M.

The proof of Theorem 1.6 depends on an clementary identity for Gauss

1 1
Sums. (Reca]l thatt=¢ (ﬂ) and y=¢ (5 ,))

1 .
{51} Lemma ):[;'k][k,-];:'”k“ﬂ:%fle(.g)_
k=1

Proaf. Note that

4r
(s—87F Y K[kt
k=1

— g (rzjk - 7}&}[:2& LI _2“) tjz +EI402
k=1
4
= Z [Pﬂ(r(k {4032 + Ii* — fl}l}_ 32}1 (f"‘ {f + tlk == 4}}‘}}
k=1
4r
=2@"— Yy

k=1

=247 -5"2)/2re(})
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=1 4r
where the last equality is a standard Gauss sum {sce [Lal). Now Y =z}

by the symmetrics of the bracket [ 1, 50 ekt

rel

P 1 bR 2_[“] - 1
T uutee et =y (o)

- Db 1, (;)

since §—s=2 5in—: e(—4)=)2rbe(-4). O

Now to prove Theorem 1.6 consider an m-strand K-move LI of type
&=+ 1. Choose diagrams for L and ¢ which agree everywhere except for the
tangles shown in Fig. 5.2,

For any & -coloring 1 of L, let 1wk denote the induced eoloring of 17 with
the new component K colored k<r. Then [lok]=[11[k]. Since ny,=n, +1
and g, =g, + ¢, dand so ¥ =bc' 2, we have

r=1
=% Z M/
b= L

T,0=% ;‘.:rf (:_Zl Ouk] . k)

1=1 =1

r -1

=z, ¥ [l (b cig L1 Ju.u,k) :

1=t

Thus to prove 1. =1; it suffices to establish the identity
r—1

5.3) bt Y kY Jeeron=di

k=]

mm strands m strands m strands

| dboe dho

L Ltie = +1) L (g = -1}

Fig. 5.2
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for any fixed .#-coloring 1 on L. We will prove (5.3} by induction on the number
of strands m, starting the induction for m= 1 in the next result.

(5.4 Lemma ldentity {5.3) holds for m=0 and 1, and therefore 1, is invariant
under mestrand K-moves form=0and 1.

Proof. The proof for m=0 is a special case of the prool for m=1 when the
color j on the strand of L passing through K is I, by Lemma 4.14. So we

k 2 2
assume m=1. Then J. ., = [EJJ] gt VU by Lemma 3.27, and so (5.3)

reduces to

Lik] e qane-
b(‘ {k] r{j 11k LI - 1
,(Z, L1
Since these two identities (for 5= + 1} arc conjugate, we need only consider
the case &= + 1. But this identity follows from Lemma 5.1, with I=1, since ¢
=e(—3° O
(5.5) Remark $* can be obtained by + [ surgery on the unknot, s

r—t

T,(S‘i,]tbt’ Z [k_lz rkl [
k=1

by Lemma 3.27 and the identity cstablished in the proof of {54} with j=1.
Furthermore, it is not hard to show that 7, is the only invariant of framed

links under I-strand K-moves of the form a“Z(["] dk.) Jp . with value 1 on
k M=)

the 1-framed unknot. (This is essentially how Reshetikhin and Turaev arrived

at their formula) [ndeed, one readily shows as in the prool above that for

any such mmvariant

£ g s

for all 9<j<r and ¢= 2 1. Solving for the 4,, vsing Lemma 5.1 and the fact
that the matrix (A7 k] is its own inverse |this 1s the well known orthogonality

refation b% Y [ij]{jk]:é,-k), gives d,=hcf e *[k]. Equating the values for «
i=)
=+1 shows a=~+c¢ and the case a= —¢ 15 eliminated by the normalization
on the unknot. Thus a=¢ and d, =b{k], so the invariant is just 1.
Finally we prove the indactive step, completing the proof of Theorem 1.6.

(5.6) Lemma Identity {3.3} holds for m-strand K-moves for m>1 provided it
holds for n-strand K-moves for all n<m. Thus 1, is invariant wider K-moves.

Proof. First suppose that L and L are {rivial outside of the tangles shown in
Fig. 5.2, as shown in Fig. 5.7 {with blackbouard framings).
Using the Symmetry Principle 4.20, we may assume that all colors j of compo-

then change § to r—jgf on J {and

nents J of L satisfy jg-[. Indeed, if j> r 5

2 27
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Fip. 5.7

on the corresponding component J° of L) This changes the lefi side of (5.3)
by

iﬁ!r‘lﬁ—?.[.i‘-'-b‘ﬂ. k-t

where § i3 the cven-colored sublink of I -{(J*UK), and leaves the right side
unchanged. Next change k 1o r- & on K. Then, wsing [k]=[r—k], the lelt
side of (5.3) changes by

iz(r—:kl—. {F-S i St )

while the right stde remains unchanged. Noting that K- 5=J°-5=|5|, we sec
that the net change on the left side is

jetred M-S 2

as it Is on the right side.

Now by Lemma 3.10c. we may repluce two components L, and L, of L,
with colors f, and {,. by a single component colored by ¥h@Vh
=yh*e-tg @it Y173 sing Theorem 2.13). Thus by Lemma 3.10a and
distributivity, it is enough to establish (5.3) when L, and L, are veplaccd by
a single j-colored component for j<r. But this is covered by the induction
hypothesis.

Now consider the general case shown in Fig. 5.8, where T is an arbitrary
tangle, We will reduce to the special case above (Fig. 5.7) using cabling and
skein theory.
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First suppose that 1=2, the constant 2-coloring. Then we prove (5.3} by
induction on the number of crossings in ¥ The induction begias with zero
crossings, which is voversd by the specia! case. (Note that ¥ may have maxima
and minima. as well as vertical strands, which simply pull through K, reducng
m} In general, we may smooth a ¢rossing of T in two ways in both L and
E, and (3.3} follows by inductivn for each smoothing, using Theorem 4.3{2).

Finally, for general L J, | und Jp. ;.. can be computed using the cabling
formulz of Theorem 4.15 {and the subsequent remark) applied to Land I - K,
respectively. This reduces the proef of {5.3) to the case 1=2 proved above. [0

(3.9) Theorem z, satisfies the following three properties
(1} 2, (M % N)=1,(M) 1,{N)

(2) ©,{- MI=1.{M)

(3} {$H=1

Proaf. For {1), choose framed links L and £ with M, =M, M, =N, and so
M, .=M#N where Ly L denstes digjoint, (L and L are separated by a 2-
sphere). Note that

Hor o= jL.k I

(this is immediate from the defimtion of the colored framed link invariants,
see the proof of Theorem 3.6}, and so (1) follows from the deflinition of 1, and
distributivity.
For {2}, observe that {—M,}=M,, while L is 1he mirror image (obverse}
of L. Now {2} follows from the Cabling Theorem 4.17 since J; =J, and og= - o,
Finally, {3} was shown in Remark 5.5. (Alternatively (3) follows from {1}
once It is known that <, is nontrivial, ie. r,(M3&0 for some M} O

{5.10) Remurk Observe that 1,(M}=1 for all M. Indeed r,(M}=J =1 In
the subsequent sections we will give formulas for (M} for small values of
r>2

Examples
Computations similar to the one made for §* in Remark 5.5 cun be made for

§* % 8" and the lens spaces Lip, 1), obtained by surgeries on the unknot with
framings ¢ and p, respectively. For example

(5.11) £ (87 x M) = bzﬁk]h-_ l/— sc( )

{which approaches o like r*2 as r - » o), and for even »

(.12 CRP)=be 3 (K] 126 “_VL"‘“"C(Z?-)

k=1

{which approaches IFL/2 as r— o)} whete the last equality is derived as in
the proof of Lemma 5.1 by expanding, completing the square, and vsing a Gauss
sum. (Note that RP*=L(2, 1)) A similar argument shows that for r odd,
7,{RP¥ =0 (cf. (8.9)). In [KM4], we will give general formulas for 1, {lens space).
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6 The case r=3

In this section we give two formulas for t,{M). The first (6.1} depends only
on the linking matrix of L, where M =M. It follows that ¢, {M} {unlike ¢, (M).
see §7} 15 a4 homotopy invariant {Remark 62). The second (Theorem 6.3)
expresses 13{M) in terms of “classical”™ invariants of M.

Let L be a framed link with n components and signature 4. If k is a colornng
of L with all colors 1 or 2, and § is the 2-colored sublink of L, then by Corol-
lary 4.11 and Lemma 4.14, J; = J ,={2] 3% ¥ ¥ (for any odentation on S).
In particular for r=13

= s

since Py=1 {Remark 4.12), £’ =i and [2]=1. Thus the 3-manifold invariant (1.7)
reduces to

(6.1) M p)=- b
6

Z S8

S

wherc c=¢ (m :;)=1/_2! Here < denotes sublink and ¢ #=0 by convention.
{Alternatively, {6.1) follows from the cabling formulas in Theorem 4.15 or from
the Symmetry Principle 4.20.)

(6.2) Remark Ewvidently Formula (6.1) depends only on the linking matrix A
of L. Since it is a 3-manifold invariant, it must be invariant under change of
orientation on L, and under biowups and handle slides, that is under stable
equivalence of A. It follows that 1,(M,) is a homotopy invariant, determined
in fact by the first Betti number of M, and the linking paining on Tor H (M)
{for it is known that these determine the stable equivalence class of 4 [KP
Du, Wk]).

INote that there is an easy direct proof of the invariance of Formula (6.1)
under stable equivalence of 4 (giving an elementary proof, using the {wo moves
in (K13, that 1, is 2 3-manifold invariant}. First observe that the formola is
multiplicative under block sums of malirices {since ¢ is additive}. Invariance

under blowing up {summing with { & 1}} is now evident since -2- eFI+ith)=1.

Reversing the orientation on a component of L (multiplying a row and corre-
sponding column by —1) leaves ¢ unchanged and alters §-§ by a multiple
of 4 for all sublinks §, and thus leaves the formula invariant. Finaily consider
handle slides. Let £ be obtained from L by sliding component L; over L; and
then, for convenience, reversing the orientation on L; {ie replace L; by Li=1L,
+L; and L; by L;=—L) Each sublink § of L corresponds to a sublink §
of L with §-§=5"-8, namely

S if § does not contain L,
§'={S—(Li+L)+L; if Scontains L;and L;
S—L+(L+L) if Scontains L; butnot L.
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{In fact $=S5' as homology classes in W, .) This correspondence is one-to-one,
and so Formula (6.1} is invariant under handle slides.

The (cumbersome) sum in Formula {6.1) can be climinated by using Ed
Brown’s Z/8Z invariant 2 of the linking matrix 4 of L, defined as follows
{[Br, Ma]): View A as the matrix of 2 Z/4Z-valued quadratic form on a Z;22Z-
veetor space by reducing mod 4 along the diageonal and mod 2 off the diagonal.
Two matrices are Wit equivalent if they represent the same form after possibiy
biock summing with copies of {1)@{—1} It 15 casy to show thal 4 is Witt
equivalent to a diagonal matrix {mod 2}. Let n; denote the number of diagonal
entries congruent to j {mod 4}. Assume n,=0. Then the Brown invariant is
defined by

A=hy;—n,imod 8j.

(If #,+0, then the form is classified up to Witt equivalence by its nullity over
Z/2Z, and the Brown invariant is not defined.)

Observe that if n; =0 (which is equivalent to the topelogical statement that
therc exists o in H'{M: Z/2Z) with a2z~ +0, see Theorem 6.3) then

BiM)=0—i(mod 8)

is an invariant of the 3-manifold M =M, by [K1], since ¢ and 4 change equally
under blowing up and remain unchanged under handle shides. This will be called
the Brown invariant of M. We can now state:

{6.3} Theorem Let M be a closed, oriented 3-manifold. Then ©,{M)=0 if and
only if any one of the following equivalent conditions holds:

{1) M has two spin structures with distinct p-invariants mod 4 ( see Appendix C)
(2} M contuins an embedded closed surfuce of odd euler characteristic

{3} there exists o« in HY(M; Z/2 Z} with a~—x-—a%0.

Otherwise,

Ty (M)=]/ 28040 P

where b(M)=1k H' (M Z/2Z), c=e(—1/8) and B(M) is the Brown invariant
(defined above ).

FProof First we show the equivalence of the three conditions. Let &, and @,
be two spin structures on M. Following [KT, Theorem 4.117] or [T1], we have
al@)— u(@,}=2 B{F}y where F is a surface which is Poincaré dual to the class
in HY{M; Z/22) which measures the difference between &, and &,; F gets
a Pin"~ structure from @, and B(F) is its Pin~ bordism class in Q5 =Z/8Z.
Now the odd classes in @5"" are represented by odd multiples of RP?, and
the even by even, and so the equivalence of {1) and (2) follows. The equivalence
of (2} and {3} is weli known, and follows from an elementary geometric argument
{see for example [KT]).

Now choose a framed link L of n components and signature ¢ with M =M.
Orient L and let 4 be the associated linking matrix. As above, we may assume
that A is diagonal {mod 2} with n; diagonal entries congruent to j (mod 4).

Observe that

b(M)=ny +n,{mod 4)
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singe 4 15 2 presentation matrix for H | {A). By Formuia {6.1},

T4 {M)=¢"w
where

ESS

1/2"s<.'

Now, since w (as a function of 4} is multiplicative under block sum and depends
only on A mod 4 on the diagonal and mod 2 off the diagonal, we have

3
w1147
i=0
where w, = ]/i w; =¢, wy; =0and wy=c. Thus

l/zno T =I/2Ib"“’(_‘.' LI § ny=0
w= :
0 if #,>0

and so
. (M] {I’/EMMI IE 5] i ”),:0
3

if n2>0,

It remains to show that », =0 if and only if all the wp-invariants of M are
congruent {mod 4). It is known that the spin structures on M are in one-to-one
correspondence with the characteristic sublinks C of L{ie. C-L,=L,-1,(mad 2)
for all components L; of L), and their pe-invariants are given by

pe=0—C-C+8Arf(C)(mod 16}
{see Appendix C).

It is evident that C is characteristic if and only if it contains all L; with
L;-L;odd (since L, L; is even for i 4 j by assumption}. Now if n, =0, then {work-
ing mod4) p.=o-—A=p(M) for all characteristic C {since C-C=2). If n, >0,
however, then u-=#(M) if C contains an even number of L; with ;- L;=2,
and ge = f{M)+2 otherwise. [

(6.4} Corollary If M is a Z/2Z-homology sphere, then
T (Mi=1 oHiM)

wh.ere e=e{~3), u(M} is the p-invariant of M, and the sign is chosen according
to whether |H,(M)|= 11 or £3{mod 8).

Proof. Since b(M)=rk H,{M; Z/2£}=0, we must show
BOMY=u(M)4 5(M) (mod 8)

where $(M)=0if |H, (M}|= £ | (mod 8}, and d{M)=4 otherwise.

First note that ng=n,=0 {in the notation of the proof of Theorem 6.3).
In addition, after a change of basis we may assume that A4 is diagonal {mod 4)
with m; diagonal entries congruent 1o j(mod 8}.
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Working mod 8 we have
A=my—m,+m;—m,

+1 il my+mgiseven

[ H, (M}|=37 577 75{1.3 otherwise.

C'CEml +3m3 +5mg+7m1
where C is the (unique} characteristic sublink of L. Thus

BiMize—2=piM}+C-C-2
spu(M)+amy+mg)=p(M)+6(M). O

{6.5) Remarks {1} 7,(M) is not in general determined by H {M} and the p-
invariants of M {whereas 1,{M) is, see § 7). For example, for M =Li4, 1}# L{8, I}
one readily computes S(+M)= 12 whence t,{+M}=+2i Yet M and - M
have the same homology and p-invariants.

(2) Let viM}=rk H,(M). Then the modified invariant ¢ 1,(M} {see
Remark 1.8) is always a Gaussian integer. This follows from Theorem 6.3 and
the elementary observation that &(M}= S(M}+ v{M}{mod 2).

7 The case r=4

In this section we give a formula for (M} in terms of the u-invariants of
spin structures on M {Theorem 7.1). [t is derived using Rohlin’s Theorem on
the signature of spin 4-manifclds from a related formula (7.2} which involves
the Asf invariants of sublinks of 2 framed link L with M, =M. It turns out
that Formula (7.2} can be shown directly to be an invariant of M using only
elementary properties of the Arf invariant and [K1], and this in turn yields
a new short proof of Rohlin's theorem (see Appendix Ch

(7.1) Theorem Let M be a closed, oviented 3-manifold. Then
‘ta(M)= ZC“M‘”
a

where c=e(—+%) and pu(My) is the peinvariant of the spin structure @ on M
{ the sum is taken over all spin structures ).

Proof. Choose a framed link L of » components and signature ¢ with M, =M.
By Theorem 4.17,

2
rd(M}=l/§’ Tt N (e)
«=0
where the doubly cabled components of IF are oppositely criented, and

ey=8SY (e +2j+ 13— 1) (cri)
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Here § 15 the sublink of L which is cabled once (§ depends on e), and the
sum is overallj=0with e+ 2j+ 1< 4.

First we show that {¢)=90 for any ¢ in which some ¢,=0. Indeed, cach
jwith j,=0 in the sum can be paired with §, identicai 10 j except that j,=1.
The corresponding terms in the sum differ only in the p™ position, where we
have [0+0+17{—1)* (g)=l forjand (0+2+1)(—1}' G)= — I forj, and there-
fore cancel

Now if ¢ has all ;=1 or 2. then

OLTae

where § {as above} is the sublink of all L; with ¢;=1, and nyg is the number
of components of § Furthermore, recall from Remark 4.12 that J.

=q L./22""’-‘" ', where a=(— )" or 0, depending epon whether I° is proper
or not (see Appendix C). But L is proper if and only if § is characteristic,
since the components of L—§ are doubled. Hence

Joo=(— PAHS® V’Ezn —ng-1

if §is characteristic, and 0 otherwise.
Putting these calculations together gives

(7.2) 1-4(;\4):1/{2! —in .0 Z{-{,C nef i)ﬁrf{{.‘j V22n—n¢-l
¢

= Z o O - BACIC)

€

where the sum is over all characteristic sublinks € of L. It is shown in Appen-
dix C that characteristic sublinks C of L naturally correspond to spin structures
@ on M, and the associated p-invariants u(Mg) are given by ¢ —C-C +8 Af(C)
{mod 16) {see Eq. {C.3)). Thus Formula {7.2} may be written as in the statement
of the theorem.

(2.31 Remark There is, of course, a quicker proof of Theorem 7.1 using the
Symmetry Principle 4.20, which we leave to the reader.

8 Applications of the Symmetry Principle
In this section, the Symmetry Principle is used to simplily the formulas for

(M}, and to splil 7,(M} into finer invariants. Several applications are given.
We begin by reformulating the Symmetry Principle.

The function ¢, and the sum my

Let Lbe 2 frumed link and k be an .#-coloring of L. Denote the corresponding
even colored sublink of L by E,. The Symmeiry Principle {4.20} describes how
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the invariant J, ; changes if the color k on some compenent K is switched
to r—k: it is muliipltied by
jroNEKSIECK

Now we give a formula when several colors are switched in this way, and
show how to apply this to the study of the 3-manifold invariant t,.

For each sublink § of L, let ky denote the coloring of L obtained from
k by switching the color as above on cuch component of S. Then applying
the Symmetry Principle repcatedly, we have

8.0 Jpxs =B
for some Z/4 Z-valued function ¢, on the sublinks of L, where
{8.2} S (Ki=(r—2 K- K+2E,-K(mod 4)

for a single component K of color k. Noting that there is a one to one correspon-
dence between the sublinks of L and the elements of H,{(W,; Z/2Z}, where W
15 the 4-manifold defined by L (see §1), &, may be viewed as a function

b H AW, 222) 242,

(8.3) Lemma Jf r is odd, then ¢, is a quadratic enhancement of the Z/2E inter-
section form - on Hy (W, Z/2Z). If ris even, then ¢, is lnear.

Proof. For r odd, we must show
Gu(S+Ty= ¢ {S)+ g (T)+ 2(S T){mod 4)

for any {sublinks) § and T in H,(W,; Z/2Z)}. Nate that by {8.2), $,(K}+K-X
1s even {since r is odd), and so this is immediate for $=T=K. The general
case now reduces easily to the casc when T=K and S is an arbitrary sublink
of L not containing K.

In this case, consider Sqo= E, S (the even colored sublink of 8§ and §,=3
— 8, (the odd colored sublink of 8). Now compute $,{5 + K} by first switching
colors on the components of § {this gives ¢, {S}). and then switching the color
on K (which adds (r—2) K-K+2{E +5,—8})-K=6,(K}+2(8, — 5}
-K({mod 4), since the parities of all the colors on the components of § have
changed). Hence,

G S+ K) = (5) + $u(K) + 2(S- K) (mod 4)

since S-K ={8,+8,)- K=(5; -5,}- K {mod 2}

When r is even, ¢,(K} is even by (8.2} The argument now proceeds as
above except that the parities of the colors on § remain unchanged, and so
switching the color on K simply adds &, (K} Thus ¢, (S+K)=¢(S5)
+ ¢ {K}moddy O

For any function ¢: ¥~ Z/4Z on an n-dimensional Z/2Z-vector space V,
consider the Monsky sum [Br]
my= Z il

vel
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If ¢ is linear, then s, vamishes unless ¢ is identically zero, in which case my=2"
[Br, Lemma 3.1]. If ¢ is quadratic {ic. ¢(v+»)=o{)+ d{w)+2-w for some
symmetric bilinear form - on V) then my is cither O or of the form },f’?i"eﬂfﬁ)”,
where d=n+nullityz, z ¢ and § is the Brown invariant of ¢ {see §6, or {Br,
Thearem 1.20] for the nonsingular case).

Now, for any coloring k of L, let

= — N S
(8.4) =My = Z, i)
S« L

where T, is the sublink of L consisting of all components with colors unequal
to r/2 {and of course m; =1 if T, is empty). Note that m, ,=m,_[or r odd,
since T o - Lin this case.

In view of {8.1), these surns may be used to compute the 3-manifold invarianis
T,(M), where M =M,. In particular, define two colorings k and k” of L to be
equivalent if on each compoenent, the corresponding colors are cither equal or
add up to r. Note that each eguivalence class contains 2"+ elements, and exactly
onc of these is minimal {where k is called minimal if no color exceeds #/2, also
written k=r/2 in multi-index notation). Now we may group the colorings into
cquivalence classes and rewrite 7, (M) =0, Y [k]J,;from Definition 1.5 tusing
(k) =Tr - kD)

(8.5 Theorem t{Mi=a, Y m, [k]J,.
D<kger2

This reduces the number of terms by roughly a factor of 2% where # is
the number of components in L. Thus it is of interest to evaluate the sums
My w
(867 Lemma Let L be a framed link and k be a coloring of L. If r is even,
then

A58 if @y | Ty is identically zero
My =
RN otherwise

where T, is the sublink of L consisting of components with colors strictly less
than r/2 in the coloring k.
Forr odd,
my =iy
where 1 is the constant t-coloring and Ey is the even colored sublink of L for
the coloring k.

Proof. The formula for even r foliows immediately from the fact that ¢, is
linear (Lemma 8.3) and the remarks above. For r odd, it suflices to establish
the following:

Assertion, [f k and k' are colorings of L which differ on only one component
K, with colors k and k' respectively, then

s if k=k {mod2)
EXTUE g, o i kEK (mod 2).

The formula in the Lemma then follows by induction on the number of
components in E, {since for k even, E,=E, K, and so as r is odd, rE, - E,
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=rfy B +2rE . K+rK-K=rE B +2E, K+{r-2)K-K=rE& . E .+ ¢ (K}
(mod 43,

The assertion is obvious for k=Kk'{mod 2}, since ¢, =, by {8.2}, and so
we assume that k and K’ have opposile parities.

First some notation. We shall write ¢ for ¢, and ¢ for ¢.; these are both
quadratic forms on V= H,{W,: Z/2Z) by Lemma 8.3. Observe that k.= E, +K
{in V}and so

PSS = (514 2(S K} {mod 4)

for any S in V (eg. ¢ (K)= — @p{K)Mmod 4}). Also. let ¥, be the 1-dimensional
Z;2ZL-vector space generated by N with N-N =1, and ¢* be (he quadratic
forms on ¥, given by ¢ {N)= + 1{mod 4). Note that

My, = [ +i

Now 1o prove the assertion, it remains to show that m, = m,.. There
arc three cases.

Case I ¢${K)=C{mod 4). Then ¢ and ¢’ are equivalent, L. there s an isometry
T on {V, -} with ¢'= ¢ T Indeed, define T($)=S+{S-K)K for any §in ¥ (In
the language of the calculus of framed links, we slide over K cach component
of L— K which links K oddly.} It follows that m,=m, =i**'m,..

Case 2 ¢(K}=+1{modd) Then ¢ ® ¢ " and ¢’ @ ¢* arc equivalent (as forms
on V@ V). Indeed, an cxplicit isometry T is given by T(S)=8+{S-KHK+N)
for §in Vic.g. T(K)=AN) and T(N)=K. {As framed links, we slide off K and
over N cach component of L— K which links K oddiy.) It follows that (1 + dm,
={l +i}m,, since Monsky sums multiply under direct sums, and sc m,

=i*tm, =i*Fm,.

Case 3 ¢p(K)=2(mod 4). Then ¢S od* P ¢* and ¢’ D¢~ @® ¢~ are eguivalent
{as Torms on V@V, @ V). To see this, consider y=¢ B ¢* and y' =@ ¢".
Note that (K +N}=—1 and (K +Ni=1, and so we arc in the siivation
of case 2 (with ¢ replaced by # and K replaced by KX+ N). Thus ¢ @ ¢+ and
¥ iS¢ are equivalent. It follows that {1 2P m,=(I—i)*m,, and so my=
—my=1%m,. 0

The case of odd r

Combining Theorem 8.5 and Lemma 8.6 we obtain the following formula for
7, (M) when r s odd {where M = M, as usual)

{8.7y Theorem If r is ¢dd, then
t{My=m; o, 2, i7Ev B [k]J x,

Qeckar?

where E, is the even colored sublink of L for the coloring k.

We now derive some conseguences of this formula.
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Splitting for odd r

Obscrve that there is a natural quadratic form ¢, on (H,{W,; Z/2L}.+) given
by
¢ (S}=5-5{mod 4}

with associated Monsky sum

(8.8) me=m,, =3y f"‘"“=Lf’2'“e(-”-)r3(M1,
St 8

where the last equality follows from the formula for 1,(M) in (6.1). [t is readily
veriiied that
. ={,”l if r=3{mod 4)
17, i r=limoedd)

and so we deduce from Theorem 8.7 that 1, splits as a product for odd r:
(89 Corollary If r is odd, set

=y ze(3)n T L,

LR " T

with the + or — sign chosen according to whether r=3 or r=1(maod 4). { Here
# i3 the number of compongnts in L and o is the signature of the linking matrix
of L.) Then

Myt (L} if r=3(mod4d)

’*‘M):{TTMJ wl)  f r=i(modd)

In particular t {MY=0 whenever t,{M)=0.

The Corollary suggests that £ {L), if invariant under the moves of the calculus
of framed links {K-moves), would be a more useful invariant of M =M, than
1,{M} because it would not vanish for “trivial™ reasons. [1 is evident that it
is invariant when 15 (M) +0, since 75(M) and ©,{M) arc, and in fact it is invariant
i general:

(8.10) Theerem If Lis u framed link and r is odd. then v,(L) (defined in {8.9})
is invariant under K-moves on L, and hence defines an invariant ©T{M) of the
associated 3-manifold M=M,.

Proof. We adopt the notation of the proof in §5 of Theorem 1.6 {which estab-
lished the invariance of ¢,(M)). In particular we have a K-move LI of type
e=+1, a fixed coloring 1 of L, and induced colorings 1wk of I for each &
{the coler of the new component K). Note that K- K=

Let E denotc the even colored sublink of Lf— K Tor the coloring Ik (this
is independent of k), and as above E; and £, denote the even colored sublinks
of Land I for the colorings I and 1 U k, respectively. Observe that

. EuK if kiseven
Eluk=

(B.11) E if kisodd.
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It follows that
Ei v Ej = E-E+ed,imod 4)
where
5 = I if k=E Kimod 2}
A0 i k£ LK (mod D),

since E-E=E,|-E,+elE-K)? (by the way framings change under K-moves, see
§1). Using this, the proof of the Theorem reduces {as In the proofl (1.4)) to
the dentity

(8.12) (t—imbet 3 WK dou=ha

Pek<e'2

which is the analogue of {5.3}.
To prove {8.12), consider the contribution s, =(1 =i} F% (k] J. i i O
each color & to left hand side. Using the Symmetry Principle (4.20) we have

{8.13) S =b et (R s wH Ir—E) e i -m

Indeed, [r=kYJro o=V~ 0" 20 OTT g =i 720G L] gk (since
E .- K=&imod2} by (8.11)). Thus to prove (8.13), it suffices to show
{T—= ) oo = ] 4 50~ 2% 2% which is readily verified.

Now the left hand side of {8.12} can be rewritten using (8.13) as

bet Z el dronos -

D=k=<r

But this is just the left hand side of (3.3}, and so {8.12) follows. [

As an zpplication, we illustrate the use of Theorem .10 in studying the
manifolds K, obtained by surgery on K with integer framing a. Recall from
Exampie 421 that the value of the Jones polynomial of K at the fifth root
of unity is an invariant of K, provided the framing ¢ #2(mod 4). This is in
fact true for all a. In particular, by Theorem 8.10

Ky = ) Be (7)ot 44 120 @)

s an invaniant of K, (where g=¢{1/5), and the right hand side is obtained

using (4.10) and Corollary 4.11). It follows that Vi (g} is as well. We have proved:

(8.14} Theorem Let K and K' be knots in §* whose Jones polvnomials have
distinct vafues at the fifth root of unity {15} Then the 3-manifolds K, and
K, (obtained by surgery with framing a } are distinct for each integer a.

Humology spheres and the Casson invariant

For another application of Theorem 8.7, consider the 3-manifold K, obtained
by p/¢ Dehn surgery on a knot K in §°. Then we have:



J-manifold invariants of Witten and Reshetikhin-'luraey 531

(8.15) Corollary (periodicity for homoiogy spheres for odd r) If r is odd, 1hen
T AR 3 =T AK (1 - o} Jor every integer n. The same statement holds for the invar-
iants T,

Praof. K, may be obtained by surgery on a two component link L consisting
of K with the zero framing together with a meridian J {unknotted) of K with
framing —n.

Cbserve that the linking matrix of L has zero signature. {Note that it fellows
immediately that ©,{K,.)=17,(K | u+an) by the Definition 1.5 of 1, and the way
that the invariants J, , change under change of framing (3.27b).} Oune readily
compuies m, ; =2 and so by Theorem 8.7

LK =2 b’ Z (FAICAEAEEAN Jiivk

0= fhk=<rt2

where j and k are the colors on J and K respectively, and E; , is the associated
even colored sublink of Las usual.

Fvidently ;.- E;.5 18 0 il jis odd, and is —n or 2—n if j is even {depending
upon whether k is odd or even), that s

E; oy Fja=20- 1k D+n(? - 13{mod 4}

Also we have
FLAI

J;,.;'Uk:' [H
by Lemma 3.27¢. Thus

1, (K, =2k Z U]Uk]i"z‘f"”““"”"‘”:"”r"‘”2"“0’“

< jkeri2

=2b2 Z D]Dk](“ 1]{.‘"l'(k'|}q"li2'|:‘{'2'“mJK‘k

O<jk=ri

sinee i=¢ and g=r* (Notc that {r*—1)/4 is an integer since r is odd) It is
now evident that changing » to #+r does not change ¢,, since g"=1.

The analogous result for 7, follows immediately from Corollary 8.9 since
13(K )= 1 by Corollary 6.5, whence 1,{K, J=74K,,). (]

5 5
forward calculation from the last fTormula in the proof of the previous proposition
yiekls

2. .
{8.16) Example let r=35 Then b*= sin? (£)= 110 (2—g—qg*), and a straighti-

w5 (Kl =32 — g — g + 217 ¢°") + (2101 = ¢*") J),

where Jy = J ; as usual.

It is iluminating to write this formula in terms of the reduced Jones polyno-
mial Wy of K, defined by Vy(xj=1—P{x}Wix}, where P{x}={1—x)(I—x%)
{That V, can be so writien follows from the evaluations (4.12) Vi (1]=Vi(w)=1,
where i =e¢(1/3), and V¢(1}=0. Note that Pély=P'{1)=P{w)=0. The polyno-
mials W, are tabulated in Jones’ original papers [J1. J21) Now, since Jy =[2]
(I —P(7) W(q) by {4.10} and Corollary 4.11, we compute



532 R. Kirby and P. Melvin
8.17) 15(K )= 1= (1 4+ q){1 — g™ Wi{q).

4
(Rccal] that 3 qj=0.)

=0

There i an interesting consequence of this formula, relating the Casson
invariant 2= 2(K .} (sece [AM]) with t=15(K, ). {This rclationship was first
observed experimentally using data generated in Mathematica [Wo].)

- . .on o,
First recall from Casson's surgery formula that 2 = 5 Ax(1), where Ay denotes

the normalized Alexander polynomial of K. But Vg {ly=—-343(1) by a well-
known skein computation [J2, p. 3691, und so

{8.18; A=nW(l}

since Pil)= P (1}=0and P'{l})=6
Nexi observe from (8.17) that 1 is an element of the ring Z[¢] of cyclotomic
integers in the cyclotomic ficld Q[g] {where g =¢(1/5)). Consider the map

T Z{y]—~2Z/5%4

given by T(} A,¢=Y A{mod 5}{= —tr{} 4;¢')(mod 5)). Obscrve that Tis both

an additive and a multiplicative homomorphism (i.e. Tix+ = T(z}+ T{f) and

Tix )= T{a} T(B}). Evidently T{r— 1}=0 (or cquivalently tr(r — 1}=0{mod 5)).
Noting that T{W, (G =W, (1)(mod 5), it follows from (8.17) and {8.18) that

" -1t
A=nt ([_l-'rq)(T—an)) {mud 5)
for nZ0{maod 5. {If n=0{mod 5}, then / =0{mod 5)}
The last expression is n fact independent of n. Toe see this, write

1—1 —I_Tu y
T+g{l—¢g*) 1—q 2"

J— 4 .
where u;= i % An easy computation (using the fact that [](1 —¢'}= S) shows
. A
that T{u }=j{mod 5) for j= & [{med 5} and T(4;)= —j(mod 5}for j= +Z{mod 5).
It follows readily that

sl
8.19) /...T(l_q){mod 5

{Note that this holds even if n=0{mod 5}, for then 1=1 by {8.17}, and so the
right hand side is 0 as expected.) Thus the mod 5 Casson invariant is determined
by 1. In summary, we have

(8.20) Theorem Let M be a homology sphere obtained by Dehn surgery on a
knot in 8%, and let g be the fifth root of unity e(1/5). Then 15(M) is a cyclotomic
integer (ie. an element of the ring Z(q]). Furthermore, the element ax{M)
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=1(M)—1=1,{M)—15(5* has zero trace, is divisible by 1 — ¢, and satisfies

AMi=1r (T{—ﬁ)(mod 5}

where i denotes the Casson invariant.

(8.21) Remark The theorem holds equally well for connected sums of homology
spheres, each of which is obtained by Dehn surgery on a knot in §2,

The case of even r

From Theorem 8.5 and Lemma 8.6, we obtain the formuia

(8.23) T tM)=a, Z 2”.';[!‘] J!..k
Dk A2
da| Ta=10r

for even r, where as usual M =M, and T, is Lhe sublink of components whose
colors are less than r/2 for the coloning k.

Observe that the condition ¢, | 7, =0 can be replaced by the more restrictive
condition ¢, =0. For if ¢, +0 on some r/2-colored component K, then the
Symmetry Principle applied to K yields J; = —J;, (since ¢, is even valuved
for r even), and so J; =0

Furthermore, the condition ¢, =0 holds if and only if

(8.24) E, K=K K{mod2) if r=0(mod4)

E, K= {mod2y i r=2{mod4}
for cach component K of L, where E, s the cven colored sublink for k. A
coloring k satisfying (8.24) for all K will be called a characteristic coloring

{since for r divisible by 4 this is just the condition that E; be a characteristic
sublink of L, see Appendix C). Thus we have

{8.25y Theorem If ris eten, then
T {M)=u, Z bIES S i

(= characurristick 573

where T, is the sublink of L consisting of components with colors strictly less
than ri2 in the coloring k.

Homology spheres

For an application, consider once again the homology spheres K, obtained
by 1/r Dehn surgery on a knot K in §? icf. Proposition 8.15).

{8.26; Corollary (periodicity for homology spheres for even r) If r is even, then
TAK =1 {K ;a1 g2y Jor every integer n.

Lin
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Proof. The arpument is analogous to the proof of Corollary 815, and we adopt
the notation used there. Using Theorem 8.25 in place of Theorem 8.7, we oblain

tr(Kl..'ﬂ}=b2 Z zl?""kED]UkJE_WL ”-’(x,k-

&t = characleristic jok <2

Now if r=0(mod 4}, then juk characteristic means thal j and k4 n are odd.
If r=2{mod 4}, then it means that j and & are odd. In either casc, j is always
odd and so j2—1 is divisibie by 8 Thus the term "~ {which is the only
term that depends on ») can be rewritten as (g%} for some integer m. Since
g° has order r/2, the Corollary follows. ()

Splittings for even r

Recail from Coroliary 8.9 and Theorcm 8.10 that for odd r, the invariant 7,{ M}
can be written as a product of two other invariants of M. It turns out that
for even r, it can be written as a sum of invariants,

For r divisible by 4, these are invariants of spin structures on M. That
this should be so is suggested by the fact that the only terms which contribuic
to 7,{M) come from colorings whose cven colored sublinks arc characteristic,
and characteristic sublinks correspond to spin structures.

{8.27) Theorem Let M be a 3-manifold and @ be a spin structure an M. Choose
a framed link L for which M =M, and let C be the characteristic sublink corre-
sponding to & (see Lemma C.1 ). If r=0{mod 4}. then

(M, @)=2, > 2],

A=<k arIwithEu =0
is an invariant of the spin manifold M 5. Furthermore,

t(M)=) (M, 0
L]

where the sum is over all spin structures on M.

Remark, 7 4M, &) can equally well be written ay

{8.28) (M, @y=2, 3, (k] J4

<k =rwithiy=C

using Lemma 8.6 and the fact that & and r—k have the same parity (for cven
r).
Proof of Theorem 827 We must show that the right hand side of (8.28), denoted
(L, C}, is invariant under K-moves (L, Cy—(L, C% of characteristic pairs {sce
Appendix C). Here
e C+K if C-Kiseven
_{C if C-Kisodd
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is the characteristic sublink of I£ (Remark C.2), where C’ denotes both the charac-
teristic sublink of L and the corresponding sublink of £ und K is the new
component of I {as usual).

Proceeding as in the proof of Theorem 1.6 in §5, or Theorem 5.10 above,
the proof of the invariance of 1, (1., €) reduces to the identity

8.29 bt Y FE) ey =Js
;.-—([?-(kﬁ;.:dz;

for any colering 1 of Lwith E;=C.

T'o prove this identity, first assume that C- K is cven. Then for odd k we
have ¢y JdKIS{r—2}e+2E,,,-K=2+2C-K=2{mod 4}, and so by the Symme-
try Principle {4.20),

(8.30} k¥ nvo-n= T&Id ok

It follows that the condition A=C Ki{mod 2) may be omitled in the sum in
(8.29}, as the additional terms cancel in pairs, and so (8.29) reduces to the identity
(5.3

If C-K is odd, then for even k we have ¢, ({Ki=2+2HC+K) K =2{mod 4),
and (8.30} loflows. Thus (8.29}) holds in this case as well, and so the first statement
in the Theorem is proved.

The last statement in the Theorem foliows immediately from Theo-
rem 825. (01

{8.31) Example If r=4, then t, (M, @j=c""™Mel where c=ef —3/16} Indeed,
since b =12 and [2]=i,-’f2, we compute 1,{M, O)=c"J. 2,’|/2"", where o is the
signature of a framed link L with M =M, and C 1s the characteristic sublink
corresponding to @. Using Corollary 4.11 and Remark 4.12, it jollows that
14(M, @)= "~ CCHAMD _ LiMal (NGte that this yields a proof of Theorem 7.1
without cabling, ¢f. Remark 7.3))

For r=2{mod 4), the invariant t.{M} splits as a sum of invariants, one lor
each element in H'{M; Z72Z). Indeed, the only terms which contribute to the
computation of t.{M) come lrom colorings whose even colored sublinks £ inter-
sect each component of Levenly (where M = M }. Such sublinks E are in one-to-
one correspondence with elements » of H'(M; Z/27} In particular, « is the
anique class which is one on meridians of £ and zero on menidians of L- E.

{8.32) Theorem Let M be a 3-manifold and x be an element of H'(M; Z;2Z).
Choose a framed link L for which M =M, and let E he the sublink corresponding
te & ( see above ). I r=2{mod &), then

T {M, 2)=2, Z 2MUKY

O<kLs2withEx - F

is an invariant of (M, 2. Furthermaore,

tAM)=3 1,(M, 2}

where the sum is over all elements x in H'Y{M, Z;27).
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The proof is similar to the proof of Theorem 8.27 and is left to the readcr.
Note that one uscs a calcubus for pairs (L, k), with £-K cven for all K, wherc
the K-move replaces E by £ given by

Ee E if E-Kiseven
TTAE4K i E-Kisodd.

{8.33) Example If x=90, then the corresponding sublink ¥ is cmpty, and so
to compute 1,{M, 0} we only consider odd colorings of L (where M =M;). It
follows readily that

=

oM, 0 =-— ¥ Jq
=

EEY 5
since b = 1;‘]/12, ¢=i"'and [3]=2.

Appendix A. Identities in .o/

As noted after (2.20), the relation YX::-XY—[H] may be generalized to Y°X
=XY" -[n][H+n-1]1¥""'. A more gencral formula is

Han-k—1+i
i

Al Y'X= % (—1)*‘[?]{:‘11[?][;]7[

G =2 minir Ay

]Xk--i poi

(where [H jm]= [H4m]) . [H+m—j4- 1111 I), which [ollows by induction on

k using the identity [a][(H + ¢ + b3+ [b][H +c—a}={a+b][H +c].
In pacticular, we will need (A.1} when k=n:

TJ . [H—il —H} P

For our purposes, il 18 convenient to expand the term

(A2} Ynxr= 3 (1Y

0<iga

(A3} (K- KOs K -3K2 . 6K -F" KD

H-i+i| 1
i T s =3
in powers ol K:
(Ad} Lemma
(K2—KM)(sK?—35K% . (s K2 87 K= ) {=1) g RY#
GEIET

where ¢ ;=271 B] (The exponent of K arises by choosing j K*'s and {i—J)

K.
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Proof We usc double induction 5tarimg with the cases j=i (where ¢

= g0 HET U = (- 1 g the cocfficient of K% and j=0 (where ¢o=5% %4~ f

=t Ui (-1} umca lhc coeflicient of K.

Recursively, ¢;=5""¢; ;. — 5 1eo; for j<i, so ¢ is determined by

. =it i .
¢ and ¢ for k<5, But #2470¢ 7 | satisfies the sume recursive formula, using
the guanfized Pascal relation

(A.5) “"[j-]“ L_ﬂ IJ_:]J -

Using (A 3-4) we may rewrite {A.2) as

(204 1)
I N G o T Pt

i
0giZita ~5

We are now in a position to complete the proof of Theorem 3.20.

(A7) Theorem The identicy

Z'x.'fzzﬁi:—Zﬁi Kz’xi

is satisfied in o, where R=Y 2,® i, is the R-matrix given in Theorem 2.18.
Praof. Using Theorern 2.18, the left hand side is

Zc.',m,,X"K‘K Y KM= Z‘ gila =2y yn yu grathe 2
and the right hand side is
PG o &F 5 oF SEDINNCLALL &5 €5 GRLAEN

where the sums are over all 0Snr<r and 0=Za, h<4r. Multiplying by 4rK?
and substituting for ¢,,,, the left hand side becomes

{‘Aps) Z {S[ﬁ]-? F hi(b+aln=3a X yr anb J_Z’lnpxﬂ Yo KFP

and the right hand side becomes

's +gln=3n R m i+ "N
{A9) Zh[n]? orbrain=3n yn yr Kati Yy YRR

summed over all 0<n<r and 0L p<4r It remains to show that coefficients
., and p,, of X" ¥ K? are equal for all nand p.
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From (A.8) we compute

;t — ( ‘ﬂ ab-r(b-*—a}n—hr
ap
Gtb=42p(modar) ["]‘

Y s=9" (ATt n
osita, M1

[5_5-} n’—-pa~2p- 4—{p+ija
ocite, [ml'

where the last equality is derived by replacing @ by 4+ 2, and noting that the
sums 3 and Y areequal

Nfa<dr —Z2=g=4r- 1
To compute p,,, first use (A6} to move Y past X" on the left side of
(A9
{5,.§) ptheapn—3 [ ] NETLLTE UH
n aja a i f_‘ — . Xn :'}/n 1Ka+b+4; Z:
o.s_zn:n [n17 (= [ 5§

d=ab=<dr
GEfEigEa

It follows as above that g, is

nti
Z (‘”‘5-} ILaz—a{p G2t p—dj- 2iv {2 i—iHi— 1}
[n—i—r]'

Qzaxar
0L 2i<r=n

H+i ]t [+
T )
(s— 3
= Y (s -3 (et pa ke In-2jp-aft Aja-TjitHZ i Inta) [“HJH
BZa<dr [nlt i i
OEjEi<r=n
where the second equality follows by cancellation and substitution of a—2j+1

for a.
Since n and p are fixed, 4., and p,, have a common factor

R Ogacdr

{3"1 Z I«rz-p.n_

-1 . . . .
If p is odd, then C=0. Indeed, p_z_ 15 an integer i this case, and so we

—1.
can replace a by a+ -e--z- -in the sum:

b r“"*’“-r"l"fp_ St

DZa<dr GZa<adr

But f2rmat - @rmad Do y-2rdal-a . p0?=a ginee %7 =1 apd so the terms in
the sum on the right cancel in pairs. Thus 2,,=p,,=0.
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For p even, we divide £, and p,, by C, and it remains to show that

(A.10} e A (—1}":"‘”{2”2«44‘"” 7]
.

0zjgicr-n
where m=pn+3n+2jp—4j2—4jin—2jis independent of L.
1t is straightforward to check that the term on the right hand side of (A 10}
corresponding to i=j=r—n—1 is equal to the leff hand side. {Note that p

is even, (— 1F =12 """ and [n T IJ=[;]= Iin this casc,)

We now finish by showing that for fixed j<r—n—1, the sum over i on
the right of (A.10) is 7ero. Factoring out {— 1)7¢™, it suffices to show

(A1) Y, dairanrs {"jfjm:o,

Fgi<r—n

It is convenient at this point to use the binomial g-coefficients I::] =5“"""l;:J
{sce (2.29%. The ieft hand side of {A.11} then becomes g

2pear[nHi s (it n],!
L [ LLI GG AR

JEi<r=n

The last sum is just 3, g'[i+a],... [i—j+ 1], To see that this is zero, note
JSi<ren

that the product of brackets ranges from a high of [r—1], when i=r—n—1

to a low of [1] when i=j Thus we may extend the range of { to 0Zi<r,

as that only adds terms containing a factor of either [r],=0 or [0],=0. Hence

the left hand side of (A.11] is a multiple of

Z gli+nl, . [i—j+1],

i=9
g 1}“,Zq<q'“ M) tg )

Iny

I}..” Zq ( Z + gi” "*) {for suitable a,, by}

“lg-

1 o it by
o AT

since the sum of the r'f-roots of unity is zero. O
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Appendix B. The Jones polynomial at the sixth root of unity

In this appendix we derive an expression for the valve of the variant ¥, of
the Joncs polynomial at g =e{}) (sec Remark 4.12). There ate of course similari-
tics between our denvation and that of Lipson [Lp] for the fones polynomial
V.

Let A be a symmetric matrix over Z/3Z. The corresponding quadratic form
is classificd up to Witt cquivalence by its nullity d and Witt class w4 in the
Witt group W{Z/3Z)=2/4Z (sec e.g. [MHT} These invariants may be computed
as follows: diagonalize A {over Z/3Z} writing all entries as 0 or 1. Then
d, is the number of diagonal s, and w, 1s the trace {or signature} viewed
as an integer mod 4.

Set

a= |3 (=00

Note that 4 multiplies under block sum. I 4 is the mod 3 reduction of a matrix
representing the quadratic form of a link L. write 2, = 4.

{B.I) Theorem ¥V, =, at g=el}}.

Proof. Let L, (e=+, —,0) be as in Fig. 44a. Choose corresponding connected
Seifert surfaces F, which locally appear as in Fig. B.2 and coincide otherwisc.

] / /i i
WoN Dl

F-|. F_ FD
Fig. 8.2

With respect to suitable bases of H,(F), the associated symmetrized Seifert
matrices A, satisfy
a a+2 *
.= A .= .
A (* Ao) and ( * Ao)

By a change of basis {first dizgonalizing 4, mod 3) we may arrange that either
A, =@)®B. A_=(e-1)®B.  As=B{mod 3}

{for A, nonsingular), or

a b _fa—1 & _
A+=(b 0)@8, A_=(b 0)693, A,=(0}® B{mod 3)

for some matrix B. Here & denotes block sum.
Now set
d=d, —dp

W, =, ~tig
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Il A, 1s nonsinguiar, or 4, is singular with 5 £0, we have

d. d_ dy . w_ wy Ao AL Ay
a=0 1o 0 0 -1 0 Y3 i 1
asl ] mod3) 0 1 6 1 0 © —i Y3 I
a=2 0 0 ¢ -1 t 0 i =il
h%0 O 0ot o 0 0o 1 1 3

For A4, singular with =90, the 4, are { more than the corresponding d, in
the nonsingular case, and the m, remain the same. and so the 4, go up by

- i s
a factor of L/B. Now for g=e}  i= ; +l 35 s—3=¢ L —-el - I =i, and
. . 6f 2 2 12 12

onc readily veriftes that

Ga— i =ls—) g
in ail cases. Multiplying by 4, gives
Ghp, —Gig, =(s—H4ig,

since A, =4, by definition. It is cvident that A, =1, and so V,=4; us
desired. (OO

Appendix C. u-invariants

Let M be an oncented, closed connected 3-manifold. A spin structure & on
M can be viewed as a homotopy class of trivializations of the tangent bundle
Tae OVer M-pomnt [K2]. It is well known that M has a spin structure, since
wolta)=0. It follows by obstruction theory that the number of distinet spin
structures is equal to the number of clements in HU{M; Z2Zy=H (M, 2/27).

Recall that the p-invariant of Mg is defined to be the signature {mod 16}
of any smooth, compact spin 4-manifold W with spin boundary M.,

piMgl=a(Wiimod 16).

This is well defined by Rohlin's theorem, which states that the signature of
a smooth, closed spin d-manifold is divisible by 16.

Now suppose that M is described by 4 framed hnk L, so M =M, =cW,
(see §1). A sublink C of Lis characteristic if C-L,=L,- L,fmod 2) for all compo-
nents L; of I, and the pair {L, C) is then called a characreristic puir.

(C.1) Lemma There is a natural one-to-vne correspondence berween the spin
structures on M, and characteristic sublinks of L.

Progf. Assign to any spin structure @ on M, the sublink C of L consisting
of all components L; such that @ does not extend across the 2-handle in W),
attached to L. An elementary geometric argument shows that C must be charac-
teristic (sec e.g. §3 of [MK]J).

The map carrying & to € is one-to-onc. Indeed, if C iy assigned to some
other spin structare €, then @ and @ agree on the link £ in M, which is
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the core of the surgery on L. Since H=F (M, Z/22) is carried by [, we
have O = @’ by obstruction theory.

It remains o show thal there are exaclly |H| characteristic sublinks (as
this is the number of spin structures). To see this, recall that the mod 2 linking
matrix A of Lis a presentation matrix for [, and so | H|=|ker A]. But C {vicwed
4s & column vector of O°s and 1's) is characteristic i and only if AC =D, where
D is the main diagonal of A, and so the number of characlerislic sublinks
is |ker 4| as well. [

If & ts a spin structure on M, and C is the corresponding characteristic
sublink of L, then the spin manifold (M), will be denoted by M, ¢
{C.2} Remark The argument in [K1] on {he calculns of framed links for on-
ented 3-manifolds yields a calculus of characieristic pairs for spin 3-manifolds.
In particular, M, =M, ~ as spin manifolds (Le. there is a diffcomorphism
between them which preserves spin structures) if and only if one can pass from
(L, Cyto (L, '} by isotopy in §* and a combination of the following two moves
of characteristic pairs {cl. §1}:

Move 1 {blow up) Add (ar delete ) a disjoint unknotted component with framing
+ 1 and replace Chy C'=C+ K.
Move 2 (handic slide) For some i+, slide L, over L to get Li= L+ L; and repluce
Chy
IC if Cdoes nor contain L,
C=CA{L+ L)+ L if Ceontains Lyand I;
1(:'— Li+(L;+ L} if Ccontains L but not L;

{cf. Remark 6.2). As in [FR |, these moves may be combined into one, the K-move,
defined as in §1 (Fig. 1.3} wilh

= C+K i C-Kiseven
TIC # C-Kisodd.

Here. C denotes both the characteristic sublink of L and the corresponding
sublink of L’. Notc that it can happen that M, =M, .. lorsome C+(".

Now let {L. C} be a characteristic pair. Note that C is a proper link (ie.
characteristic as a4 sublink ol itself, or equivalently L, {C—=L;} is ewen for all
compenents L, of C), and therefore has a well defined Aef invariant Arf(C).
If I.is oriented, then define the p-invariant of {L, C) to be

{C.3} p{L, Cl=0—C-C+8 Arf(C}{mod 16)

where o =o{W¥,}is the signature of the linking matrix of 1.
{C.4) Theorem p{lL. C)is an invariant of the spin manifold M, .

Proof. By the previpus remark, it suffices to show that péL, C) is indepcnder_lt
of the oricntation on L and is invariant under moves 1 and 2 of characteristic
Dalrs.
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First suppesc that the orientation on a component K of L reversed, giving
{L. 7). Evidently o remains unchanged. I € dees not contain K. then O C
and Af(C) are vnchanged as well, and so g is unchanged. Uf C contains K,
then homologically "= 2K, and s0 (" "=C-C—4K-(C—K). Thus the
mvarianee of g lollows rom the et that Arf{C = AM{CH+ L K (C - K}mod 2),
or equivalently
{— [}.-‘\ll‘l("l"z‘\rf(('):{ — ”5 EaC Ky

{Note that K-{C—K) is cven since C is characteristic.} This fact can be proved
by clementary methods using Seifert surfaces, but i is quicker to use the formula
for the Jones polynomial at @ {(Remark 4.12), which gives {— [y¥fe ATO
=V (¥ ", and the Jones reversing result (see Proposition 4.3 of [1.2]),
which gives Vo (i)={- NI MED (Note: Jones' reversing result can be
proved using Remark 3.26 and Corollary 4.11))

Il Lis changed by Move 1, then o and - C change equally (by £1) and
Arf(C) remains unchanged, and so g is unchanged.

Il L is changed by Move 2, sliding L, over L; to get Li=/1,+ L, then o
15 unchanged. and C-C and Arf(C} change only i € contains 1., En that case,
since g Is independent of orientation, we can change the orientation of £, after
the handle slide {£,;= - L} Then homologically C'=(, and so (7-C'=(-C
Also Arf{CY = AT ), sinee the Arl invarant does nol change under onentation
presceving band connected sum, and cvidently we can get C from ¢” by summing
L, and L, appropriately. Thus j is unchanged. ()

(2.5} Corollary p(M, y=nlL, C}

Proof. It 1s known that (1., C) may be changed by moves of charactenistic pairs
to {II, ")y with ("=0, and so W, is a spin 4-manifold bounded by M, . [Kal.
Thus M, J=a(W, N mod 16)=p(L, C)=p(L, O [

Remark. Normally Rohlin's theorem 13 used to show that the g-invanant is
a Z/16Z invariant {rather than a Z,/8Z invariant as the algebra of intersection
forms predicts). One may. however, reverse Lhe order of things by showing the
invariance ol p from the calculus of framed links {Lemma C.4), and then deduce
Rohlin's theorem:

{C6) Corollary {Rohlin's Theorem) I/ W is ¢ smooth, closed spin d-manifold,
then g{W)=0G{mod 16).

Proof. Using smoothness, decompose W as a handlebody with one 0 and one
4-handle. We may assume that ¥ has no 1 or 3-handles, since they may be
changed into 2-handles by surgery {preserving the spin strocture and signature
a). Now Wy= W-(4-handlej= W, with M, =57, for some framed link 1. Since
W, is spin, the characteristic sublink corresponding to the (unique} spin structure
on §* is empty, and so p(L, B =a{};}{mod 16). But S*'=Af, as well, and so
piL, Gi=p (@, 9)=0 by (C4) Thus o{W)=o{W,}=0imod 161

Whether this proof is really casier depends on ones view of the calculus
of framed links whose proof ({ K13} uses Cerf theory.
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