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What is Algebra ? : the study of

• Number systems

N = {1, 2, 3, . . . } : natural numbers

Z = {. . . ,−1, 0, 1, 2, . . . } : integers

Q = {fractions} : rationals

R = {decimals} = points on the line : real numbers

C = {a+ bi | a, b ∈ R, i =
√
−1} = points in the plane : complex numbers

a

b
a+ bi = reiθ polar form

r
θ

(where a = r cos θ and b = r sin θ)

Note N ⊂ Z ⊂ Q ⊂ R ⊂ C, all proper inclusions, e.g.
√

2 6∈ Q, as you’re asked to show in
the first writing assignment below.

Many other important number systems inside C will be encountered later in this course.
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• Structure “binary operations” + and ·

associative, commutative, and distributive properties (see WA#1)

identity elements 0 and 1 for + and · resp.

Factoring and solving equations, e.g.m1 ax2 + bx+ c = 0 has two solutions x = (−b±
√
b2 − 4ac) / 2a in Cm2 x2 + y2 = z2 has infinitely many solutions in N, the “Pythagorian triples”:

(3,4,5), (5,12,13), . . . .m3 xn + yn = zn has no solutions in N for any fixed n ≥ 3 †

• Abstract systems groups, rings, fields, vector spaces, modules, . . .

A group is a set G with an associative “binary operation” ∗ (maybe +, ·, or something
else) that has an identity (i.e. an element e ∈ G such that x∗e = x = e∗x for all x ∈ G)
and inverses for each of its elements (∀x ∈ G, ∃ y ∈ G such that x ∗ y = y ∗ x = e).

Examples (Z,+) is a group, while (N,+) is not (no identity). (Z, ·) and (N, ·) have
identities but are not groups: some elements do not have inverses. (Q, ·) isn’t either
(0 doesn’t have an inverse) but (Q− {0}, ·) is. (Zn,+) and (Rn,+) are groups.

Focus of first semester: groups / intro to rings (sets with two operations satisfying ...)

Some history : theory of equations ( modern algebra)

Quadratic equation (antiquity)

ax2 + bx+ c = 0

To solve for x, divide by a and complete the square, i.e. substitute y = x+b/2a to eliminate
the linear term. This gives the simpler quadratic

y2 − p = 0

where p = (b2−4ac)/4a2 (verify this using the binomial expansion (r+s)2 = r2+2rs+s2)
whose roots are y = ±√p. This yields the usual formula after substituting back for x.

Remark ∆ = b2−4ac is called the discriminant of the polynomial ax2+bx+c. If a, b, c ∈ R,
then the equation has 2, 1 or 0 real roots according to the sign of ∆:

∆ > 0 ∆ = 0 ∆ < 0

† This is Fermat’s Last ‘Theorem’, conjectured in 1637 and finally proved in 1995 by Andrew Wiles.
We’ll give a proof for n = 3 at the end of the semester.
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On complex multiplication, inverses and roots If z1 = r1e
iθ1 and z2 = r2e

iθ2 , then

z1z2 = r1r2 e
i(θ1+θ2),

i.e. lengths multiply and angles add (prove this using trigonometry; note that it follows
that for any u and v in the unit circle S1, we have uv, u−1 ∈ S1 so (S1, ·) is a group!).

z1

z2

r1

r2

θ1

θ2

z1z2

r1r2

It is now easy to see that each nonzero complex number z = reiθ has inverse z−1 = r−1e−iθ,
and has two square roots, three cube roots, etc. In particular, the nth roots of z are

w = r1/neiθ/n , unw , . . . , u
n−1
n w

where un = e2πi/n = cos(2π/n) + i sin(2π/n). These points are equally distributed on a

circle of radius r1/n about the origin (since multiplication by un rotates C about the origin
by 2π/n radians).

Cubic equation (16th century: del Ferro, Tartaglia  Cardan, Viète)

ax3 + bx2 + cx+ d = 0

To solve for x, divide by a and complete the cube, i.e. substitute x = y − b/(3a) to elimi-
nate the quadratic term, giving the “depressed” cubic

y3 + py + q = 0

where p and q are found in practice by simplifying after the substitution (You will need
to use the binomial expansion (r+ s)3 = r3 + 3r2s+ 3rs2 + s3 to do so.) To find the roots
of this cubic, use Viète’s magical substitution y = z − p/(3z), which leads to the sextic
z6 + qz3− (p/3)3 = 0, and so a quadratic in w = z3. So putting these together, substitute

y = w1/3 − p/(3w1/3) to get

w2 + qw − (p/3)3 = 0

with roots w± = −q/2 ±
√

(q/2)2 + (p/3)3. Now back substituting, if zi (for i = 1, 2, 3)

are the three cube roots† of w+ or w− (either will do) then yi = zi − p/(3zi) are the roots
of the depressed cubic, and so

xi = zi − p/(3zi)− b/(3a)

are the roots of the original equation. This is called Cardan’s formula.

Question What is the significance of the sign of ∆ = (q/2)2 + (p/3)3? This number is
called the discriminant of the cubic?

† Recall that if you find z1, then z2 = uz1 and z3 = u2z1 where u = u3 = e2πi/3 = −1/2 +
√

3i/2.
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In examples, it is generally simpler to follow through the preceding derivation rather
than trying to plug into a general formula. Or at least first find p and q by expanding the
original cubic after the substitution x = y−b/3a, then one cube root z1 of −q/2±

√
∆, then

z2 = uz1 and z3 = u2z1 (where u = e2πi/3), and finally substitute in Cardan’s formula.

Example Find the roots of x3 + 6x2 + 9x+ 2.

Solution Substituting y = x + 2 gives y3 − 3y, so p = −3 and q = 0, so ∆ = −1. Now
choose z1 = i (a cube root of −q/2−

√
∆ = −i), so z2 = ui and z3 = u2i. Cardan’s formula

now gives the roots of the cubic: x1 = i+ i−1 − 2 = −2, x2 = ui+ (ui)−1 − 2 = −
√

3− 2
and x3 = u2i+ (u2i)−1 − 2 =

√
3− 2.

Quartic equation 16th century: Ferrari

Quintic equation (and higher degree) 19th century: Abel proved, remarkably, that
there’s no general formula for the roots! Galois developed the general theory (we’ll study
this in the second semester)  birth of modern algebra. Spread the word . . . !

Some arithmetic : Key Lemmas and the Fundamental Theorem

“Arithmetic” is the study of the natural numbers. For now, all unspecified variables
a, b, c, d, . . . will represent elements of N.

Definition Say d divides (or is a divisor of) a, written d|a, if ∃m with a = md. For any
a and b, write gcd(a, b) for the greatest common divisor of a and b.

Note that if d|a then d|ab for any b, and if d|a and d|b then d|(a+ b).

GCD Lemma ∀ a, b ∈ N, ∃ m,n ∈ Z such that gcd(a, b) = ma+ nb.

Example gcd(10, 14) = 2 = 3 · 10 + (−2) · 14. Note that in general, exactly one of m or n
will be positive and the other will be ≤ 0; do you see why?

Proof of GCD Lemma Consider S = {ma+nb | m,n ∈ Z}. Note that S is closed under
subtraction, and under multiplication by any fixed integer; any nonempty such subset of
Z is called an ideal in Z.

Set d = min(S ∩ N), the smallest positive element of S. We claim that d = gcd(a, b),
which will prove the lemma. To prove this claim, we must showm1 d|a, d|b m2 e|a, e|b =⇒ e ≤ dm1 Dividing a by d gives a quotient q plus a remainder r less than d, that is a = qd + r
for some q, r ∈ Z with 0 ≤ r < d. Thus r = a − qd, which lies in S since S is an ideal.
The minimality of d shows that r = 0, and so d|a. Similarly d|b.m2 e|a, e|b =⇒ e|(ma+ nb) for all m,n, and in particular e|d. Thus e ≤ d. �

Remark This proof used structural properties of Z (its arithmetic operations + and · and
its ordering <) and the following two axioms:
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Well Ordering Principle (WOP) Every non-empty subset of N has a smallest element
(or in symbols, S ⊂ N, S 6= ∅ =⇒ ∃m ∈ S such that m ≤ s for all s ∈ S)

Note This principle applies equally well to subsets of Z+ = N ∪ {0}.

Division Algorithm (DA) ∀ a, d ∈ N, ∃ q, r ∈ Z with 0 ≤ r < d such that a = qd+ r

In fact WOP =⇒ DA : Set S = {a − md | m ∈ Z+, md ≤ a} ⊂ Z+. By WOP,
∃ r = minS ∈ Z+, of the form r = a− qd, for some q. The minimality of r implies r < d,
which proves DA. �

Where does the GCD Lemma lead ? To the . . .

Fundamental Theorem of Arithmetic (FTAr) Every natural number n > 1 is either
prime (meaning it has exactly two natural number divisors, 1 and itself ) or can be written
uniquely as a product of primes (up to the order in which the primes appear in the product).

via

Euclid’s Lemma (EL) If p is prime and p|ab, then p|a or p|b.

Proof of EL If p | a we’re done. If p - a, then gcd(a, p) = 1 (since p is prime) and
so by the GCD Lemma, 1 = ma + np for some integers m,n. But then p | b. Indeed
b = 1 · b = (ma+np)b = m(ab) +npb, which is divisible by p since m(ab) and npb are. �

Summarizing the logic so far: WOP =⇒ EL (via DA and GCD Lemma). For FTAr,
also need induction, which we use informally in the following proof.

Proof of FTAr (existence) If n is not prime, then n = ab for some a, b < n. But then
by induction, each of a, b has a prime decomposition. Put these together to get one for n.

(uniqueness) Suppose

p1 · · · pr = q1 · · · qs
(all pi’s and qj ’s are prime). Clearly

p1 | p1 · · · pr and so p1 | q1q2 · · · qs.

By EL and induction, p1 divides at least one of the qj ’s; can assume p1|q1 by reordering.
But this implies p1 = q1 since q1 is prime. Thus p2 · · · pr = q2 · · · qs. The result follows by
induction. �

Induction

Principle of Induction If S ⊂ N satisfiesm1 1 ∈ S and m2 n ∈ S =⇒ n+ 1 ∈ S

then S = N.

It can be shown that the Principal of Induction is equivalent to the WOP. The proof is
not given here, but you’re asked to prove WOP =⇒ Induction in HW #2, which implies
that FTAr actually follows just from WOP and the structural properties of Z!
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We conclude with an example of proof by induction. You’re asked to give three more
(slighltly harder) such proofs in the homework.

• Prove by induction on n that 1 + · · ·+ n = n(n+ 1)/2.

Proof Let S = {k ∈ N | 1 + · · · + k = k(k + 1)/2}. We must show S = N. Clearly
1 ∈ S, since 1 = 1(2)/2. So now assume that n ∈ S, that is, assume that

1 + · · ·+ n = n(n+ 1)/2.

We must then show that n+ 1 ∈ S. But adding n+ 1 to both sides gives

1 + · · ·+ n+ (n+ 1) = n(n+ 1)/2 + (n+ 1)

= (n(n+ 1) + 2(n+ 1))/2

= (n+ 1)(n+ 2)/2 = (n+ 1)((n+ 1) + 1)/2.

Hence n+ 1 ∈ S as desired. Thus by induction S = N. �
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1. Foundations

Sets Assume familiarity with basics of set theory:

sets S = {· · · | · · · }
elements x ∈ S
subsets A ⊂ S
proper subset A $ S
union S ∪ T = {x | x ∈ S or x ∈ T}
intersection S ∩ T = {x | x ∈ S and x ∈ T}
difference S − T = {x | x ∈ S and x /∈ T}
cartesian product S × T = {(s, t) | s ∈ S, t ∈ T}
cardinality |S| = # elements in S (if S is finite)

Notation: ∀,∃,=⇒,⇐⇒ (if and only if, or iff), =⇒⇐= (contradiction), ! (unique).

Functions

Definition A function f : S → T (also written S
f→ T ) consists of a pair of sets S and T ,

referred to as the domain and codomain of the function, and a “rule” s 7→ f(s) assigning
to each element s in S an element f(s) in T .†

Remark The domain and codomain must be specified when defining a function. For
example the two squaring functions R → R and R → R+ (the real numbers ≥ 0), both
given by the rule x 7→ x2, are distinct (cf. the exercise above Proposition 1.2 below).

Examples m1 identity functions idS : S → S, s 7→ s.m2 inclusion of a subset A ⊂ S: A ↪→ S, a 7→ a.m3 restriction of f : S → T to a subset A ⊂ S: f |A : A→ T , a 7→ f(a).m4 projections S ← S × T → T , s←[ (s, t) 7→ t.m5 constant functions S → T , s 7→ t0, where t0 is a fixed elt of T .m6 composition of functions Given f : S → T and g : R → S, define f ◦ g : R → T by
(f ◦ g)(r) = f(g(r)). Thus f ◦ g (also written fg) is defined by requiring that the diagram

R
f◦g−→ T

g↘ ↗f
S

Definition Given f : S → T , define the image of a subset S0 of S under f to be

f(S0) := {f(s) | s ∈ S0} ⊂ T
and the preimage of a subset T0 of T under f to be

f−1(T0) := {s ∈ S | f(s) ∈ T0} ⊂ S.
(give examples and pictures) Call f(S) the image of f , also denoted Im(f).

† To be precise, a “rule” consists of a subset R ⊂ S× T satisfying ∀s ∈ S, ∃! t ∈ T such that (s, t) ∈ R,
so a function is really a triple (S, T,R ⊂ S × T ) . . .
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1.1 Proposition ma f−1(P ∪Q) = f−1(P ) ∪ f−1(Q)mb f−1(P ∩Q) = f−1(P ) ∩ f−1(Q)

Proof ma (Note: often prove = of sets in two steps, ⊂ and ⊃, though sometimes done
simultaneously) x ∈ f−1(P ∪ Q) ⇐⇒ f(x) ∈ P ∪ Q ⇐⇒ f(x) ∈ P or f(x) ∈ Q ⇐⇒ x ∈
f−1(P ) or x ∈ f−1(Q) ⇐⇒ x ∈ f−1(P ) ∪ f−1(Q) mb Same as ma with ∪ and “or”
replaced with ∩ and “and”. �

Definition A function f : S → T is one-to-one (or monic or injective, also written 1-1) if
it maps at most one element of S to each element of T . In other words, f(x) = f(y) =⇒
x = y, or equivalently |f−1(t)| ≤ 1 for all t ∈ T . It is onto (or epic or surjective) if it maps
at least one element of S to each element of T . In other words Im(f) = T , or equivalently
∀t ∈ T , ∃ s ∈ S with f(s) = t, or equivalently |f−1(t)| ≥ 1 for all t ∈ T .

Exercise Determine which of the squaring functions R → R, R+ → R, R → R+ and
R+ → R+ (i.e. all are given by the same rule x 7→ x2, but with different domains and
codomains) are 1-1 and which are onto.†

1.2 Proposition f : S → T isma 1-1 ⇐⇒ it has a left inverse, i.e. ∃ ` : T → S with ` ◦ f = idSmb onto ⇐⇒ it has a right inverse, i.e. ∃ r : T → S with f ◦ r = idT

Proof =⇒’s : ( ma =⇒) For t ∈ Im(f), define `(t) to be the (unique) s ∈ f−1(t), and

define `(t) arbitrarily for t /∈ Im(f). ( mb =⇒) Define r(t) = any s ∈ f−1(t). �

Exercise Prove the converses ma ⇐= and mb ⇐=.

Definition A bijection is a function that is both one-to-one and onto. Any bijection
f : S → T has an inverse function f−1 : T → S, mapping each t ∈ T to the unique s ∈ S
for which f(s) = t, and characterized by the two conditions f ◦f−1 = idT andf−1◦f = idS .

Equivalence relations

Definition A partition of a set S is a division of S into non-overlapping subsets, i.e. a
collection of nonempty disjoint subsets Si of S (for i in some possibly infinite indexing
set) whose union is S. We write S = tSi

Examples (including Banach-Tarski Paradox) Z = {evens}t{odds}, {BMC undergrads} =
{freshmen}t{sophomores}t{juniors}t{seniors}, N = {prime numbers}t{composites}

Definition A relation on S is a subset ∼ of S × S; we write x ∼ y to indicate (x, y) ∈∼.
Call ∼ an equivalence relation if it ismR reflexive : x ∼ x (for all x ∈ S),mS symmetric : x ∼ y =⇒ y ∼ x, andmT transitive : x ∼ y and y ∼ z =⇒ x ∼ z
The equivalence class of x ∈ S is the subset x := {y ∈ S | x ∼ y} of S.

† The first is neither, the second is 1-1 but not onto, the third is onto but not 1-1, and the last is both.
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1.3 Proposition The collection of equivalence classes of an equivalence relation on S
form a partition of S. Conversely, any partition S = tSi gives rise to a unique equivalence
relation ∼ whose equivalence classes are the Si’s, namely x ∼ y ⇐⇒ ∃ i with x, y ∈ Si.

Proof Exercise

Definition The set of all equivalence classes of an equivalence relation ∼ is called the
quotient set of S by ∼ :

S/∼ := {E ⊂ S | E = x for some x ∈ S} .

Note that the elements of S/∼ are themselves subsets of S. The map S → S/∼ that sends
x to x is called the natural projection of S onto S/∼.

Examples m1 (very important example: the integers mod n) Fix n ∈ N. Then the
“congruence modulo n” relation ≡n on the set N is defined by

a ≡n b ⇐⇒ a− b is divisible by n ,

or equivalently, a and b differ by a multiple of n.† You should verify that is an equivalence
relation, i.e. that a ≡n a, a ≡n b =⇒ b ≡n a, and a ≡n b and b ≡n c =⇒ a ≡n c.

The equivalence class

a = {a+ kn | k ∈ Z} = {. . . , a− n, a, a+ n, a+ 2n, . . . }

is sometimes called the residue class of a (mod n). The quotient set Z/≡n, also denoted
Zn or Z/nZ, is called the integers mod n :

Zn = {0, 1, 2, . . . , n− 1}.

For example, in Z2 the element 0 = {all even integers} and 1 = {all odd integers}, whereas
1 ∈ Z3 is the subset {· · · ,−2, 1, 4, · · · }, etc. Thus the meaning of 0, 1, . . . depends on the
context. Also there are (infinitely) many ways to write the same element, e.g. in Z2, have
· · · = −2 = 0 = 2 = · · · .m2 S = R2 − 0, and x ∼ y ⇐⇒ x = λy for some nonzero real number λ (picture). The
quotient set R2/∼, usually denoted RP 1 and called the real projective line, is a circle!

Binary operations

Definition A binary operation on a set S is a function

∗ : S × S −→ S.

Write a ∗ b for ∗(a, b) (“infix” notation). It is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all
a, b, c ∈ S and commutative if a ∗ b = b ∗ a for all a, b ∈ S.

Examples m1 + and · are associative and commutative binary operations on N,Z,Q,R
and C. What about −? It’s not even a binary operation on N (why?), and although it is
a binary operation on Z,Q,R and C, it’s neither associative nor commutative there.m2 + and · of n× n matrices (both are associative; + is commutative but · is not)

† This is also commonly written a ≡ b (mod n)
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m3 + and · on Zn (“modular arithmetic”) defined by

a+ b := a+ b and a · b := a · b
(in each case the RHS defines the LHS). Must show these operations are “well-defined”†,
and it is then straightforward to verify that they are associative and commutative, and
that · distributes over +. For example, in Z12 (‘clock arithmetic’) we have

7 + 8 = 15 = 3 and 7 · 8 = 56 = 8.

Morphisms

Definition A morphism (a.k.a. homomorphism) f : (S, ∗) → (S′, ∗′) of sets with binary
operations is a function f : S → S′ satisfying

f(a ∗ b) = f(a) ∗′ f(b)

for all a, b ∈ S. We call f a monomorphism if it is 1-1, and an epimorphism if it is onto.
An isomorphism is a morphism which has an inverse which is also a morphism.

Remark Any morphism f which has an inverse (i.e. any bijective morphism) is in fact an
isomorphism. You are asked to show this in the homework. This entails showing that

f−1(x ∗′ y) = f−1(x) ∗ f−1(y)

for any x, y ∈ S′. To do this, start by noting x = f(a), y = f(b) for some a, b ∈ S, since
f is onto. Now plug in . . .

Examples m1 The “exponential map”

(R,+) −→ (R, ·) , x 7→ ex

is a morphism since ex+y = exey.m2 The “determinant map”
(Mn(R), ·) −→ (R, ·)

is a morphism since det(AB) = det(A) det(B).

† For example, for + suppose that a ≡ a′ and b ≡ b′, i.e. n|(a−a′), n|(b−b′). Then n|[(a−a′)+(b−b′)] =⇒
n|[(a+ b)− (a′ + b′)]. Thus a+ b = a′ + b′.
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2. Groups

Basic definitions and properties

Definition A group is a set G with a binary operation ∗ satisfying three axioms:mA associativity : (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ GmE identity : ∃ e ∈ G s.t. e ∗ a = a = a ∗ e for all a ∈ GmI inverses : ∀ a ∈ G, ∃ b ∈ G s.t. a ∗ b = e = b ∗ a.

If ∗ is commutative, say G is abelian. The order of G is the number of elements in G,
written |G|. If |G| < ∞, say G is finite; otherwise G is infinite. The order of an element
a ∈ G, written |a| (not to be confused with |G|) is the least positive integer n such that
a ∗ · · · ∗ a (n times) = e. If no such n exists, then |a| =∞ by convention.

Remarks m1 Identities and inverses are unique

Proof If e1 and e2 are both identities, then in fact e1 =
E
e1 ∗ e2 =

E
e2.

If b1, b2 are both inverses of a, then

b1 =
E
b1 ∗ e =

I
b1 ∗ (a ∗ b2) =

A
(b1 ∗ a) ∗ b2 =

I
e ∗ b2 =

E
b2

m2 Multiplicative Convention: we usually write

· for ∗ and a · b or ab for a ∗ b
1 (or 1G) for e
a−1 for the inverse of a
an for a ∗ · · · ∗ a (n times) (so |a| = smallest n ∈ N such that an = 1)
a0 for 1 and a−n for (an)−1

If G is abelian, however, we often adopt the additive convention, writing + for ∗ and
a + b, 0, −a, and na for a ∗ b, e, the inverse of a, and a ∗ · · · ∗ a (n times). With this
notation, |a| = smallest n such that na = 0.

m3 Other important algebraic structures

• semigroups mA only (set with an associative binary operation)

• monoids mA and mE only (semigroup with an identity)

• rings abelian group (R,+) with another associative binary operation R×R ·→ R

which distributes over +, i.e. a(b + c) = ab + ac and (a + b)c = ac + bc. We call R a
commutative ring if · is commutative, and a ring with identity if ∃1.

• fields commutative ring (F,+, ·) with identity 1 6= 0 such that each nonzero element

has a multiplicative inverse, e.g. Q, R, C, and Zn for prime n (HW).

2.0 Cancellation Property If elements a, b, c in a group satisfy ab = ac, then b = c.

Proof Idea: multiply by a−1 on the left. More precisely (supply reasons): ab = ac =⇒
a−1(ab) = a−1(ac) =⇒ (a−1a)b = (a−1a)c =⇒ 1b = 1c =⇒ b = c. �
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Examples of groups

m1 Z is an infinite abelian group under +, called the infinite cyclic group. In fact (Z,+, ·)
is a commutative ring with 1, but not a field (@ inverses in general)m2 Q, R, C are infinite abelian groups under +, as are Q− 0, R− 0, C− 0 under ·m3 Zn = {0, 1, · · · , n− 1} is a finite abelian group under +, called the (additive) finite
cyclic group of order n. In fact (Zn,+, ·) is a commutative ring with 1.

Application (Linear Diophantine Equations) For a, b, c ∈ Z, find all integer solutions to

ax+ by = c

Solution First reduce to the case d := gcd(a, b) = 1 (a and b relatively prime): If d 6= 1,
then either d - c in which case @ integer solutions, or d | c in which case we simply divide
through by d. So we may assume d = 1. Then working in Zb the equation becomes a x = c.
To solve this, we would like to multiply on the left by the inverse of a in Zb, if we knew it
existed. This is where d = 1 is used: By the GCD lemma we have ma+nb = 1 for suitable
integers m,n, and so in Zb we have ma = 1, i.e. a−1 = m. Thus the unique solution to
the equation in Zb is x = mc, and consequently one solution in Z is x0 = mc, y0 = nc.

To get all the solutions, we can add any multiple kb of b to x0, which will change y0 by
subtracting ka. Thus the full set of solutions is {(mc+ kb, nc− ka) | k ∈ Z}.

Example Solve 6x+ 10y = 14, or equivalently, 3x+ 5y = 7. Working in Z5

3x = 2 =⇒ x = 3
−1

2 = 2 · 2 = 4

so one solution is (4,−1), and the full solutions set is {(x, y) = (4 + 5k,−1− 3k) | k ∈ Z}.

m4 The (multiplicative) finite cyclic group of order n

Cn = {z ∈ C | zn = 1} = {1, u, u2, . . . , un−1} (under multiplication)

where u = e2πi/n. This group is ‘isomorphic’ to (Zn,+) via uk ↔ k. Note that each Cn is
a ‘subgroup’ of the circle group S1 = {z ∈ C | |z| = 1} (under multiplication), which is an
infinite abelian group (in fact a Lie group: a group which is also a ‘manifold’ . . . )m5 The Klein 4-group V4 = {1, a, b, c} with a2 = b2 = c2 = 1 (from which follows† that
the product of any two of a, b, c equals the third). This is a finite abelian group that is not
isomorphic to C4 (e.g. since only two elements in C4 have square 1). C4 and V4 are the
only two groups of order 4, up to isomorphism (seen by showing† that, up to relabeling
the elements, there are only two possible multiplication tables for groups of order 4).m6 The finite quaternion group Q8 = {±1,±i,±j,±k} with i2 = j2 = k2 = −1, ij =
k = −ji, jk = i = −kj, ki = j = −ik, and −1x = −x for any x ∈ Q8. This is a finite
nonabelian group of order 8. It is one of exactly five such groups (up to isomorphism, as
you will show later). It is a subgroup of the infinite quaternion group

S3 = {a+ bi+ cj + dk | a, b, c, d ∈ R, a2 + b2 + c2 + d2 = 1}
which in turn is a subset of the ring of quaternions

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}.
† Helpful observation The cancelation property in groups implies that their multiplication tables are

like Sudokus: any row or column contains all the elements in the group, each appearing exactly once.
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Remark Multiplication in H is related to the dot and cross products in R3: Writing a
quaternion a+ bi+ cj + dk as a+ (b, c, d) = a+ ~v, we have

(a+ ~v)(b+ ~w) = (ab− ~v • ~w) + (a~w + b~v + ~v × ~w).

m7 Products If G and H are groups, then G × H is as well under the operation

(g, h)·(g′, h′) := (gg′, hh′). For example, C2×C2 = {(1, 1), (1,−1), (−1, 1), (−1,−1)} ∼= V4.

Remarks ma The product of abelian groups is abelian mb |G×H| = |G||H|.
m8 Units Let (R, ·) be a monoid (e.g. ignore + in any ring R). Set

R· = {a ∈ R | ∃ b ∈ R with ab = ba = 1},
that is, the set of all invertible elements in R. These are called the units in R.

Claim (R·, ·) is a group Proof : First note that the inverse of any a ∈ R· is unique (by

the same argument we used for groups) and is also in R·; we denote it by a−1. It is easy

to see that · induces a binary operation on R·, i.e. that R· is closed under multiplication:
a, b ∈ R· =⇒ (ab)(b−1a−1) = 1 = (b−1a−1)(ab) =⇒ ab ∈ R·. Furthermore, associativity

is inherited, 1 ∈ R (since 1 · 1 = 1) and any a ∈ R· has an inverse in R· (namely a−1).

Examples ma Z· = {+1,−1} = C2mb Z·n =
def
{a ∈ Zn | ∃ b with ab = 1} =

claim
{a ∈ Zn | gcd(a, n) = 1}

(Proof: a ∈ Z·n ⇐⇒ ∃x, y s.t. ax+ ny = 1⇐⇒
GCD

gcd(a, n) = 1). Thus

Z·n = {a | 0 < a < n, gcd(a, n) = 1}.

For example Z·8 = {1, 3, 5, 7} is a group of order 4 with multiplication table

· 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

As noted above, there are exactly two groups of order 4, C4 and V4. Which one is Z·8
isomorphic to? Answer: to V4, via 1↔ 1, 3↔ a, 5↔ b and 7↔ c.

The order |Z·n | is called the Euler phi function of n, denoted ϕ(n).

Fact Let n = pe11 · · · p
ek
k where p1, . . . , pk are distinct primes. Then

ϕ(n) = pe11 (1− 1/p1) · · · pekk (1− 1/pk) = n (1− 1/p1) · · · (1− 1/pk) .

For example: ϕ(152) = ϕ(23 · 19) = 152(1− 1/2)(1− 1/19) = 152(9/19) = 8 · 9 = 72. This
is proved by first showing

Z·n ∼= Z·
p
e1
1

× · · · × Z·
p
ek
k

and then Z·pe ∼= Cpe(1−1/p) for odd primes p, and Z·2 = 1 , Z·2e ∼= C2 × C2e−2 for e ≥ 2.

For example, Z·152 ∼= C2 × C2 × C18.

13
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Important families of groups

Cyclic groups Cn for n = 1, 2, 3, . . . (defined above)

Dihedral groups D2n := {symmetries of Pn}

where Pn is the regular n-gon in C, with vertices at e2πik/n, and a symmetry of Pn is a
rigid motion (i.e. distance preserving map f : C → C) sending Pn to itself setwise (i.e.
f(Pn) = Pn). Each symmetry is either a rotation about 0, or a reflection across a line
through 0. D2n consists of n rotations and n reflections, so |D2n| = 2n. The group
operation is composition. (Note: Can view Cn ⊂ D2n as the set of rotations of Pn.)

Can write each element of D2n in terms of r (counterclockwise rotation by 2π/n radians,
i.e. multiplication by ζn) and s (reflection through the x-axis, i.e. conjugation):

D2n =
{

1, r, r2, . . . , rn−1, s, sr, . . . , srn−1
}

Note the “relations” rn = s2 = 1 and sr = r−1s (since ζnz = ζnz). These relations can
be used to reduce any word in the letters r, s, r−1 and s−1 to the unique form rpsq , for
some p ∈ {0, . . . , n − 1} and q ∈ {0, 1}, so we say D2n is generated by r, s with relations
rn = s2 = 1, sr = r−1s, written

D2n = (r, s | rn = s2 = 1, sr = r−1s).

One useful consequence of these relations is that srk = r−ks = rn−ks for any k.

Remark D4
∼= V4. Also think about D6 and D8, symmetries of the equilateral triangle

and the square, and T12, O24 and I60, symmetries of the (solid) tetrahedron, octahedron
(or cube) and icosahedron (or dodecahedron).

Symmetric groups Sn := {bijections n→ n}
where n = {1, . . . , n}, with composition as the group operation. This group is called the
symmetric group of degree n, and its elements are generally referred to as permutations
(of n symbols or letters). Note that Sn is a finite group, nonabelian iff n ≥ 3, of order

|Sn| = n! (why?)

(What about S1 and S2? Exercise S3 ∼= D6)

More generally, for any set A (possibly infinite), the set SA of bijections A → A is a
group under composition, the symmetric group on A.

Notation for elements σ ∈ Sn ma two-row notation – write the numbers 1, . . . , n in the
first row and their images σ(1), . . . , σ(n) in the second.mb cycle notation (more efficient) : break σ ∈ Sn into disjoint ‘cycles’. The k-cycle

(i1 i2 i3 · · · ik)
is the permutation which sends each ij to the next ij+1 in the list, sends ik to i1, and
leaves all else fixed (draw circular picture). Note that “cyclic permutations” of the list,
e.g. (i2 i3 · · · ik i1), represent the same cycle. A 2-cycle is also called a transposition

2.1 Disjoint cycle decomposition Every σ ∈ Sn can be written uniquely as a product
of disjoint cycles (up to order and cyclic permutation within each cycle; generally suppress
1-cycles in the notation). Proof: ‘obvious’ . . . think about it.

14
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Examples m1 (
1 2 3 4 5
4 5 2 1 3

)
= (1 4)(2 5 3)

m2 (
1 2 3 4 5
4 2 5 1 3

)
= (1 4)(2)(3 5) = (1 4)(3 5) = (3 5)(4 1)

Exercise List all the elements of S3 and S4.

To multiply (i.e. compose) two permutations, first juxtapose their cycle decompositions.
What results is a product of cycles that might not be disjoint. To rewrite this in disjoint
cycle form, work from right to left (as with composition of functions) to see where each
number 1, . . . , n maps.

For example, to compute π = στ where σ = (2 1 4 5 3) and τ = (1 5)(2 3), first see
where 1 maps: we have τ(1) = 5 and σ(5) = 3, and so π(1) = 3. Similarly π(3) = 1 (giving
(1 3) as one of the cycles in π), π(2) = 2 (giving the cycle (2)), π(4) = 5 and π(5) = 4
(giving the cycle (4 5)). Thus

(2 1 4 5 3) · (1 5)(2 3) = (1 3)(2)(4 5) = (1 3)(4 5).

Remark The order (as an element of Sn) of any k-cycle is k, and in general the order of
a permutation is the least common multiple (lcm) of the orders of the (disjoint) cycles in
its cycle decomposition (why?). For example

|(2 1 4 5 3)(6 9)(7 8)| = 10 |(2 1 4 5 3)(1 5)(2 3)| = 2

(not 10 for the latter, since the cycles are not disjoint).

Alternating groups An ⊂ Sn. Later . . .

Matrix groups Let R be a commutative ring with 1, e.g. Z, Q, R, Q or Zn.

For each n ∈ N have the group GLn(R) of invertible n × n matrices with entries in R,
called the general linear group (over R). This is just the group of units in Mn(R) (the
ring of n× n matrices/R).

Note A is invertible iff det(A) is invertible, i.e. in R· (= R− 0 for a field).

Example GL2(Z2) = {
(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
}

Exercise Show that for p prime |GLn(Zp)| =
n−1∏
k=0

(pn − pk) .

There are many important subgroups of GLn(R), e.g. the special linear group

SLn(R) = {A ∈ GLn(R) | det(A) = 1}.
For R = R we have the orthogonal and special orthogonal groups

O(n) = {A ∈ GLn(R) |AAT = I} SO(n) = {A ∈ SO(n) | det(A) = 1}
and for R = C, the unitary and special unitary groups

U(n) = {A ∈ GLn(R) |AA∗ = I} SU(n) = {A ∈ U(n) | det(A) = 1}
Tricky exercise: Show SU(2) ∼= S3 := the ‘unit’ quaternions.

15
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Group Morphisms

Definition A function f : G→ H between groups is a morphism (a.k.a. homomorphism)
if f(xy) = f(x)f(y) for all x, y ∈ G. The kernel and image of f are the subsets

ker(f) := {x ∈ G | f(x) = 1} ⊂ G and im(f) := {f(x) | x ∈ G} ⊂ H †

Define mono, epi, and iso-morphisms in usual way (mono = 1-1, epi = onto, iso = both).
Say G and H are isomorphic if ∃ and isomorphism G→ H. A morphism from a group to
itself (i.e. G = H) is called an endomorphism, and an automorphism if it is bijective.

Examples m1 The trivial morphism G→ H, by definition, sends every x ∈ G to 1H .m2 exp : (R,+)→ (R·, ·) is a monomorphism.m3 det : GLn(R)→ R· is an epimorphism (where it is understood that the operation is
multiplication in both groups).m4 For any abelian group G, the map φ− : G→ G, x 7→ x−1 is a homomorphism since
φ−(xy) = (xy)−1 = y−1x−1 = x−1y−1 = φ−(x)φ−(y). In fact φ− is an automorphism
which is its own inverse! If G is nonabelian, then φ− is not a morphism: for any a, b ∈ G
with ab 6= ba, have φ−(ab) = (ab)−1 and φ−(a)φ−(b) = a−1b−1 = (ba)−1, but (ab)−1 6=
(ba)−1 since inverses are unique.

2.2 Properties of morphismsma Any composition of morphisms is a morphism.mb If f : G→ H is a group morphism, then

i) f is onto ⇐⇒ im(f) = H
ii) f(1) = 1
iii) f(x−1) = f(x)−1

iv) f is 1-1⇐⇒ ker(f) = {1}
v) If x ∈ G has finite order n, then f(x) has finite order that is a divisor of n

Proof ma Straightforward from the definition. mb i) is true for all functions; ii)
f(1) = f(1 · 1) = f(1)f(1). Now multiply by f(1)−1; iii) HW; iv) =⇒ is clear, ⇐= HW;
v) f(x)n = f(xn) = f(1) = 1. Now appeal to:

2.3 Order Lemma Let a be an element of order n in a group. If n is finite, then
ai = aj ⇐⇒ i ≡ j (mod n). In particular ak = 1⇐⇒ k is a multiple of n. If n is infinite,
then ai 6= aj unless i = j.

Proof If n is finite, then for any i and j we can write i−j = qn+r with 0 ≤ r < n. Thus
ai = aj ⇐⇒ ai−j = 1 ⇐⇒ ar = 1 (since aqn+r = (an)qar = ar) ⇐⇒ r = 0 (since r < n)
⇐⇒ i ≡ j (mod n). If n is infinite, then ai = aj =⇒ ai−j = 1 =⇒ i− j = 0 =⇒ i = j. �

2.4 Properties of isomorphisms If f : G→ H is an isomorphism of groups, thenma |G| = |H| , mb G is abelian ⇐⇒ H is abelian , and mc |f(x)| = |x| ∀x ∈ G
(so G and H have the same number of elements of any given order)

Proof ma and mb are exercises. mc is HW.

† Equivalently ker(f) = f−1(1) and Im(f) = f(G)
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Can use these properties to prove two groups are not isomorphic. For example:ma Cm 6∼= Cn for m 6= n since they have different orders.mb C6 6∼= S3 since C6 is abelian and S3 is not.mc Z·24 6∼= C8 since C8 has elements of order 8, but Z·24 doesn’t. Similarly D24 6∼= S4 since
D24 has thirteen elements of order 2 while S4 has nine (exercise).

Open Problem : Classify all groups (up to isomorphism)

Facts m1 There is only one of any given prime order (prove later)m2 There are two of order 4 (C4, C2 × C2
∼= V4), two of order 6 (C6, S3 ∼= D6), five of

order 8 (C8, C4×C2, C2×C2×C2, D8, Q8), two of order 9 (C9, C3×C3), two of order 10,
five of order 12, fourteen of order 16, fifty-one of order 32 . . . (see p. 168 in text)m3 All finite groups have been classified (circa 1980), but not the infinite ones.

Group Actions (a central theme in the course)

Definition An action of a group G on a set A is a map G × A → A, (g, a) 7→ g·a
satisfying mA1 g·(h·a) = (gh)·a mA2 1·a = a

for all g, h ∈ G, a ∈ A. The associated permutation representation is the function
σ : G→ SA (the symmetric group on A) defined by

(∗) σ(g)(a) = g·a.
Note that σ is a group homomorphism, and conversely any homomorphism G

σ→ SA gives
rise to a group action given by (∗) which has σ as its permutation representation (exercise).

The kernel of the action is ker(σ) = {g ∈ G | g·a = a for all a ∈ A}. The action is said
to be faithful if it has trivial kernel (=⇒ σ is one-to-one), i.e. g·a = g·b =⇒ a = b.

Examples m1 trivial action g·a = a for all a ∈ A (i.e. σ is the trivial homomorphism).
This is not faithful (unless G = {1}).m2 The (faithful) action of D2n on the set of vertices of the n-gon.m3 The actions of any groupG on itself by left multiplication g·a = ga, right multiplication
ag−1, or conjugation g·a = gag−1 (you’re asked to verify the last one in HW).

Definition Two elements a and b in a group G are conjugate, written a ∼ b, if there
exists g ∈ G such that gag−1 = b. We call gag−1 the conjugate of a by g.

Remark ∼ is an equivalence relation, i.e. a ∼ a, a ∼ b =⇒ b ∼ a, and a ∼ b, b ∼ c =⇒
a ∼ c. The equivalence class of a ∈ G, denoted [a], is called the conjugacy class of a. Thus
two elements a and b are conjugate if and only if [a] = [b]. Note that if G is abelian, then
[a] = {a} for every a ∈ G (i.e. the only conjugate of a is a itself).

Exercise Show that the conjugacy classes in Q8 are [1] = {1}, [−1] = {−1}, [i] = {i,−i},
[j] = {j,−j} and [k] = {k,−k}. Find the conjugacy classes in S3 and D8.
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Subgroups

Definition A subset H of a group G is a subgroup of G, written H < G, if it contains the
identity element 1 of G, and is a group under the operation induced from G, or equivalently
it is ‘closed’ undermS1 multiplication : x, y ∈ H =⇒ xy ∈ HmS2 inversion : x ∈ H =⇒ x−1 ∈ H (associativity is automatic)

Examples m1 Every group G has the trivial subgroups {1} and G. Any subgroup H other
than G itself is called a proper subgroup, written H � G.m2 (Subgroups of Z) For k = 0, 1, 2, . . . , the set kZ = {nk | n ∈ Z} of all multiples of k
is a subgroup of Z, and there are no others. (Note that + is the operation in Z, so (S2)
reads 0 ∈ kZ.) 0Z = {0} and 1Z = Z are trivial, 2Z = evens, etc.m3 {1, r, . . . , rn−1} and {1, s} are subgroups of D2n; there are others (find them)m4 {1,−1} and {1, i,−1,−i} are subgroups of Q8; there are others (find them)m5 Cn < S1 < C· m6 Kernels and images of homomorphisms are subgroups (why?)

2.5 Subgroup Criterion A subset H of a group G is a subgroup if and only ifma H is nonempty and mb H is closed under ‘division’, i.e. x, y ∈ H =⇒ xy−1 ∈ H.

Proof (=⇒) H 6= ∅ since 1 ∈ H. If x, y ∈ H, then y−1 ∈ H by mS3 so xy−1 ∈ H by

(S1). Thus mb holds.

(⇐=) ∃h ∈ H by ma , so 1 = hh−1 ∈ H by mb . Now verifymS2 : x ∈ H =⇒ x−1 = 1 · x−1 ∈ H by mb , and finallymS1 : x, y ∈ H =⇒ y−1 ∈ H by mS2 =⇒ xy = x(y−1)−1 ∈ H by mb . �

Remark If H is finite, mb can be replaced by mS1 , since x ∈ H =⇒ xn = 1 for some n
(since G is finite) =⇒ 1 = xn ∈ H and x−1 = xn−1 ∈ H.

Normal subgroups

Definition A subgroup H of G is called a normal subgroup of G (written H C G) if

h ∈ H, g ∈ G =⇒ ghg−1 ∈ H
or in words, if H is “closed under conjugation” by any element in G. Equivalently, this
says that gHg−1 = H (i.e. gH = Hg) for every g ∈ G.

Examples m1 Every subgroup of an abelian group is normal (why?)m2 ker(f) C G for any morphism f : G→ H (why?)m3 Any H < G with |H| = 1
2 |G| (say H is of index 2 in G) is normal in G

Proof of m3 For any x 6∈ H, the set xH is disjoint from H (if xh = h′ for some h, h′ ∈ H
then x = h−1h′ ∈ H =⇒⇐=). So xH = G − H. Similarly Hx = G − H. Thus
xH = Hx =⇒ xHx−1 = H =⇒ H C G. �
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More examples of subgroups (some but not all are normal)

m1 Any subgroup of a subgroup of a group G is a subgroup of G, and any intersection
of subgroups of G is a subgroup of G (convince yourself that this is true). Warning This
is not necessarily true for normal subgroups : K C H C G 6=⇒ K C G (HW: show ∃
examples with |G| = 8), but intersections of normal subgroups are still normal.m2 (Centers, centralizers and normalizers) Let G be a group. The center of G is the set
ZG of all the elements in G that commute with every element of G :

ZG := {x ∈ G | xg = gx for all g ∈ G}

In general, ZG is a normal subgroup of G.

Proof 1 ∈ ZG since 1g = g = g1 for all g. For x, y ∈ ZG and g ∈ G, have xyg =
xgy = gxy =⇒ xy ∈ ZG (proving mS1 )and xg−1 = g−1x =⇒ (by taking inverses) gx−1 =

x−1g =⇒ x−1 ∈ ZG (proving mS2 ). �

Exercise Give an alternative proof using the subgroup criterion and the observation that
xg = gx⇐⇒ x = gxg−1

Examples If G is abelian, then ZG = G, and otherwise it is a proper subgroup of G. For
example: ZS3 = {1}, ZQ8 = {1,−1}, ZD8 = {1, r2} (exercise).

More generally, for any subset A ⊂ G, define the centralizer of A in G to be the set of
all elements of G that commute with every element in A :

ZG(A) := {x ∈ G | xa = ax for all a ∈ A}

(so ZG = ZG(G)), also written ZG(a) when A = {a}. The normalizer of A in G to be the
set of all elements in G that commute ‘set wise’ with A :

NG(A) := {x ∈ G | xA = Ax}

where xA = {xa | a ∈ A} and Ax = {ax | a ∈ A}. In general, ZG(A) and NG(A) are

subgroups of G (general proof given in m9 below), but not necessarily normal subgroups.

Example For A = {1,−1, i,−i} < Q8, have ji 6= ij, ki 6= ik, etc. and so ZQ8(A) = A.
However jA = {j,−j,−k, k} is the same set as Aj = {j,−j, k,−k}, so NQ8(A) = Q8.

Remark In general, for any nonempty subsets A1, . . . , An of a group G, define

A1 · · ·An = {a1 · · · an | ai ∈ Ai for each i = 1, . . . n}.

Special cases are xA = {x}A, Ax = A{x} and xAx−1 = {x}A{x−1} = {xax−1 | a ∈ A}.
Note that the conditions xa = ax and xA = Ax defining ZG(a) and NG(A) can be
rewritten as xax−1 = a and xAx−1 = A.

m3 (Stabilizers) If a group G acts on a set A and a ∈ A, then the stabilizer of a is

Ga = {x ∈ G | x · a = a}

Ga subgroup of G for each a. (Proof: 1 ∈ Ga by (A2), so Ga 6= ∅. Thus for any
x ∈ Ga, x−1 · a = x−1 · (x · a) = (x−1x) · a = 1 · a = a so x−1 ∈ Ga. If x, y ∈ Ga then
(xy) · a = x · (y · a) = x · a = a so xy ∈ Ga.)
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Examplesma The stabilizer of 1 ∈ C under the usual action of the dihedral group D2n is {1, s}.mb Normalizers are examples of stabilizers for a suitable action: Let G act by conjugation
on the set of all subsets of G,

x ·A = xAx−1 ( = {xax−1 | a ∈ A} ).

Then for any A ⊂ G,

NG(A) = {x ∈ G | xA = Ax} = {x ∈ G | xAx−1 = A} = GA.

Similarly centralizers can viewed in terms of actions: For A ⊂ G, the normalizer NG(A)
acts on A by conjugation, and ZG(A) is the kernel of this action (do you see why?).

Thus the fact that normalizers and centralizers are subgroups can be deduced from the
fact that stabilizers and kernels of homomorphisms are.

Cyclic groups and their subgroups

Definition For any element x in a group G, let 〈x〉 denote the set of all powers of x (or
multiples of x if G is an additive group) :

〈x〉 = {xk | k ∈ Z} (with repetitions deleted)

This is a subgroup of G (verify this) called the cyclic subgroup generated by x. In general,
a group G is called a cyclic group if it can be generated by one of its elements, i.e. if

G = 〈x〉 for some x ∈ G.

Any such x is called a generator of G (there may be many).

Remark if |G| = n, then G cyclic ⇐⇒ G has an element of order n.

Examples m1 (Z,+) (or its multiplicative analogue C∞ = {uk | k ∈ Z}†) is cyclic with
generator 1 (or u). Alternatively, −1 (resp. u−1) is a generator.m2 Cn is cyclic with generator u = e2πi/n (or uk for any k rel prime to n)m3 D2n is not cyclic for n > 1: 〈rk〉 ⊂ 〈r〉 6= D2n and 〈rks〉 = {1, rks} 6= D2n

2.6 Proposition The order n of any element x in a group is equal to the order of the
cyclic subgroup it generates: |x| = |〈x〉|.

Proof This is clear if if n = ∞. If n < ∞ then xi = xj ⇐⇒ i ≡n j (by the order
lemma) so 〈x〉 consists of the n distinct elements 1, x, . . . , xn−1. �

2.7 Classification Theorem for Cyclic Groups Every cyclic group C = 〈x〉 is iso-
morphic to Cn for some n = 1, 2, · · · ,∞. Thus there is up to isomorphism exactly one
cyclic group of each finite order and one infinite cyclic group.

Proof If |C| = n, then the function C → Cn mapping xk to uk (for each k ∈ Z) is a
well defined isomorphism (why?). �

† where u is an indeterminant
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2.8 Classification Theorem for Subgroups of Cyclic Groups Let C be a cyclic group,
generated say by x ∈ C. Thenma Every subgroup H of C is cyclic. In particular if H is nontrivial, then it is generated
by xm where m is the smallest positive integer for which xm ∈ H.mb If C is finite of order n, then it has a unique subgroup of order k for each divisor k
of n, and no other subgroups.

Proof ma HW mb If H < C is nontrivial, then H = 〈xm〉 for m as in ma . The division
algorithm gives n = km+r for a unique positive integer k and nonnegative integer r < m.
Thus 1 = xn = xkmxr, so xr = x−km ∈ H. The minimality of m shows r = 0. Hence k|n
and H = 〈xn/k〉 has order k, and is the unique subgroup of order k. �

This theorem gives a complete picture of the “lattice” of subgroups of any cyclic group
(draw pictures, cf. §2.5 in the text).

Remarks m1 ∃ groups with non-planar lattices, e.g. D16m2 ∃ pairs of nonisomorphic groups with the same subgroup lattice, e.g. C2 × C8 and
the “modular group” of order 16 = (r, s | r8 = 1 = s2, rs = sr5).

Question Does Theorem 2.8b generalize to other finite groups G?

Answer =⇒ of the first statement does (Lagranges’s theorem, below), but⇐= does not.
An example is provided by the tetrahedral group T12 of symmetries of the tetrahedron:

2.9 Proposition The group T12 of order 12 has no subgroup of order 6.

Proof T12 contains 8 distinct 2π/3-rotations, about the lines joining the 4 vertices to
the centers of their opposite faces in the tetrahedron, and 4 other elements. If there were
a subgroup H of T12 with 6 elements, then H would have to contain at least one of these
rotations r, since 4 < 6. But then it would contain all of them (since they are all conjugate
to r or r−1, and H C G as shown above) which is clearly impossible since 8 > 6. �

As for the last statement in 2.8b, this is rarely true. For example the symmetric groups
Sn contain many subgroups of order k for each k < n; do you see why?
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Lagrange’s Theorem and Applications

2.10 Lagrange’s Theorem The order of any subgroup H of a finite group G divides |G|.

We give the proof below. The idea is to chop G into pieces, all of the same size as H:

Definition † If H < G, then any subset of G of the form

xH = {xh | h ∈ h}

for x ∈ G, is called a left coset of H in G. (for example 1H = H itself). Similarly define
the right cosets Hx ⊂ G. Note that if G is an additive group, then cosets (right or left)
are of the form x+H = {x+ h |h ∈ H}.

Remark Now in general, the left (resp. right) cosets of H partition G into equal sized
subsets, the total number of which is called the index of H in G, denoted |G : H|:

2.11 Coset Lemma Let H < G. Then G is the union of all the left cosets of H in G,
and any two such cosets ma have the same size, and mb coincide if they intersect at all.
(Similarly for right cosets)

Proof The first statement follows from the fact that each x ∈ G lies in xH. Now given
two cosets xH and yH, the map xH → yH sending xh to yh is a bijection, by cancellation
(check this), proving ma . If xH and yH intersect, then xi = yj for some i, j ∈ H, so
xh = xii−1h = yji−1h ∈ yH for any h ∈ H =⇒ xH ⊂ yH. Similarly yH ⊂ xH, so
xH = yH. This proves mb . �

Example of coset decomposition: The subgroup H = {1, (1 2)} of S3 has cosets H,
(1 3)H = {(1 3), (1 2 3)} and (2 3)H = {(2 3), (1 3 2)}.

Proof of Lagrange’s Theorem The coset lemma shows that

|G| = |G : H||H|

which shows that |H| divides |G|. �

Remark The set of all left cosets is (sometimes) denoted by G/H, so

|G/H| = |G : H| = |G|/|H|.

Similarly for the set H\G of right cosets.

2.12 Coset Recognitiion Let H < G. Then two elements x and y in G lie in the same
coset of H if and only if either of the following two equivalent conditions holds:ma x−1y ∈ H or mb y = xh for some h ∈ H

and similarly for right cosets.

Proof HW �

† This definition applies to infinite groups as well.
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Applications

m1 The order of any element x in a finite group G divides the order of G.m2 Any group of prime order p is cyclic (and so there’s only one up to isomorphism).m3 Euler’s Theorem If a, n ∈ N are relatively prime, then aϕ(n) ≡ 1 (mod n).

Recall here that ϕ(n) = |Z·n |, the Euler phi function of n. Note that if p is prime, then
ϕ(p) = p− 1 so we have the following special case of Euler’s theorem:

Fermat’s Little Theorem If p is prime and p - a, then ap−1 ≡ 1 (mod p).

Example 34 = 81 ≡ 1 (mod 5), 36 = 729 ≡ 1 (mod 7)

Proofs m1 |x| = |〈x〉|, which divides |G| by Lagrange’s Theorem.m2 Any x 6= 1 in G has order dividing p by m1 , and thus equal to p, since p is prime.
Thus G = 〈x〉, so G is cyclic.m3 gcd(a, n) = 1 =⇒ a ∈ Z·n (by the GCD Lemma) =⇒ aϕ(n) = 1 (by m1 , since Z·n has

order ϕ(n)), i.e. aϕ(n) ≡ 1 (mod n). �

Products and Finite Abelian Groups

Recall that the product of two groups H and K is

H ×K = {(h, k) | h ∈ H, k ∈ K}
with componentwise multiplication (h, k)(h′, k′) = (hh′, kk′). It turns out that every finite
abelian group is a product of cyclic groups. More precisely,

2.13 Fundamental Theorem of Finite Abelian Groups (Primary Form) Every
finite abelian group is isomorphic to a product of cyclic groups, each of prime power order.
This product is unique except for possible rearrangement of the cyclic factors.

The prime powers that appear are called the primary factors or elementary divisors of
the group. This theorem leads to

Algorithm for finding all abelian groups of a given order n :

• If n = pk, a pure prime power, then there is (up to isomorphism) exactly one abelian
group of order n for each partition of k (a sequence k1 ≥ · · · ≥ ks of natural numbers such
that k = k1 + · · ·+ ks), namely

Cpk1 × · · · × Cpkn .

For example, there are three abelian groups of order 125 = 53

C125 C25 × C5 C5 × C5 × C5

corresponding to the three partitions 3, 2 + 1 and 1 + 1 + 1 of 3.

• For general n = pk11 p
k2
2 · · · , there’s one group for each list of partitions of k1, k2, . . . .
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Example How many abelian groups are there of order 1500 = 22 ·3·53? Answer: 6 = 2·1·3)
List them: C4×C3×C125, C2×C2×C3×C125, C4×C3×C25×C5, C2×C2×C3×C25×C5,
C4 × C3 × C5 × C5 × C5, C2 × C2 × C3 × C5 × C5 × C5.

There’s another standard form for finite abelian groups: Using the fact from HW that

Cm × Cn ∼= Cmn

if m and n are relatively prime, can start with the primary form, then group the largest
factors associated with each prime in the primary form, then the next largest, etc. to get
a unique form for any finite abelian group

G ∼= Cn1 × Cn2 × · · ·

where n = n1 · n2 · · · and ni is divisible ni+1 for each i; the numbers n1, n2, . . . are called
the invariant factors of G. For example

C4 × C2 × C3 × C5 × C5
∼= C60 × C10

has invariant factors 60, 10. The group C8×C2×C28×C25×C14 has inv factors 1400, 28, 2, 2
(exercise). In summary

2.14 Fundamental Theorem of Finite Abelian Groups (Invariant Form) Any finite
abelian group G is isomorphic to a product Cn1×Cn2×· · ·×Cnk where each ni is divisible
by ni+1. The numbers n1, . . . , nk, called the invariant factors of G, are unique.

We’ll prove the first statement in the fundamental theorem (primary form). Need

2.15 Product Recognition Theorem (PRT) If H and K are normal subgroups of a
group G satisfying H ∩K = 1 and HK = G, then G ∼= H ×K.

Proof Consider the function f : H × K → G given by f(h, k) = hk, which is onto
since HK = G. We claim that f is a homomorphism. First note that for any h ∈ H
and k ∈ K, hkh−1k−1 ∈ H ∩ K (it can be written as h(kh−1k−1) ∈ H since H C G,
or as (hkh−1)k−1 ∈ K since K C G). Since H ∩ K = 1, it follows that hkh−1k−1 = 1,
i.e. hk = kh, so the elts of H commute with the elements of K. Now f((h, k)(h′, k′)) =
f(hh′, kk′) = hh′kk′ = hkh′k′ = f(h, k)f(h′, k′).

Finally observe that ker(f) = 1 (since f(h, k) = 1 =⇒ hk = 1 =⇒ h = k−1 ∈ H∩K = 1,
i.e. (h, k) = (1, 1)) so f is 1-1. �

Now let G be a nontrivial finite abelian group. We wish to show that G is a product
of cyclic groups of prime power orders. First consider an element a in G of order n > 1,
and choose a prime divisor p of n. Then G has an element of order p, namely b = an/p

(by the Order Lemma 2.3). Thus |G| = pkq for some k > 0 and q not divisible by p. Set

P = {x ∈ G | xpk = 1} and Q = {x ∈ G | xq = 1}.

Then P 6= 1 (since it contains b) and Q are subgroups (since G is abelian) with P ∩Q = 1
(since p - q) and PQ = G: ∃ a, b with aq + bpk = 1, so for any x ∈ G

x = xaq+bp
k

= xaqxbp
k ∈ PQ

(do you see why?) Thus G ∼= P × Q by the PRT. It remains (by induction on |G|) to
prove that P is a product of cyclic groups. This is the content of the following theorem:
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2.16 p-Group Theorem If P is an abelian p-group for some prime p (meaning that
each element in P has order a power of p) then P is a product of cyclic groups.

Proof Let H be the cyclic subgroup of P generated by an element h of maximal order
(say ps) in P , and K be a largest possible subgroup of P for which H ∩ K = 1. If the
subgroup HK = P , then P ∼= H ×K by the PRT, and the theorem follows by induction
on |P |. So assume HK 6= P . We will show that this leads to a contradiction.

Claim ∃x ∈ P such that x /∈ HK but xp ∈ K.

Proof of claim First note that ∃ y 6∈ HK with yp ∈ HK. (Indeed, for any z 6∈ HK,

choose the smallest m such that zp
m ∈ HK, and set y = zp

m−1
.) Now yp = hnk for some

n ∈ Z, k ∈ K. By the maximality of |h| we have

yp
s

= (hnk)p
s−1

= hnp
s−1
kp

s−1
= 1.

Thus hnp
s−1

= 1, since H ∩K = 1, and so p|n. Set x = h−n/py. Clearly xp = k ∈ K, but
x 6∈ HK since y 6∈ HK. This completes the proof of the claim.

Now let K ′ be the subgroup generated by x and K,

K ′ = {xnk | n ∈ Z, k ∈ K}.
Observe that H ∩K ′ = 1, since xnk = h ∈ H =⇒ xn = hk−1 ∈ HK =⇒ p|n =⇒ xn ∈
K =⇒ h ∈ K =⇒ h = 1. But K ′ % K, which contradicts the maximality of K. �

The Symmetric and Alternating Groups

The following famous result underscores the importance of the symmetric groups:

2.17 Cayley’s Theorem Every group G is isomorphic to a subgroup of the symmetric
group SG of all permutations of the set G. In particular, every finite group of order n is
isomorphic to a subgroup of Sn.

Proof Let G act on itself by left multiplication. Then the associated permutation
homomorphism λ : G → SG (i.e. λ(g) = left multiplication by g) is one-to-one, by the
cancellation property in G, and so G ∼= im(λ) < SG. �

One important subgroup of Sn is the alternating group An of all “even” permutations,
where the parity (even or odd) of a permutation σ ∈ Sn is defined as follows: First note
that σ can be written as a product of transpositions, since any cycle can be so written:

(∗) (i1 · · · ik) = (i1 i2)(i2 i3) · · · (ik−1 ik)

Definition A permutation is even if it can be written as a product of an even num-
ber of transpositions, and odd if it can be written as a product of an odd number of
transpositions.

This decomposition is not unique, e.g. 1 = (1 2)(1 2) = (1 2)(3 4)(1 2)(3 4), but the parity
of the number of transpositions is always the same:

2.18 Remarkable Fact No permutation is both even and odd.

There are many proofs (cf. pages 109–111 in Dummit and Foote, or the enlightening
dance floor proof by Ty Cunningham in Math. Magazine 43 (1970) 154-5). Here is one:
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Proof Consider the function c : Sn → N that sends σ ∈ Sn to the number of cycles
in the disjoint cycle decompostion of σ, counting the 1-cycles (see §2.2). For example
c(k-cycle) = n− k + 1. Readily verify

c(στ) ≡ c(σ) + 1 (mod 2)

for any transposition τ = (i j): If i and j lie in the same cycle in σ then that cycle splits
into two in στ , and if they lie in distinct cycles in σ then those cycles are joined into one
in στ ; the remaining cycles of σ and στ coincide. It follows that if σ is a product of m
transpositions then

c(σ) ≡ c(1) +m ≡ n+m

so the parity of m is determined by σ. �

Therefore any permutation σ has a well-defined parity : even or odd. Since odd-length
cycles are even and even-length cycles are odd (by (∗)) this parity is just the parity of the
number of even-length cycles in any cycle decomposition of σ; the number of odd-length
cycles is irrelevant.† Thus even permutations are those with even number of even-length
cycles, for example those with cycle structure

(· · ·) , (··)(··) , (· · · · ·) , (· · ·)(· · ·) , (· · ··)(··) , (··)(··)(··)(··) , etc.

Noting that even·even = odd·odd = even, and even·odd = odd·even = odd, we have a
group morphism

sgn : Sn → C2 = {±1}
sending even permutations to +1 and odd ones to −1. The kernel of sgn, consisting of all
even permutations, is called the alternating group of degree n, denoted An. It is a normal
subgroup of Sn, since it is the kernel of a morphism, and is clearly of index 2 in Sn, i.e.

|An| = n!/2 for n > 1

Do you see why?

Examples A1 and A2 are trivial groups (exercise). It can be shown without too much
difficulty that A3

∼= C3, A4
∼= T12 and A5

∼= I60. But beyond that, these are ‘new’ groups,
which have the exceptional property (Abel’s Theorem below) of being ‘simple’:

Definition A group G is simple if it has no nontrivial proper normal subgroups.

Example Any group of prime order is simple. Indeed such a group has no proper subgroups
whatsoever, by Lagrange’s Theorem.

To prove Abel’s Theorem (which is the key to showing that there is no quintic formula!)
we will need to understand some basic characteristics of Sn and An. First note that by
the cycle structure observation above, one can easily list the elements in An. For example

A3 = {1, (1 2 3), (3 2 1)} and A4 = {1, (1 2 3), · · · , (1 2)(3 4), · · · }.

We now discuss some deeper properties.

† The parity of σ can also be computed geometrically from a picture of σ obtained by connecting
the n points x1 = (1, 0), . . . , xn = (n, 0) in the plane to the n points y1 = (1, 1), . . . , yn = (n, 1) directly
above them with a ‘transverse’ collection of arcs α1, . . . , αn, where αi joins xi to yσ(i). Here the ‘transverse’
condition means that we only allow only pairwise intersections between the arcs, where one crosses another.
Now the parity of σ is simply the parity of the number of intersection points of the arcs.
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Conjugation in Sn and An Given σ, τ ∈ Sn, we compute στσ−1 as follows: Write τ as

a product (i j · · · ) of cycles. Then

σ (i j · · · )σ−1 = (σ(i)σ(j) · · · )

i.e. replace each number in τ by its image under σ. This is easy to see if τ is a single cycle,
and generalizes using the trick

στ1τ2 · · · τrσ−1 = (στ1σ
−1)(στ2σ

−1) · · · (στrσ−1).

It follows that two elements in Sn are conjugate ⇐⇒ they have the same cycle structure.
For ⇐=, note that one can easily write down a σ for which στσ−1 = τ ′ for any τ and τ ′

which have the same cycle structure; indeed it is not hard to determine all such σ’s.

Conjugation in An is more complicated: A pair of ermutations iin An that are conjugate
in An are certainly conjugate in Sn, but the converse need not be true; one must check
whether any of the possible conjugating permutations is even.

Example τ = (2 3 4) and τ ′ = (4 3 2) are conjugate in S4 since they have the same cycle
structure (· · ·), but not in A4, since στσ−1 = τ ′ =⇒ σ maps the ordered triple (2, 3, 4) to
either (4, 3, 2), (3, 2, 4) or (2, 4, 3), which forces σ = (2 4), (2 3) or (3 4), all of which are
odd. This is explored further in the HW.

Normal subgroups of Sn and An Recall that An C Sn. In fact:

2.19 Lemma If n ≥ 5, then An is the only nontrivial proper normal subgroup of Sn

Proof First note that An is generated by 3-cycles. Indeed each element of An can be
written as a product of an even number of transpositions, which pairwise can be rewritten
in terms of 3-cycles: (i j)(j k) = (i j k), (i j)(k `) = (i j k)(j k `).

Now consider any H C Sn with H 6= 1. We must show H = An or Sn. Choose any
σ 6= 1 in H with disjoint cycle decomposition (i j · · · ). Then σ does not commute with
the transposition τ = (j k), for any chosen k 6= i, j (here we are using n ≥ 3). Indeed
στ(i) = j whereas τσ(i) = k. Now consider the “commutator”

[σ, τ ] := στσ−1τ−1 6= 1.

Clearly [σ, τ ] ∈ H (since [σ, τ ] = σ(τσ−1τ−1) and H is normal) and [σ, τ ] is a product
(στσ−1)(τ−1) of two distinct transpositions. If these transpositions overlap, then [σ, τ ] is a
3-cycle =⇒ H contains all 3-cycles (since it is normal) =⇒ An ⊂ H (since An is generated
by 3-cycles) =⇒ H = An or Sn. If they don’t overlap, then H contains all products
of pairs of disjoint transpositions (since it is normal), and in particular (1 2)(3 4) and
(3 4)(2 5) (here we’re using n ≥ 5) whose product is the 3-cycle (1 2)(2 5) = (1 2 5) =⇒ H
contains all 3-cycles and so again H = An or Sn. �

Remark We have repeatedly used the fact that a normal subgroup that contains an element
h must contain the entire conjugacy class of h (i.e. all elements conjugate to h), a fortiori :
A subgroup H < G is normal in G if and only if it is a union of conjugacy classes in G.
In general, one can understand a lot about the structure of a group from a knowledge of
its normal subgroups, and consequently from a knowledge of its conjugacy classes.
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2.20 Abel’s Theorem An is simple for all n ≥ 5.

Proof If An is not simple, then it contains a nontrivial proper normal subgroup H of
maximal order, and we show that this leads to a contradiction : By Lemma 2.19, H 6C Sn,
so for some odd σ, the subgroup K = σH := σHσ−1 of An is distinct from H.† We claimma K C An , mb H ∩ K = {1} and mc HK = An

To see this, note that for τ ∈ Sn, we have τH = H if τ is even (since H C An) and τH = K

if τ is odd (since τ−1σ is even =⇒ H = τ−1σH =⇒ τH = σH = K). Since τK = τσH.

and τ and τσ have opposite parity, it follows that τK = K if τ is even (proving ma ) and
τK = H if τ is odd. Also H ∩K C Sn (since τ(H ∩K) = τH ∩ τK = H ∩K = K ∩H)

and H ∩K $ An, so in fact H ∩K = {1} by Lemma 2.19 again. This proves mb . Finally,

H $ HK C An =⇒ HK = An by the maximality of H, proving mc .

It follows by the Product Recognition Theorem 2.15 that An ∼= H × K, and every
element of H commutes with every element of K (cf. the proof of 2.15). But if τ ∈ H is
of order > 2 (there exists such an τ , since otherwise τ2 = 1 for every τ ∈ H ∪ K, and
thus every τ ∈ HK = An, but An clearly contains odd order elements, e.g. 3-cycles), then
τ = (i j k, · · · ) (in disjoint cycle form) and κ = (k m)τ(k m)−1 = (i j m, · · · ) ∈ K do not
commute (e.g. τκ(i) = k whereas κτ(i) = m), which is a contradiction. �

Challenging Exercise Give an alternative proof of Abel’s Theorem for n = 5 as follows:
Show that A5 splits into six conjugacy classes, namely the ‘trivial class’ containing only
the identity element, two classes of 3-cycles with 10 elements each, two classes of 5-cycles
with 12 elements each, and one class with all 15 products of pairs of 2-cycles. Now observe
that the total number of elements in any union of these classes including the trivial one
together with at least one but not all of the remaining ones, will never divide |A5| = 60,
and thus that A5 does not contain a nontrivial proper normal subgroup.

Quotient Groups

Recall that the normality of a subgroup H < G can be characterized in a variety of
ways, e.g. H is closed under conjugation, or xHx−1 = H for all x ∈ G, or xH = Hx for all
x ∈ G, or H is a union of conjugacy classes. Here is another important characterization:

2.21 Normality Lemma A subgroup H of G is normal in G⇐⇒ (xH)(yH) = (xy)H
for all x, y ∈ G.

Proof =⇒ is trivial using the aforementioned characterizations: (xH)(yH) = x(Hy)H =
x(yH)H = (xy)H (note that HH ⊂ H since H is a subgroup, and HH ⊃ H since 1 ∈ H).
For ⇐=, take y = x−1 to get (xH)(x−1H) = H =⇒ xHx−1 ⊂ H since 1 ∈ H. �

This lemma says that the “obvious” operation xH · yH = (xy)H on the set G/H
of all left cosets of H in G is well defined ⇐⇒ H is normal in G. This operation can be
described more invariantly as follows: given two cosets H1, H2 in G/H, choose h1 ∈ H1

and h2 ∈ H2, and let H1H2 be the coset containing h1h2. The lemma shows that this coset
is independent of which elements you chose. Furthermore, it turns out that this operation
then makes the set G/H into a group, called the quotient group of G by H, explaining
why normality is such an important notion:

† This subgroup σH = σHσ−1 is called the conjugate of H by σ. Note that in general, α(βH) = αβH
for any α, β ∈ Sn.
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2.22 Theorem If H C G, then G/H is a group under the operation defined by xH ·yH =
(xy)H. Furthermore the map p : G → G/H defined by p(x) = xH, called the natural
projection of G onto G/H, is an epimorphism.

Proof The operation is well defined (by the lemma), associative, with identity element
1H = H and (xH)−1 = x−1H (verify). Clearly p is a morphism, since p(xy) = xyH =
xHyH = p(x)p(y), and is onto since every coset is the image of any element in it. �

Remarks m1 Any quotient group G/H of an abelian group G is abelian, since xHyH =
xyH = yxH = yHxH, for any x, y ∈ G.m2 Be very careful when G is an “additive” group, i.e. the operation is +. Then cosets
of H < G are of the form x+H = {x+h | h ∈ H}, and the operation in G/H is addition:
(x+H) + (y +H) = (x+ y) +H. For example, if H = nZ = {multiples of n} < Z, then
Z/nZ = {k + nZ | k = 0, . . . , n− 1}.

Note If G′ is another additive group, then the product G×G′ will be often be called the
direct sum, written G⊕G′ = {(g, g′) | g ∈ G, g′ ∈ G′} with the operation (g, g′)+(h, h′) =
(g+ g′, h+h′). In other words G⊕G′ is the same group as G×G′, but written additively

(cf. example m2 below).

Examples m1 Z/nZ ∼= Zn, via the isomorphism k + nZ 7→ k.m2 Let H := 〈4〉 = {0, 4, 8} C Z12. Then H has order 3 =⇒ Z12/H = {H, 1 + H, 2 +
H, 3 + H} has order 4 =⇒ Z12/H ∼= C4 or V4. Since 1 + H has order 4 (why?) we have
in fact Z12/H ∼= C4.m3 Let S := 〈(0, 1)〉 C G := Z2⊕Z4. Note that |S| = 4 (since (0, 1) has order 4) so G/S
has order |G/S| = |G|/|S| = 8/4 = 2, and therefore G/S ∼= Z2. G also has three sub-
groups of order two, H = 〈(1, 0)〉, J = 〈(1, 2)〉 and K = 〈(0, 2)〉, with G/H ∼= H/J ∼= Z4

and G/K ∼= Z2 ⊕Z2; verify this by computing the orders of elements in the quotient, e.g.
(0, 1) +H has order 4 in G/H.m4 Let H be the cyclic subgroup of S3 generated by the 3-cycle (1 2 3), H = 〈(1 2 3)〉 =
{1, (1 2 3), (1 3 2)} C S3. ThenH has two cosets, H andH ′ = (1 2)H = {(1 2), (2 3), (1 3)},
so S3/H = {H,H ′} ∼= C2.m5 Z(D8) = {1, r2} C D8, and D8/Z(D8) ∼= C2 × C2 (compute orders again).

Most of the important properties of quotient groups follow from the

2.23 Universal Property of Quotient Groups (UPQG) Let K be a normal subgroup
of G and p : G → G/K be the natural projection. Then for any morphism f : G → H
whose kernel contains K, there exists a unique morphism g : G/K → H such that f = g◦p,
i.e. the following diagram commutes

G G/K

H

p

f
g

In particular g(xK) = f(x), i.e. g(coset) = f(any element in the coset). Also ker(g) =
ker(f)/K and im(g) = im(f).

Proof First check that g is well defined (and thus unique by the commutativity of the
diagram): if x, y lie in the same coset, then x−1y ∈ K. But K ⊂ ker(f), by hypothesis,
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so f(x−1y) = 1 = f(x)−1f(y) =⇒ f(x) = f(y). It is now straightforward to show g is
a morphism (g(xKyK) = g(xyK) = f(xy) = f(x)f(y) = g(xK)g(yK)) with ker(g) =
{xK | f(x) = 1} = ker(f)/K and im(g) = {f(x) | x ∈ G} = im(f). �

The UPQG can be used to construct morphisms from quotient groups. For example,
you can show that Z2 ⊕ Z4/〈(0, 2)〉 is isomorphic to Z2 ⊕ Z2 (see example m2 above) by
constructing an explicit isomorphism., arising from the UPQG via the morphism Z2⊕Z4 →
Z2 ⊕ Z2, (a, b) 7→ (a, b).

It has the following important consequences:

2.24 The Isomorphism Theorems

a) (First Isomorphism Theorem) If f : G→ H is a morphism, then G/ ker(f) ∼= im(f).

b) (Diamond Isomorphism Theorem) If H < G and K C G, then HK < G, H ∩K C H
and H/H∩K ∼= HK/K :

HK

H K

H ∩K

c) If H,K C G with H ⊂ K, then K/H C G/H and G/K ∼= (G/H)/(K/H).

Proof Apply the Universal Property to

a)

G G/ ker(f)

im(f) ⊂ H
f

b)

H H/H∩K

HK HK/K

c)

G G/H

G/K

← Now apply the First Isomorphism Theorem to this.

2.25 The Correspondence Theorem Let f : G → H be a group morphism, G be the
set of all subgroups of G containing K = ker(f), and H be the set of all subgroups of H
contained in I = im(f). Then the map

f : G → H , S 7→ f(S)

is a bijection which respects containment, indices, normality and quotients. In other words,

(a) S < T ⇐⇒ f(S) < f(T ), in which case |T : S| = |f(T ) : f(S)|
(b) S C T ⇐⇒ f(S) C f(T ), in which case T/S ∼= f(T )/f(S)

Proof The inverse of f is the “preimage” map f−1 : H → G sending each subgroup
A ∈ H to its full preimage f−1(A) ∈ G.

First we show f−1(f(S)) = S: The inclusion ⊃ holds in general:

s ∈ S =⇒ f(s) ∈ f(S) (by definition) =⇒ s ∈ f−1(f(S)).
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The other inclusion ⊂ holds since S ⊃ K:

x ∈ f−1(f(S)) =⇒ f(x) ∈ f(S) =⇒ f(x) = f(s) (for some s ∈ S)

which implies f(xs−1) = 1, and so xs−1 ∈ K, whence x ∈ Ks ⊂ S since K ⊂ S.

Similarly f(f−1(A)) = A: ⊂ holds in general, and ⊃ since A ⊂ I. Thus f is a bijection.

The rest is straightforward, and is left as an exercise for the reader; the UPQG is used
to construct the isomorphism of quotient groups. �

Examples m1 The First Isomorphism Theorem applied to det: GLn(R) → R• gives
GLn(R)/SLn(R) ∼= R•.

m2 The Diamond Isomorphism Theorem applied to any pair of distinct proper normal
subgroups M and N of a group G gives isomorphisms

MN/M ∼= N/(M ∩N) and MN/N ∼= M/(M ∩N).

Note that if M and N are both “maximal” (i.e. not contained in any larger proper normal
subgroups) then MN = G. Indeed, M,N C G implies MN C G by the usual argument
(mn ∈ MN and x ∈ G implies x(mn)x−1 = (xmx−1)(xnx−1) ∈ MN), and so MN = G
by the maximality of M and N . This is relevant to the following:

Application : Classification of Finite Groups

Definition A composition series for a finite group G is a sequence of subgroups

G = G0 B G1 B G2 B · · · B Gn−1 B Gn = 1

each a maximal proper normal subgroup of the preceeding.

The quotients Gi/Gi+1 are simple, by the correspondence theorem, and G can be viewed
as being built up from these composition factors, which are unique up to order by the
“Jordan Hölder Theorem” (proved using the isomorphism theorems, in particular via

Example m2 above and induction on the order of the group).

Unfortunately ∃ distinct groups with identical composition factors, so the classification
of finite groups is in fact a two-step program: the Hölder Program (late 19th century):

m1 Classify all simple finite groupsm2 Find all ways to “put simple groups together” to form other groups

The first step was recently achieved (∼1980): 18 infinite families

a) Cp (p prime)
b) An (n ≥ 5)
c) PSLn(F ) (F a finite field, n ≥ 2) . . . etc.

and 26 “sporadic” (exceptional) simple groups. The smallest sporadic group, of order
7920, was discovered by Mattieu in 1861. The largest, of order

808, 017, 424, 794, 512, 875, 886, 459, 904, 961, 710, 757, 005, 754, 268, 000, 000, 000

was constructed by Fischer-Griess in 1981; it is known as the “monster” group.
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Sylow Theory

Throughout this section

G will denote a finite group of order n.

Recall Lagrange’s Theorem: ∃H < G with |H| = k =⇒ k|n. The converse fails:

k|n 6=⇒ ∃H < G, |H| = k.

For example
A4 (∼= T12) has no subgroup of order 6

as proved above. (Another proof using quotient groups: Suppose H < A4, |H| = 6. Then
H C A4, so A4/H ∼= C2 =⇒ H contains all eight 3-cycles τ in A4, since τH = (τH)3 =
τ3H = H =⇒ τ ∈ H. This contradicts |H| = 6.)

Partial converses hold:

2.26 Cauchy’s Theorem If p is prime and p divides n, then ∃H < G with |H| = p (or
equivalently, G has an element of order p).

More generally

2.27 Sylow Theorem I (Existence) If p is prime and pk|n, then ∃H < G with |H| = pk.

Definition Let p be a prime. Any group P of order pk is called a p-group, and if P < G
then P is called a p-subgroup of G. If in addition pk is the largest power of p that divides
|G|, that is

n = pkr and p - r
then P is called a Sylow p-subgroup of G. (They always exist by Sylow I)

Example If n = 500 = 2253, then G has subgroups of orders 2, 4, 5, 25 and 125. The ones
of order 4 are the Sylow-2 subgroups, and those of order 125 are the Sylow-5 subgroups.

2.28 Sylow Theorem II (Conjugacy) Any two Sylow p-subgroups P,Q of G are conju-
gate, i.e. ∃x ∈ G such that Q = xPx−1.

2.29 Sylow Theorem III (Counting) The total number np = np(G) of Sylow p-subgroups

of G satisfies ma np|r and mb np ≡ 1 (mod p).

Example If G has order 12 = 223, then n3|4 and n3 ≡ 1 (mod 3), so n3 = 1 or 4. Either
case may arise: n3(C12) = 1 and n3(A4) = 4 (the four Sylow 3-subgroups of A4 are
〈(123)〉, 〈(124)〉, 〈(134)〉 and 〈(234)〉). Similarly n2 = 1 or 3, e.g. n2(C12) = n2(A4) = 1
while n2(D12) = 3 (can you find all three Sylow-2 subgroups of D12?).

Application (non-simplicity results)

Observe that if a finite group G has only one Sylow p-subgroup P , for some prime
divisor p of |G|, then P C G (since any xPx−1 is also a Sylow p-subgroup of G). Thus

np(G) = 1 =⇒ G is not simple

if G is not a p-group. (It can also be shown that the only p-group that is simple is Cp, see
below). It’s often not hard to show some np = 1:
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2.30 Theoremm1 |G| = pq for distinct primes p and q =⇒ G is not simple. For example, no groups
of order 6, 10, 14, 15, 21, 22, 26, 33, . . . are simple.m2 |G| = 30 = 2 · 3 · 5 =⇒ G is not simple.

Proof m1 We may assume p > q, and then np|q and np ≡ 1 (mod p), by Sylow III,

which forces np = 1.†

m2 The possibilities (using Sylow III) are n2 = 1, 3, 5, 15, n3 = 1, 10 and n5 = 1, 6. Thus
if G is simple, then n2 ≥ 3, n3 = 10 and n5 = 6

Now observe that if P and Q are distinct Sylow subgroups of G, then P ∩Q = 1. This
is true in general if P and Q are associated with distinct primes, since P ∩Q is a subgroup
of both P and Q, and so |P ∩ Q| divides both |P | and |Q| =⇒ |P ∩ Q| = 1 (since |P |
and |Q| are relatively prime). If P and Q are associated with the same prime p and are
of prime order (this is the case for n = 30 since 30 is square free), then P ∩ Q must be
trivial since it is a proper subgroup of P and |P | = p. (Note that two Sylow p-subgroups
that are not of prime order may overlap nontrivially!)

Finally, count the nonidentity elements in G, using the fact that the Sylow subgroups
don’t overlap: |G| > 6 · 4 + 2 · 10 + 1 · 3 = 47⇒⇐. Thus G is not simple. �

More is known: No group of order pqr is simple, where p, q and r are distinct primes
(HW; counting argument as in m2 ). Similarly groups of order p2q and pα (for any α > 1)
are never simple. Much deeper results:

2.31 Burnside Theorem |G| = pαqβ =⇒ G is not simple.

2.32 Feit-Thompson Theorem |G| odd (but not prime) =⇒ G is not simple

Proofs of Sylow Theorems (using group actions)

Let G×X → X, (g, x) 7→ g · x be an action of a group G on a set X. For any x ∈ X,
define the orbit of x to be

Gx = {g · x | g ∈ G} ⊂ X
and the stabilizer (or isotropy subgroup) of x to be

Gx = {G ∈ G | g · x = x} < G.

(note the subscript). Call x a fixed point of the action if g · x = x for all g ∈ G, or
equivalently Gx = {x}, or Gx = G. Let XG = {all fixed points}.

The most important theorem in the subject is:

2.33 Orbit Stabilizer Theorem (OST) If G and X are finite, then the size of any orbit
Gx is equal to the index of the corresponding stabilizer Gx. In symbols |Gx| = |G : Gx|,
or equivalently |G| = |Gx||Gx|.

† In fact, Sylow theory gives more information. For example, if q - (p − 1), then G is in fact cyclic!
Indeed Sylow III then gives nq = 1 as well, so G has a unique Sylow p-subgroup P ∼= Cp and a unique
Sylow q-subroup Q ∼= Cq. Thus P,Q C G and P ∩Q = 1, and Lagrange’s Theorem shows that PQ = G,
and so G ∼= P×Q ∼= Cpq, by the product recognition theorem. This shows that all groups of order 15, 33, ...
are cyclic.
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Proof The function G/Gx → Gx, gGx 7→ g · x is a well defined bijection: gGx =
hGx ⇐⇒ g−1h ∈ Gx ⇐⇒ g−1 · h · x = x⇐⇒ h · x = g · x. �

Examples m1 Let G act on itself by conjugation, g · x = gxg−1. Then Gx = C(x) (the
conjugacy class of x), Gx = Z(x) (the centralizer of x) and GG = Z(G) (the center of G).
The OST says

|C(x)| = |G : Z(x)|.

m2 Let G act on the set X of all its subgroups by conjugation, g ·S = gSg−1. Then GS =
C(S) = {conjugates of S}, GS = N(S) (the normalizer of S) andXG = {normal subgroups of G}.
The OST says

|C(S)| = |G : N(S)|.

Now observe that the orbits of an action of G on X partition X (since Gx ∩ Gy 6=
∅ =⇒ g · x = h · y for some g, h ∈ G =⇒ k · y = (kh−1g) · x =⇒ Gy ⊂ Gx, and similarly
Gx ⊂ Gy, so Gx = Gy). Thus

|X| =
∑
|Gxi|

where the sum is over a set of representatives xi, one chosen from each orbit. Since
|Gx| = |G : Gx| by the OST, the right hand side can be rewritten as

∑
|G : Gxi | =

|XG|+
∑
|G : Gxi | where the last sum is only over those xi that are not fixed points. This

gives the class equation (for finite X and G)

|X| = |XG|+
∑
|G : Gxi |

summed over representatives xi of the non-trivial orbits. In the special case when G acts
on itself by conjugation, as in Example m1 above, this reads

|G| = |Z(G)|+
∑
|G : Z(xi)|

summed over representatives of the non-trivial conjugacy classes.

One very useful consequence of the general class equation, which is the key to our proof
of Sylow’s Theorems, is

2.34 Lemma If a p-group P acts on a finite set X, then |X| ≡ |XP | (mod p).

Proof The class equation says |X| = |XP |+
∑
|P : Hi|, where the Hi are proper subgps

of P , and each |P : Hi| ≡ 0 (mod p) since P is a p-group, so |X| ≡ |XP | (mod p). �

2.35 Corollary The center Z of any nontrivial p-group P is nontrivial.†

Proof Let P act on itself by conjugation. Then the fixed point set is Z, which by the
lemma has order divisible by p, so cannot be trivial. �

Now we are ready to prove Sylow’s Theorems.

Proof of Sylow I The result is obvious if G is the trivial group, so we suppose G
nontrivial and induct on its order |G| = pkr (with p - r) assuming the result for groups of
smaller order. Set Z = center of G.

† It follows that if |P | = p2, then P is abelian: Assume not. Then Z is cyclic of order p by the
Corollary and Lagrange’s Theorem, so P/Z is also cyclic of order p, say generated say by some xZ. But
then any element in P is of the form xku for some k ∈ Z, u ∈ Z and so P is in fact abelian (since
∀u, v ∈ Z, xkux`v = xk+`uv = x`vxku) contrary to our assumption.
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Case 1: p divides |Z|. Then it follows easily from the structure theorem for finite abelian
groups that Z has a subgroup P of order p =⇒ |G/Z| = pk−1r =⇒ (by induction) G/P has
subgroups of order 1, p . . . , pα−1 =⇒ (by the correspondence theorem) G has subgroups of
order 1, p, . . . , pk.

Case 2: p does not divide |Z|. Then by the class equation, p does not divide the index
of the centralizer Z(x) of some x 6∈ Z =⇒ pk divides |Z(x)| =⇒ (by induction) Z(x) has
subgroups of order 1, p, . . . , pk =⇒ G does as well. �

Proof of Sylow II For any two Sylow p-subgroups P and Q of G, let P act by left
multiplication on G/Q. Since |G/Q| = r 6≡ 0 (mod p), it follows from the lemma that ∃
a fixed point xQ, i.e. for all g ∈ P , have

gxQ = xQ =⇒ gx ∈ xQ =⇒ g ∈ xQx−1.
Thus P ⊂ xQx−1, and so they are equal since they have the same order. �

Note : This proof shows that any p-subgroup of G is a subset of some Sylow p-subgroup.

Proof of Sylow III Let X = {Sylow p-subgroups of G}, so

np = |X|.
Choose P ∈ X (by Sylow I) so X = C(P ), the set of all subgroups conjugate to P (by

Sylow II). Thus |X| = |G : N(P )| (see example m2 on page 40), which is a divisor of
r = |G : P | = |G : N(P )||N(P ) : P |, i.e. np|r.

To see np ≡ 1 (mod p), consider the action of P on X by conjugation. Since np|r, we
have np 6≡ 0 (mod p) =⇒ ∃ a fixed point Q ∈ X, i.e. P ⊂ N(Q). But this forces P = Q,
since Q C N(Q) (by definition) and so Q is the only Sylow p-subgroup of N(Q). Thus P
is the unique fixed point of this action, so np ≡ 1 (mod p) by the lemma. �

Exercise m1 Find all orders n < 100 for which Sylow III applies directly (without extra
counting arguments as above) to produce a normal Sylow subgroup. (Answer: all except
n = 12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96)m2 Show that S4 (of order 24) has no normal Sylow subgroups, but that every group of
order less than 24 has at least one such subgroup.

Remark It is an immediate consequence of Burnside’s Theorem that no groups of order
2k · 3 (e.g. of order 12, 24, 48 or 96) are simple. This can also be proved in an elementary
way as follows. Let G be a noncyclic group of order n = pkr, with p - r as usual. Then

np = 1 =⇒ G is not simple

This can be strengthened to

n - np! =⇒ G is not simple.

The proof is slick, but easy: Let G act by conjugation on the set of all Sylow-p subgroups
of G, with associated permutation homomorphism ρ : G→ Snp . Thus if G is simple, then
ker(ρ) is trivial, so ρ is one-to-one, so n divides np! by Lagrange’s Theorem, as claimed.

Furthermore np|r by Sylow counting, so (continuing to assume G is simple) we see that

n divides np! (as shown above) which divides r!. Thus pk divides (r − 1)!, which clearly

puts a lower bound on r. For example, if n = 2k · 3, then for G to be simple we would
need 2k to divide 2!, i.e. k = 1, but by hand we see that no group of order 6 is simple.
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Alternative Proof of Sylow I and III (November 2019)

Let sd(G) denote the number of subgroups of order d in a finite group G of order n.
Thus sd(G) is zero if d does not divide n, by Lagrange’s Theorem, but may also be zero
when d does divide n (e.g. s6(A4) = 0). Sylow’s Theorem III shows that if if d is the
maximal power of a prime p that divides n, then sd(G) ≡ 1 (mod p) (and thus sd(G) ≥ 1,
proving Sylow I as well). The following theorem of Frobenius generalizes this result:

Frobenius’ Theorem (1895) If d divides n and is a power of a prime p, then sd(G) ≡p 1.

Proof: We show more generally that for arbitrary divisors d of n

(?) sd(G) =

(
n− 1

d− 1

)
− s

where s is a sum of nontrivial (i.e. 6= 1) divisors of d. The theorem follows: If d is a
p-power then s ≡p 0, so the mod p reduction of sd(G) depends only on the order of G, not
on its structure. Thus sd(G) ≡p sd(cyclic group of order n) = 1.

Now here’s the proof of (?) :

Let X be the set of all subsets of G of size d, so |X| =
(
n

d

)
, and sd(G) is the number

of elements of X that are actually subgroups.

Let G act on X by left multiplication. There are two types of orbits: “good” ones that
contain a subgroup, and “bad” ones that don’t. In fact any good orbit O contains exactly
one subgroup S, since by definition O = G/S, the set of left cosets of S in G. Thus sd(G)
is the number of good orbits, and each good orbit contains n/d elements.

Now let O be a bad orbit. By an obvious translation, O has an element S that contains
the identity element of G. Let H denote the stabilizer of S. Then H is a proper subset of
HS = S (proper since S is not a subgroup) of order dividing the order of S (since S = HS
is a union of right cosets of H). That is, |H| = d/dO for some nontrivial divisor dO of d.
Thus by the orbit stabilizer theorem, |O| = n/|H| = ndO/d.

Now since X is the union of all the orbits,

|X| =

(
n

d

)
=

n

d

(
sd(G) +

∑
dO

)
where the last sum is over bad orbits, and the result follows since

d

n

(
n

d

)
=

(
n− 1

d− 1

)
. �
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3. Rings

Basic Concepts

Definition A ring is a set R with two binary operations + and · satisfyingma (R,+) is an abelian group (with identity 0),mb (R, ·) is a semigroup, andmc · is distributive over + (on both sides)

Make sure you know what this entails (e.g. distributivity says that r(s+ t) = rs+ rt and
(s + t)r = sr + tr, ∀r, s, t ∈ R). Say R is a ring with 1 if it contains a multiplicative
identity element, and R is commutative if multiplication is commutative.

A subset S ⊂ R is a subring of R, denoted S < R, if 0 ∈ S and s, t ∈ S =⇒ −s, s+ t and
st ∈ S. Can show (as in group theory) that S < R ⇐⇒ S is nonempty and closed under
subtraction and multiplication.

Examples m1 The trivial ring R = {0} is commutative with 1 = 0.

m2 Z < Q < R < C < H are all rings with 1, and all but the last are commutative.

m3 Zn is a commutative ring with 1, for any n ∈ N.

m4 The set Z[i] = {a+ bi | a, b ∈ Z} of Gaussian integers is a subring of C. Similarly

Z[u] := {a+ bu | a, b ∈ Z} < C where u = e2πi/3 ∈ C.
This ring will play a special role in the proof below of Fermat’s last theorem for n = 3.
(Picture these rings as square/triangular lattice points in the complex plane)

m5 (new rings from old) For any rings R and S have

a) the product R× S with component-wise operations
b) matrix rings Mn(R) of n × n matrices with entries in R with the usual addition

and multiplication of matrices
c) polynomial rings R[x] = {

∑n
i=0 rix

i | ri ∈ R} with the usual addition and multi-
plication of polynomials, and in more variables R[x, y], R[x, y, z], etc.

d) power series rings R[[x]] = {
∑∞

i=0 rix
i | ri ∈ R}, R[[x, y]], etc.

e) group rings RG = {
∑n

=0 rigi | ri ∈ R, gi ∈ G} of G (any group) over R, with the
operations

∑n
i=0 rigi +

∑n
i=0 sigi =

∑n
i=0(ri + si)gi and (

∑n
i=0 rigi)(

∑n
j=0 sjgj) =∑n

i,j=0(risj)gigj
f) function rings The set [X,R] of all functions from a set X to R under the opera-

tions (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x).

Remark Many familiar properties of Z generalize to allrings, for example ma 0r = 0,mb (−r)s = r(−s) = −(rs), mc −1 · r = −r (in rings with 1); see the text for proofs. But
not all, e.g. commutativity. Also, it is not true in general(even in commutative rings) that

rs = 0 =⇒ r or s = 0

e.g. 2 · 2 = 0 in Z4. Commutative rings with 1 6= 0 wherethis holds are called integral
domains (more on this below).
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Definition A function f : R→ S, where R and S are rings, is called a ring homomorphism
if

f(r + s) = f(r) + f(s) and f(rs) = f(r)f(s)

for all r, s ∈ R. If R and S are rings with identity, often also require that f(1) = 1. The
kernel of f , denoted ker(f) is defined to be the set of all elements in R that f maps to 0
(not to 1), and the image Im(f) is defined in the usual way. Both are subrings (of R and
S respectively). Have the usual criterion f is 1-1 ⇐⇒ ker(f) = {0}.

Examples m1 f : Z→ Zn, f(k) = k is an epimorphism with kernel nZ.

m2 g : Z → Zm × Zn, g(k) = (k, k) (e.g. if m = 5, n = 9 then f(13) = (3, 4)) is a
homomorphism with kernel `Z, where ` is the lcm of m and n.

Ideals and Quotient Rings

Definition A subring A of a ring R is an ideal in R, denoted A C R, if Ra and aR are
subsets of A for every a ∈ A, i.e. A is closed under multiplication on the left or right by
arbitrary elements of R. (Here Ra = {ra | r ∈ R}, etc.)

ideals are the ring theory analogue of normal subgroups in group theory

Examples m0 For any ring R, both {0} and R are ideals.

m1 nZ C Z for any n (these are the only ideals in Z).

m2 Let R be a commutative ring with 1 and a ∈ R. Then aR = Ra (also denoted 〈a〉)
is an ideal in R containing a (verify this) called the principal ideal generated by a. An
ideal J C R is called a principal ideal if J = 〈a〉 for some a ∈ R.

m3 Let f : R→ S be a ring morphism. Then ker(f) C R (verify this).

Definition Given an ideal J in a ring R, define the quotient ring R/J to be the set of
cosets {r + J | r ∈ R} with operations + and · defined in the obvious way

(r + J) + (s+ J) = (r + s) + J and (r + J)(s+ J) = (rs) + J.

These operations are well-defined (e.g. for multiplication: if r+ J = r′+ J , i.e. r− r′ ∈ J ,
then rs− r′s = (r − r′)s ∈ J , so rs+ J = r′s+ J ; similarly independent of the choice of
rep for s + J). They make R/J into a ring; the additive identity is 0 + J = J and the
negative of r + J is (−r) + J .

There’s a universal property, as for groups, and isomorphism theorems, e.g.:

3.1 First Isomorphism Theorem (for rings) If f : R → S is a ring homomorphism,
then R/ ker(f) ∼= Im(f).

Examples m1 Using f : Z→ Zn of example m1 in §1, have Z/nZ ∼= Zn.

m2 Using g : Z→ Zm×Zn of example m2 in §1, have Im(g) ∼= Z/`Z, where ` =lcm(m,n).
In particular, if m and n are relatively prime, so ` = mn, then (counting elements) we see
that g induces an isomorphism

Zmn ∼= Zm × Zn if (m,n) = 1
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mapping k to (k, k). This =⇒ the “Chinese Remainder Theorem” that states that for any
a, b ∈ Z, there exists x ∈ Z satisfying the system of congruences

x ≡ a (mod m)

x ≡ b (mod n)

and all other solutions are of the form x+kmn for some k ∈ Z. For example, ifm = 5, n = 9
and a = 2, b = 8, then have the solution set {17 + 45k | k ∈ Z}.

Integral Domains and Fields

Throughout this section, assume R is a commutative ring with 1 6= 0.

Definition A nonzero element a ∈ R is ma a zero divisor if ∃ b ∈ R− 0 such that ab = 0mb a unit if ∃ b ∈ R such that ab = 1 (Note that b is unique, if it exists, and is denoted
a−1.) Two elements a, b ∈ R are associates, written a ∼ b, if a = bu for some unit u.

Set R◦ = {zero divisors in R} and R• = {units in R}. Then

R◦ ∩R• = ∅
since a ∈ R◦ ∩ R• =⇒ 0 = ab for some b 6= 0 =⇒ b = a−1ab = a−10 = 0 which is a
contradiction.

Definition † R is called an integral domain (or just a domain) if it has no zero divisors
(i.e. R◦ = ∅), and a field if all nonzero elements are units (i.e. R• = R− {0}).

Clearly every field is a domain (since R◦ ∩ R• = ∅) but not conversely (e.g. Z is a
domain but not a field). There is a useful characterization of fields in terms of ideals:

3.2 Lemma † R is a field ⇐⇒ R has no proper ideals.

Proof (=⇒) For any nonzero ideal J , choose a 6= 0 in J . Then for any r ∈ R have
r = ra−1a ∈ J , so J = R. (⇐=) For any a 6= 0 in R, the principal ideal aR 6= 0, so by
hypothesis aR = R. Thus ∃r ∈ R such that ar = 1 so a is a unit. Thus R is a field. �

There are two special kinds of ideals that relate to these notions:

Definition† Let J be a proper ideal in R (note that J = {0} is allowed). Then J is prime
if ab ∈ J =⇒ a ∈ J or b ∈ J , and J is maximal if J ⊂ K C R =⇒ K = J or K = R.

Exercise R is a domain ⇐⇒ {0} is a prime ideal.

3.3 Theorem Let R be a commutative ring with 1 6= 0 and J C R. Thenma J is prime ⇐⇒ R/J is a domain mb J is maximal ⇐⇒ R/J is a field.

Proof ma HW mb By the correspondence theorem J is maximal ⇐⇒ R/J has no
proper ideals, and this is equivalent to R/J being a field by the previous lemma. �

Examples m1 nZ C Z is prime ⇐⇒ maximal ⇐⇒ n is a prime number.

m2 In general, maximal ideals are always prime (HW) but not conversely. For example
〈x〉 C Z[x] consisting of all polynomials with 0 constant term) is prime but not maximal:
Z[x]/〈x〉 ∼= Z (and now apply the theorem).

† Recall that we are assuming that R is a commutative ring with 1 6= 0.

39



Bryn Mawr College

Coda

3.4 Fermat’s Last Theorem (1637, proved by A. Wiles in 1995) For n ≥ 3, the equation

xn + yn = zn

has no non-zero integral solutions x, y, z. (Call this FLTn for any given n.)

Remarks m1 FLTn =⇒ FLTkn, since any solution x, y, z for kn would give the solution
xk, yk, zk for n. Fermat knew a proof for n = 4, and so this reduces the proof to the case
of odd primes, i.e. it suffices to prove that

xp + yp = zp

has no non-zero integral solutions x, y, z for any odd prime p.

m2 A solution x, y, z is primitive if x, y and z are nonzero and have no common factor.
Enough to prove 6 ∃ primitive solutions (since any soln cx, cy, cz gives another x, y, z). Note
x, y, z primitive solution =⇒ pairwise relatively prime.

m3 Proof for p = 3 (which we give below) was known to Euler, for p = 5 to Dirichlet &
Legendre, for p = 7 to Gabriel Lamé. Indeed Lamé and Cauchy (independently) thought
they had it all. Their approach was to show 6 ∃ any solutions in the bigger ring

Λp := Z[ζp] = {polys in ζp with Z coeffs}

where ζp = e2πi/p; their mistake, uncovered by Kummer, was to assume that Λp has unique
factorization into primes (as Z does) which in fact it does only for p ≤ 19. Kummer’s
work led him to introduce “ideals” which then led to modern ring theory.

Proof (for n = 3) Set ζ = ζ3 and Λ = Λ3 = Z[ζ]. We will show that for any unit
u ∈ Λ•,

x3 + y3 = uz3

has no primitive solutions in Λ (FLT is the case u = 1). Note that

Λ• = {±1,±ζ,±ζ2}
as seen by inspection (since these are the elements of complex norm 1 in Λ, and all other
elements have norm > 1).

It is a fact (which we won’t prove here) that any nonzero, nonunit in Λ can be factored
uniquely (up to order and replacement by associates) as a product of primes (nonunits
whose only divisors are their associates and units). One such prime is p := ζ − 1. Why
is p prime? Well, |p| =

√
3 which is the smallest norm achieved by a nonunit in Λ, so if

p = ab then |p| = |a||b| =⇒ |a| or |b| = 1, i.e. a or b ∈ Λ•.

Remarks m1 3 is not prime in Λ, but factors as 3 = p2u, where u = −ζ2. Thus p2|3 (also
written 3 ≡p2 0) but p3 - 3 (3 6≡p3 0).

m2 Each a ∈ Λ can be written uniquely in the form a = a + rp for some r ∈ Λ where
a = 0, 1 or −1. This defines an isomorphism

Λ/pΛ→ Z3 , a+ pΛ 7→ a

To show this, write a as a poly w/ integral coeff in ζ, and thus in p by substituting p+ 1

for ζ. Now reduce the constant term to 0 or ±1 using m1 For example u = ±1 for any
u ∈ Λ•; in particular ζ = ζ2 = 1.
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m3 For any a ∈ Λ, have a3 ≡p3 a. Proof: a = a + rp, by m2 , so a3 = a3 + 3a2rp +

3ar2p2 + r3p3 ≡p3 a3 (by m1 ) = a.

Now suppose xo, yo, zo is a primitive solution to

x3 + y3 = uz3

for some unit u. This is Fermat’s equation when u = 1, but as we shall see, it is easier
to prove simultaneously that none of these six equations (for the various units u) have
solutions.

Case 1 p - xoyozo. Then by the remarks above, xo, yo, zo = ±1 =⇒
0 = x3o + y3o − uz3o ≡p3 xo + yo ± zo = ±1 or ±3 6≡p3 0 ⇒⇐.

Case 2 p | xoyozo. Then p divides exactly one of xo, yo, zo, since they are pairwise
relatively prime.

Case 2a Suppose p | zo. Then xo = −yo = ±1, so without loss of generality, xo = rp+ 1
and yo = sp− 1 for suitable r, s ∈ Λ.

Let k be the largest natural number for which pk | zo, called the p-order of the solution.
A simple calculation (reducing mod p4) shows that in fact k ≥ 2.† We assume that the
solution was chosen so that k is minimal.

Now (and this is the magic!) define

a =
xo + yo

p
b =

ζxo + ζ2yo
p

c =
ζ2xo + ζyo

p
.

The numerators are all divisible by p (e.g. for b, ζxo + ζ2yo = xo + yo = 0) and so
a, b, c ∈ Λ. A straightforward argument, using the fact that ζ3 = 1 and 1 + ζ + ζ2 = 0,
shows

m1 a+ b+ c = 0 m2 abc = (x3o + y3o)/p
3 = u(zo/p)

3

m3 a, b, c are pairwise relatively prime, i.e. have no common prime factors (to see this,
note that xo, yo are linearly related to any pair of a, b, c, and so a common factor for such
a pair would yield one for xo, yo).m2 and m3 show that each of a, b, c is a unit times a cube, and that these cubes are
relatively prime. It follows from m1 that ∃x1, y1, z1 with x31, y

3
1, z

3
1 associates of a, b, c, in

some order, such that p - x1, p - y1, p | z1, pk - z1, and

x31 + vy31 + wz31 = 0

for suitable units v, w. It is easy to check that v = ±1 (since the left side is congruent mod
p3 to x1 +vy1 = ±1±v =⇒ v ≡ p3±1 =⇒ v = ±1) so this gives a new solution x1,±y1, z1
of smaller p-order to one of the original equations, contradicting the minimality of k.

Case 2b Suppose p |xo (or yo). Then uz ≡p3 x + y =⇒ u ≡p3 ±1 =⇒ u = ±1 =⇒
(−yo)3 + (±zo)3 = x3o, which is handled in case 2a.

Thus Fermat’s Last Theorem for n = 3 is proved. �

† x30 + y30 = (rp+ 1)3 + (sp− 1)3 ≡p4 r3 + s3 − ζ2(r + s))p3 ≡p4 (r + s− (r + s))p3 = 0 =⇒ z ≡p2 0.
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Addendum: Alternative Proof of Abel’s Theorem (November 2019 †)

Given any nontrivial normal subgroup H of An for n ≥ 5, we must show H = An. It
suffices to show that H contains at least one 3-cycle, say σ, for then it contains all of
them (any other is conjugate to σ by an element in Sn, which can be chosen in An by
multiplying if needed by a transposition that commutes with σ, which exists since n ≥ 5),
and An is generated by 3-cycles (each element in An is a product of an even number of
transpositions, which pairwise can be rewritten in terms of 3-cycles: (i j)(j k) = (i j k),
(i j)(k `) = (i j k)(j k `)”).

To show H contains a 3-cycle, first note that the 3-cycles have the largest fixed point sets
among all nonidentity elements in An. So the idea is to start with any nontrivial element
h in H, and to give a way to modify it (if it’s not a 3-cycle) to obtain one with more
fixed points: Choose any 3-cycle σ in An that does not commute with h. (For example if
h(1) = 2, then choose σ to fix 1 but move 2; this uses n ≥ 4.) Then the commutator

x := [σ, h] = (σhσ−1)h−1 = σ(hσ−1h−1)

is a nontrivial element in H (by the second equality) that is also a product x = στ of two
3-cycles, where τ = hσ−1h−1 (by the third), so it has at least n− 6 fixed points.

If σ and τ are disjoint, say σ = (1 2 3) and τ = (4 5 6), then x = (1 2 3)(4 5 6) commutes
with an odd permutation α = (1 4)(2 5)(3 6), so H contains all products of two disjoint
3-cycles (indeed any two such are conjugate by some permutation, which can be multiplied
by α if necessary to make it even), in particular y = στ2. Thus xy = σ2 is a 3-cycle in H.

If σ and τ overlap singly, say σ = (1 2 3) and τ = (3 4 5), then x = (1 2 3 4 5) is a
5-cycle, which can be multiplied by an An-conjugate of itself to give a 3-cycle in H:
x(µxµ−1) = (1 4 2) where µ = (1 3 5).

If σ and τ overlap doubly, say σ = (1 2 3) and τ = (4 3 2) or (2 3 4), then x is either
a 3-cycle (1 2 4) or a product of two disjoint 2-cycles (1 2)(3 4), and in the latter case
(using n ≥ 5) x can be multiplied by an An-conjugate of itself to give a 3-cycle in H:
x(µxµ−1) = ((1 2)(3 4))((1 2)(4 5)) = (3 4 5) where µ = (3 4 5).

If σ and τ overlap triply, then σ = τ (since x 6= 1) so x = σ2 is itself a 3-cycle.

† inspired in part by Ken Brown’s Cornell Math 4340 Lecture Notes (2009Brown.Alternating.pdf).
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